

SODIUM BISULFITE

This dossier on sodium bisulfite presents the most critical studies pertinent to the risk assessment of sodium bisulfite in water treatment systems. It does not represent an exhaustive or critical review of all available data. The information presented in this dossier was obtained mainly from the ECHA database that provides information on chemicals that have been registered under the EU REACH (ECHA). Where possible, study quality was evaluated using the Klimisch scoring system (Klimisch *et al.*, 1997).

Screening Assessment Conclusion – Sodium bisulfite is classified as a **tier 1** chemical and requires a hazard assessment only.

1 BACKGROUND

At environmental pHs, sodium bisulfite dissociates in water to form sodium (Na+) ions, bisulfite ions (HSO_3^-), sulfite (SO_3^2) ions and sulfur dioxide (SO_2) which is a gas. Sodium bisulfite is not expected to bioaccumulate in the environment because of its dissociation to ionic species and a gas. Furthermore, sulfite will oxidise to sulfate, which is ubiquitous in the environment. Sodium bisulfite and its dissociated species are expected to have a low potential to adsorb to soil and sediment. No aquatic toxicity studies have been conducted on sodium bisulfite. Other inorganic sulfite compounds show low to moderate toxicity concern to aquatic organisms.

2 CHEMICAL NAME AND IDENTIFICATION

Chemical Name (IUPAC): Sodium hydrogen sulfite

CAS RN: 7631-90-5

Molecular formula: NaHSO₃

Molecular weight: 104.1 g/mol

Synonyms: Sodium bisulfite; sodium hydrogen sulfite; sodium hydrogensulfite; monosodium sulfite; sodium sulfhydrate; hydrogen sodium sulfite; sulfurous acid, monosodium salt

3 PHYSICO-CHEMICAL PROPERTIES

Key physical and chemical properties for the substance are shown in Table 1.

Table 1 Overview of the Physico-chemical Properties of Sodium Bisulfite

Property	Value	Klimisch score	Reference		
Physical state at 20°C and 101.3 kPa	White, crystalline, solid	-	PubChem		
Melting Point	Decomposes	-	PubChem		
Boiling Point	Decomposes	-	PubChem		
Density	1348 kg/m³ @ 20° C	1	ECHA		

Property	Value	Klimisch score	Reference
Vapour Pressure	Not applicable	-	-
Partition Coefficient (log K _{ow})	Not applicable	-	-
Water Solubility	Very soluble (> 10 g/L) @ 20° C	2	ECHA
Viscosity	3.64 mPa s @ 20° C	-	PubChem

Sodium bisulfite is a weak acid with a pK_a of 6.97. Its conjugate base is the sulfite ion (SO₃²⁻).

$$NaHSO_3 \leftrightarrow Na^+ + HSO_3^-$$

$$HSO_3^- \longleftrightarrow H^+ + SO_3^{2-}$$

At neutral pH, a mixture of 50% sulfite (SO_3^{2-}) and 50% bisulfite (HSO_3^{2-}) is present.

In surface waters, sulfite is oxidised to sulfate either catalytically by air oxygen or by microbial action (OECD, 2008). The presence of cations like iron, copper or manganese in the environment accelerates the oxidation rate significantly.

Dissociation of sodium bisulfite in aqueous solutions can also liberate sulfur dioxide (SO₂), which is a gas.

4 DOMESTIC AND INTERNATIONAL REGULATORY INFORMATION

A review of international and national environmental regulatory information was undertaken (Table 2). This chemical is listed on the Australian Inventory of Chemical Substances – AICS (Inventory). No conditions for its use were identified. No specific environmental regulatory controls or concerns were identified within Australia and internationally for sodium bisulfite.

Table 2 Existing International Controls

Convention, Protocol or other international control	Listed Yes or No?
Montreal Protocol	No
Synthetic Greenhouse Gases (SGG)	No
Rotterdam Convention	No
Stockholm Convention	No
REACH (Substances of Very High Concern)	No
United States Endocrine Disrupter Screening Program	No
European Commission Endocrine Disruptors Strategy	No

5 ENVIRONMENTAL FATE SUMMARY

At environmental pHs, sodium bisulfite dissociates in water to form sodium (Na⁺) ions, bisulfite ions (HSO₃⁻), sulfite (SO₂³⁻) ions, and sulfur dioxide (SO₂) which is a gas.

Sodium bisulfite is not expected to bioaccumulate in the environment because of its dissociation to ionic species and a gas. Furthermore, sulfite will oxidise to sulfate, which is ubiquitous in the environment.

Sodium bisulfite and its dissociated species are expected to have a low potential to adsorb to soil and sediment.

6 ENVIRONMENTAL EFFECTS SUMMARY

A. Summary

No aquatic toxicity studies have been conducted on sodium bisulfite. Other inorganic sulfite compounds show low to moderate toxicity concern to aquatic organisms.

B. Aquatic Toxicity

Acute Studies

No acute aquatic studies are available on sodium bisulfite; however, studies are available on other inorganic sulfite compounds. The studies on these inorganic sulfite compounds can be used to readacross to sodium bisulfite since sulfite ions are formed in water upon dissociation of sodium bisulfite. Table 3 lists the results of acute aquatic toxicity studies on the structural analogues of sodium bisulfite.

Table 3 Acute Aquatic Toxicity Studies on the Structural Analogues of Sodium Bisulfite

Test Species	Test Substance	Endpoint	Results (mg/L)	Klimisch score	Reference
Leuciscus idus	Potassium sulfite	96-hour LC ₅₀	316	2	ECHA
Salmo gairdneri	Sodium pyrosulfite	96-hour LC ₅₀	147-215 (177.8*)	2	ECHA
Brachydanio rerio	Potassium metabisulfite	96-hour LC ₅₀	464-1,000 (681.2*)	1	ECHA
Daphnia magna	Sodium disulfite	48-hour EC ₅₀	88.8	2	ECHA
S. subspicatus	Sodium disulfite	96-hour EC ₅₀ 72-hour EC ₁₀	43.9 33.3	2	ECHA

^{*}Geometric mean.

Chronic Studies

No chronic studies are available on sodium bisulfite; however, studies are available on sodium sulfite. Table 4 lists the results of chronic aquatic toxicity studies conducted on sodium sulfite.

Table 4 Chronic Aquatic Toxicity Studies on Sodium Sulfite (CAS No. 7757-83-7)

Test Species	Endpoint	Results (mg/L)	Klimisch score	Reference	
Danio rerio	34-day NOEC	>316	1	ECHA	
Daphnia magna	21-day NOEC	>10	2	ECHA	

C. Terrestrial Toxicity

No studies were located.

7 CATEGORISATION AND OTHER CHARACTERISTICS OF CONCERN

A. PBT Categorisation

The methodology for the Persistent, Bioaccumulative and Toxic (PBT) substances assessment is based on the Australian and EU REACH Criteria methodology (DEWHA, 2009; ECHA, 2008).

Sodium bisulfite is an inorganic compound that dissociates completely to ionic species and sulfur dioxide gas. Biodegradation is not applicable to these compounds. For the purposes of this PBT assessment, the persistent criterion is not considered applicable to sodium bisulfite or its dissociated compounds.

Sodium bisulfite is not expected to bioaccumulate because its dissociated species are inorganic ions and a gas. Thus, sodium bisulfite does not meet the screening criteria for bioaccumulation.

There are no aquatic toxicity data on sodium bisulfite. The lowest NOEC from chronic aquatic toxicity studies on sodium sulfite, a structural analogue of sodium bisulfite, is >0.1 mg/L. The acute E(L)C₅₀ values for structural analogues of sodium bisulfite are >1 mg/L in fish, invertebrates and algae. Thus, sodium bisulfite is not expected to meet the criteria for toxicity.

The overall conclusion is that sodium bisulfite is not a PBT substance.

B. Other Characteristics of Concern

No other characteristics of concern were identified for sodium bisulfite.

8 SCREENING ASSESSMENT

		Chemical Databases of Concern Assessment Step		Persistence Assessment Step		Bioaccumulative Assessment Step	Toxicity Assessment Step				
Chemical Name	CAS No.	Overall PBT Assessment ¹	Listed as a COC on relevant databases?	Identified as Polymer of Low Concern	P criteria fulfilled?	Other P Concerns	B criteria fulfilled?	T criteria fulfilled?	Acute Toxicity ²	Chronic Toxicity ²	Risk Assessment Actions Required ³
Sodium Bisulfite	7631-90-5	Not a PBT	No	No	NA	No	No	No	1	1	1

Footnotes:

1 - PBT Assessment based on PBT Framework.

2 - Acute and chronic aquatic toxicity evaluated consistent with assessment criteria (see Framework).

3 – Tier 1 – Hazard Assessment only.

Notes:

NA = not applicable

PBT = Persistent, Bioaccumulative and Toxic

B = bioaccumulative

P = persistent

T = toxic

Revision date: March 2021

9 REFERENCES, ABBREVIATIONS AND ACRONYMS

A. References

Department of the Environment, Water, Heritage and the Arts [DEWHA]. (2009). Environmental risk assessment guidance manual for industrial chemicals, Department of the Environment, Water, Heritage and the Arts, Commonwealth of Australia.

ECHA. ECHA REACH database: https://echa.europa.eu/information-on-chemicals/registered-substances

European Chemicals Agency [ECHA]. (2008). Guidance on Information Requirements and Chemical Safety Assessment, Chapter R11: PBT Assessment, European Chemicals Agency, Helsinki, Finland.

Klimisch, H.J., Andreae, M., and Tillmann, U. (1997). A systematic approach for evaluating the quality of experimental and toxicological and ecotoxicological data. Regul. Toxicol. Pharmacol. 25:1-5.

OECD. (2008). Screening Information Dataset (SIDS) Initial Assessment Report for Sodium Sulfite (CAS No. 7757-83-7). Available at: https://hpvchemicals.oecd.org/UI/Default.aspx

PubChem. PubChem open chemistry database: https://pubchem.ncbi.nlm.nih.gov

B. Abbreviations and Acronyms

°C degrees Celsius

AICS Australian Inventory of Chemical Substances

COC constituent of concern

DEWHA Department of the Environment, Water, Heritage and the Arts

EC effective concentration

ECHA European Chemicals Agency

EU European Union g/L grams per litre

IUPAC International Union of Pure and Applied Chemistry

kg/m³ kilogram per cubic metre

kPa kilopascal

LC lethal concentration mg/L milligrams per litre

NOEC no observed effect concentration

PBT Persistent, Bioaccumulative and Toxic

REACH Registration, Evaluation, Authorisation and Restriction of Chemicals

SGG Synthetic Greenhouse Gases

Revision date: March 2021