

TRIETHANOLAMINE

This dossier on triethanolamine presents the most critical studies pertinent to the risk assessment of triethanolamine in its use in coal seam gas extraction activities. This dossier does not represent an exhaustive or critical review of all available data. The majority of information presented in this dossier was obtained from the ECHA database that provides information on chemicals that have been registered under the EU REACH (ECHA). Where possible, study quality was evaluated using the Klimisch scoring system (Klimisch *et al.*, 1997).

Screening Assessment Conclusion – Triethanolamine is classified as a **tier 1** chemical and requires a hazard assessment only.

1 BACKGROUND

Triethanolamine, or TEA, is a viscous organic compound that is both a tertiary amine and a triol; a molecule with three alcohol groups. TEA is often used to facilitate lubricant formation in the drilling process.

It is readily degradable, does not persist in the environment and is of low toxicity to aquatic organisms.

2 CHEMICAL NAME AND IDENTIFICATION

Chemical Name (IUPAC): 2,2',2"-nitrilotriethanol

CAS RN: 102-71-6

Molecular formula: C₆H₁₅NO₃ or (CH₂OHCH₂)₃N

Molecular weight: 149.19 g/mol

Synonyms: Triethanolamine; 2,2',2"-nitrilotriethanol; 2,2',2"-nitrilotris[ethanol]; ethanol, 2,2',2"-nitrilotri- (8Cl); ethanol, 2,2',2"-nitrilotris- (9Cl); nitrilotriethanol; TEA; tris(beta-hydroxyethyl)amine; tris(2-hydroxyethyl)amine

3 PHYSICO-CHEMICAL PROPERTIES

Key physical and chemical properties for the substance are shown in Table 1.

Table 1: Overview of the Physico-chemical Properties of Triethanolamine

Property	Value	Klimisch score	Reference
Physical state at 20°C and 101.3 kPa	Colourless to pale-yellow liquid with an amine-like odour.	2	ECHA
Melting Point	20.5°C @ 101.3 kPa	2	ECHA
Boiling Point	336.1°C @ 101.3 kPa	2	ECHA

Property	Value	Klimisch score	Reference	
Density	1120 kg/m³ @ 20°C	2	ECHA	
Vapour Pressure	Negligible	2	ECHA	
Partition Coefficient (log K _{ow})	-1.9 @ 25°C [Experimental]	2	ECHA	
Water Solubility	>1,000 g/L @ 20°C	2	ECHA	
Viscosity	929.82 mPa s@ 20°C 203.28 mPa s @ 40°C	2	ECHA	
Dissociation Constant (pKa)	7.86 @ 25°C	2	ECHA	

4 DOMESTIC AND INTERNATIONAL REGULATORY INFORMATION

A review of international and national environmental regulatory information was undertaken (Table 2). This chemical is listed on the Australian Inventory of Chemical Substances – AICS (Inventory). No conditions for its use were identified. No specific environmental regulatory controls or concerns were identified within Australia and internationally for triethanolamine.

Based on an assessment of hazards, NICNAS identified the substance as a chemical of low concern to the environment (DoEE, 2017a). Chemicals of low concern are unlikely to have adverse environmental effects if they are released to the environment from coal seam gas operations.

Table 2 Existing International Controls

Convention, Protocol or other international control	Listed Yes or No?
Montreal Protocol	No
Synthetic Greenhouse Gases (SGG)	No
Rotterdam Convention	No
Stockholm Convention	No
REACH (Substances of Very High Concern)	No
United States Endocrine Disrupter Screening Program	No
European Commission Endocrine Disruptors Strategy	No

5 ENVIRONMENTAL FATE SUMMARY

A. Summary

Triethanolamine is readily biodegradable, and it has a low potential to bioaccumulate. Triethanolamine will not adsorb significantly to suspended solids and sediments in water and would be highly mobile in soil.

B. Biodegradation

Triethanolamine is readily biodegradable. In an OECD 301E test, there was 96% degradation after 19 days (ECHA). [Kl. score = 2]

Triethanolamine was completely degraded after incubation in municipal activated sludge for 1 or 5 days (West and Gonsior, 1996). The rate constants in all test batches for degradation and mineralisation were reported to be >0.359. Thus, triethanolamine can be considered to be readily biodegradable. [KI. score = 2]

If a chemical is found to be readily biodegradable, it is categorised as Not Persistent since its half-life is substantially less than 60 days (DoEE, 2017b).

C. Environmental Distribution

No experimental data are available for triethanolamine. Using KOCWIN in EPISUITETM (U.S. EPA, 2017), the estimated K_{oc} value from log K_{ow} of -2.48 is 0.3046 L/kg. The estimated K_{oc} value from the molecular connectivity index (MCI) is 10 L/kg.

If released to water, based on its low K_{oc} and high water solubility values, triethanolamine is likely to remain in water and not adsorb to sediment. It is also not expected to adsorb to soil, and, has the potential to be highly mobile.

D. Bioaccumulation

Triethanolamine has been tested in a bioconcentration flow-through fish (OECD 305) test using *Cyprinus carpio*. The BCF was determined to be <0.4 and <3.9 at triethanolamine concentrations of 2.5 and 0.25 mg/L, respectively (ECHA). [Kl. score = 2]

Based on the log K_{ow} (-2.48) and the calculated BCF, bioaccumulation is not to be expected.

6 ENVIRONMENTAL EFFECTS SUMMARY

A. Summary

Triethanolamine has low acute toxicity concern to aquatic organisms.

B. Aquatic Toxicity

Acute Studies

Table 3 lists the results of acute aquatic toxicity studies conducted on triethanolamine.

Table 3: Acute Aquatic Toxicity Studies on Triethanolamine

Test Species Endpoint Pimephales promelas 96-h LC50		Results (mg/L)	Klimisch score	Reference	
		11,800	2	ECHA	

Test Species	Endpoint	Results (mg/L)	Klimisch score	Reference	
Ceriodaphnia dubia	48-h EC ₅₀	610	2	Warne and Schifko, 1999	
Desmodesmus subspicatus	72-h EC ₅₀	512 (neutralised) 216 (un-neutralised)	2	ECHA	

Chronic Studies

In a 21-day *Daphnia* reproduction test, the NOEC for mortality is 16 mg/L, the NOEC for reproduction rate was 125 mg/L, and the NOEC for reproduction on the appearance of first offspring was 250 mg/L (Kuehn *et al.*, 1989). [Kl. score = 2]

C. Terrestrial Toxicity

No studies are available.

7 CATEGORISATION AND OTHER CHARACTERISTICS OF CONCERN

A. PBT Categorisation

The methodology for the Persistent, Bioaccumulative and Toxic (PBT) substances assessment is based on the Australian and EU REACH Criteria methodology (DEWHA, 2009; ECHA, 2008).

Triethanolamine is readily biodegradable; thus it does not meet the screening criteria for persistence.

The BCF values for triethanolamine in fish was <3.9; thus it does not meet the criteria for bioaccumulation.

The NOEC or EC_{10} values from chronic aquatic toxicity studies on triethanolamine is >0.1 mg/L. Thus triethanolamine does not meet the criteria for toxicity.

The overall conclusion is that triethanolamine is not a PBT substance.

B. Other Characteristics of Concern

No other characteristics of concern were identified for triethanolamine.

8 SCREENING ASSESSMENT

			Chemical Databases of Concern Assessment Step		Persistence Assessment Step		Bioaccumulative Assessment Step	Toxicity Assessment Step			
Chemical Name	CAS No.	Overall PBT Assessment ¹	Listed as a COC on relevant databases?	Identified as Polymer of Low Concern	P criteria fulfilled?	Other P Concerns	B criteria fulfilled?	T criteria fulfilled?	Acute Toxicity ²	Chronic Toxicity ²	Risk Assessment Actions Required ³
Triethanolamine	102-71-6	Not a PBT	No	No	No	No	No	No	1	1	1

Footnotes:

1 - PBT Assessment based on PBT Framework.

2 - Acute and chronic aquatic toxicity evaluated consistent with assessment criteria (see Framework).

3 – Tier 1 – Hazard Assessment only.

Notes:

NA = not applicable

PBT = Persistent, Bioaccumulative and Toxic

B = bioaccumulative

P = persistent

T = toxic

Revision date: July 2021

9 REFERENCES, ABBREVIATIONS AND ACRONYMS

A. References

- Department of the Environment, Water, Heritage and the Arts [DEWHA] (2009). Environmental risk assessment guidance manual for industrial chemicals, Department of the Environment, Water, Heritage and the Arts, Commonwealth of Australia.
- Department of the Environment and Energy (DoEE). (2017a). Environmental risks associated with surface handling of chemicals used in coal seam gas extraction in Australia, Project report prepared by the Chemicals and Biotechnology Assessments Section (CBAS), in the Chemicals and Waste Branch of the Department of the Environment and Energy as part of the National Assessment of Chemicals Associated with Coal Seam Gas Extraction in Australia, Commonwealth of Australia, Canberra.
- DoEE. (2017b). Chemical Risk Assessment Guidance Manual: for chemicals associated with coal seam gas extraction, Guidance manual prepared by Hydrobiology and ToxConsult Pty Ltd for the Department of the Environment and Energy, Commonwealth of Australia, Canberra.
- ECHA. ECHA REACH database: http://echa.europa.eu/information-on-chemicals/registered-substances
- European Chemicals Agency [ECHA] (2008). Guidance on Information Requirements and Chemical Safety Assessment, Chapter R11: PBT Assessment, European Chemicals Agency, Helsinki, Finland.
- Klimisch, H.J., Andreae, M., and Tillmann, U. (1997). A systematic approach for evaluating the quality of experimental and toxicological and ecotoxicological data. Regul. Toxicol. Pharmacol. 25:1-5.
- Kuehn, R., Pattard, M., Pernak, K.D., and Winter, A. (1989). Results of the harmful effects of water pollutants to *Daphnia magna* in the 21-day reproduction test. Water Res. 23: 501-510.
- U.S. Environmental Protection Agency [EPA] (2017). EPISuite™ v. 4.11, United States Environmental Protection Agency, Office of Pollution Prevention and Toxics and Syracuse Research Corporation. Available at: https://www.epa.gov/tsca-screening-tools/epi-suitetm-estimation-program-interface.
- Warne, M.S.J., and Schifko, A.D. (1999). Toxicity of laundry components to a freshwater *Cladoceran* and their contribution to detergent toxicity. Ecotoxicol. Environ. Saf. 44: 196-206.
- West, R.J., and Gonsior, S.J. (1996). Biodegradation of triethanolamine. Environ. Toxicol. Chem. 15: 472-480.

B. Abbreviations and Acronyms

°C degrees Celsius

AICS Australian Inventory of Chemical Substances

BCF bioconcentration factor

COC constituent of concern

DEWHA Department of the Environment, Water, Heritage and the Arts

EC effective concentration

ECHA European Chemicals Agency

EU European Union

g/cm³ grams per cubic centimetre

g/L grams per litre

IUPAC International Union of Pure and Applied Chemistry

KOCWIN™ USEPA organic carbon partition coefficient estimation model

kPa kilopascal

L/kg litres per kilogram

LC lethal concentration

MCI molecular connectivity index

mg/L milligrams per litre

mm²/s square millimetres per second

NOEC no observed effect concentration

OECD Organisation for Economic Co-operation and Development

PBT Persistent Bioaccumulative Toxic

REACH Registration, Evaluation, Authorisation and Restriction of Chemicals

SGG Synthetic Greenhouse Gases

TEA triethanolamine

USEPA United States Environmental Protection Agency

Revision date: July 2021

7