FINAL REPORT

GLNG Gas Field Development Associated Water Discharge Study

| GLNG GAS FIELD DEVELOPMENT - ASSOCIATED WATER | |
| ---: | ---: | ---: |
| DISCHARGESTUDY | |

Project Manager:

URS Australia Pty Ltd
Level 6, 1 Southbank Boulevard
Southbank
VIC 3006
Australia
Tel: 61386997500
Fax: 61386997550

Project Director:

David Fuller
Senior Principal Water and Catchments

Date:	21 January 2009
Reference:	Associated Water Discharge Study
Status:	Final

Table of Contents

ES Executive Summary 1
1 Introduction 1
2 Background 2
2.1 Associated Water Production 2
2.2 Overseas Experience. 3
2.3 The Quality of Associated Water. 3
2.4 The Study Area 4
2.4.1 Condamine-Balonne Catchment 4
2.4.2 Upper Dawson River Catchment 8
2.4.3 Comet River Catchment 8
3 Risk Analysis Framework 9
3.1 Introduction 9
3.2 Ecological Risk Assessment Framework 9
3.3 Conceptual Ecosystem Model 10
3.3.1 Potential impacts of changes in flow 11
3.3.2 Potential impacts of changes in salinity 12
3.3.3 Potential impacts of changes in temperature 12
3.3.4 Endpoints and indicators 12
3.4 Knowledge Gaps 13
4 Sensitivity of Biota to Salinity 14
4.1 Background 14
4.2 Direct Impacts of Salinity on the Biota of Australia 14
4.2.1 Microbes 14
4.2.2 Algae 14
4.2.3 Aquatic Vascular Plants 15
4.2.4 Zooplankton 15
4.2.5 Macroinvertebrates 15
4.2.6 Fish 16
4.2.7 Amphibians 16
4.3 Local Data on Macroinvertebrate Sensitivity to Salinity 16
4.3.1 Salinity tolerances 16
GLNG GAS FIELD DEVELOPMENT - ASSOCIATED WATER

Table of Contents

4.3.2 Relationships between macroinvertebrates and salinity 17
4.4 Ecotoxicology 17
4.4.1 Literature review 17
4.4.2 Tests at Fairview. 18
4.5 Indirect Impacts of Salinity on Biota 18
4.6 Ecological Responses to Press and Pulse Salinity Changes 19
4.7 Fairview Biomonitoring Case Study 19
4.8 Summary and Conclusions. 20
5 Macroinvertebrate Drift 22
5.1 Literature Review 22
5.1.1 Macroinvertebrate Fauna in Ephemeral Streams 22
5.1.2 Responses to Changes in Flow 22
5.1.3 Responses to Changes in Suspended Solids 23
5.1.4 Responses to Temperature Changes 23
5.1.5 Responses to Changes in Salinity 23
5.2 Summary and Conclusions 24
6 Water Chemistry 25
6.1 Associated Water Quality 25
6.1.1 Variability in Associated Water Quality 25
6.1.2 Longitudinal Changes in Associated Water Quality 27
6.2 Instream Water Quality 28
6.2.1 Catchment Water Quality 28
6.2.2 Instream water quality changes due to associated water discharge 29
6.2.3 Key water quality parameters 31
6.3 Fairview Case Study 32
6.3.1 Existing Associated Water Discharges 32
6.3.2 Observed Water Quality Changes 32
6.3.3 Stratification in Pools 34
6.3.4 River Health Data 34
6.3.5 Spring Flows and Assimilative Capacity 35
6.4 Summary and Conclusions 35
7 Weed Growth 37

Table of Contents

7.1 Literature Review 37
7.2 Queensland Situation 37
7.3 Potential for Weed Infestations with Field Development 38
8 Erosion 39
8.1 Literature Review 39
8.2 Channel Size and Associated Water Discharges 39
8.3 Potential for Erosion with Field Development 40
9 Near River Aquifers 41
9.1 Discussion 41
9.2 Conclusions 41
10 Hydrologic Changes Arising from Discharges 43
10.1 Aims 43
10.2 Model Development 43
10.3 Calibration 45
10.3.1 Upper Dawson River 45
10.3.2 Comet-Brown River 45
10.3.3 Condamine-Balonne Catchment 45
10.4 Modelling Scenarios and Results 45
10.4.1 Modelling Scenarios 45
10.4.2 Upper Dawson River Salinity 46
10.4.3 Comet-Brown River Salinit y 46
10.4.4 Condamine-Balonne Catchment Salinity 46
10.4.5 Temperature Modelling 47
10.4.6 Changes in Instream Hydrology 48
10.5 Conclusions 48
11 Review of Risks from Associated Water Discharge 49
12 Associated Water Discharge Options 50
12.1 Fairview Field 52
12.2 Roma Field 54
12.3 Arcadia Field 54
13 References 58

Glossary, Acronyms and Abbreviations

Tables

Table 2-1 Comparison of Average (Mean) Water Quality from Fairview Field vs Overseas 6
Table 3-1 Identified Actions to Fill Knowledge Gaps 13
Table 4-1 Macroinvertebrate Salinity Tolerances 15
Table 6-1 Potential instream water quality changes from discharge of associated water 30
Table 7-1 Suitability of CSG field catchments for declared weed species 38
Table 12-1 Fairview Well Field Treated Discharge Options - Pros and Cons 56
Table 12-2 Roma Well Field Treated Discharge Options - Pros and Cons 56
Table 12-3 Arcadia Well Field Treated Discharge Options - Pros and Cons 57
Figures
Figure 2-1 Stages of CSG Water and Gas Production 2
Figure 2-2 Water Production Curve at Fairview Field - Well 1 2
Figure 2-3 Surface water catchments and study area 5
Figure 3-1 The Risk Management Cycle 9
Figure 3-2 Conceptual Model of Ecosystem Responses to Associated Water Discharge 11
Figure 4-1 Frequency of observed Queensland macroinvertebrates with salinity 16
Figure 4-2 Biological Risk Profile for Salinity 21
Figure 6-1 Distribution of electrical conductivity and sodium at Roma and Fairview fields 26
Figure 12-1 Known Spring Locations - CSG Field Catchments 53

Appendices

A	Ecological Risk Assessment Workshop
B	Review of Salinity Impacts on Australian Biota
C	Macroinvertebrate Drift and Salinity Tolerances
D	Survey of Dawson River Springs
E	Environmental Values and Associated Water Quality
F	Fairview Case Study
G	Review of Aquatic Weeds
H	Potential for Erosion
I	Modelling of Flows, Temperature and Salinity - Upper Dawson River
J	Modelling of Flows, Temperature and Salinity - Condamine-Balonne

Glossary, Acronyms and Abbreviations

K Modelling of Flows, Temperature and Salinity - Comet-Brown River

Executive Summary

The discharge of associated water to surface streams is just one of a portfolio of management options being considered for the development of the well fields of the Gladstone Liquefied Natural Gas (GLNG) project. This report considers this option utilising an ecological risk assessment framework. The core of the framework is the identification of a conceptual model of the in-stream ecosystems and the identification of potential hazards.

Potential hazards include:

- Changes in habitat availability or biological triggers related to increased water flows.
- Impacts on water quality, particularly salinity, dissolved oxygen content, temperature, sodium, fluoride, boron.
- Weed growth.
- Erosion.
- Aquifer contamination.

Each of these hazards is addressed in turn through the report.
Recent data on the quality of associated water from the Fairview and Roma fields (Fairview Environmental Management Plan, May 2008) shows that associated water from most wells will not meet guideline trigger levels for the protection of aquatic ecosystems without significant dilution in stream. While discharge to grade may be an option for some wells, it is clear that the majority of associated water will require treatment before discharge to ephemeral stream systems.

The Dawson River downstream of Dawson's Bend is an exception as it has been found that this section of river is perennial as it is maintained by significant spring flows arising from the river bed and adjacent to the stream. However, the assimilative capacity of the Dawson River is also limited in the dry season. In order to maintain the Dawson River within the trigger value for salinity any future development of the Fairview Field will require associated water to be treated to appropriate standards.

Even if treated, associated water discharges to ephemeral streams will be controversial from an environmental perspective. It is recognised that treatment then pumping water to discharge locations will be expensive and there may be better local alternatives for the water use that do not involve significant pipelines. Nevertheless, the report considers a range of options for discharge to a) minimise the footprint of discharges and b) target locations where discharges are likely to add to existing ponded water and disturbed ecosystems.

Key options include:

Roma:

- Discharge to three creeks (Bungil, Yuleba, Wallumbilla)
- Discharge to Bungil Creek only
- Discharge to Surat Weir (Balonne River)
- Discharge to Dawson River

Fairview:

- Discharge to Dawson River

Arcadia:

- Discharge to three locations in the catchment
- Discharge to one central location
- Discharge to Dawson River
- Discharge to Lake Nuga Nuga
- Discharge to Lake Maraboon

URS has been engaged to develop the Environmental Impact Statement (EIS) for the GLNG project, which will develop coal seam gas reserves in the Bowen and Surat basins in Queensland, Australia. Studies include the investigation and mitigation of all non-beneficial environmental aspects of Coal Seam Gas (CSG) field development in western Queensland, pipeline construction and operation, and the development of processing train and port facilities at Gladstone.

Associated water is typically a by-product of CSG development and its management is an integral aspect of the GLNG project. The project is considering a range of water management options including stock watering, discharge to grade, treatment, injection, irrigation, and beneficial reuse.

The focus of this report is on discharge to grade and the potential for adaptive water management to minimise any risks associated with this management option. The term "discharge to grade" refers to the release of associated water to the surface environment. Under previous ownership of the site discharge was directed to the ground surface in and around wells. Santos has collected water from one or more bores and directed discharge to existing dry gullies at points that minimise erosion hazards.

Adaptive water management is dependent on careful planning to ensure minimal risks arise from a management action, then monitoring the consequences of those actions to ensure that any changes that do occur are within the bounds of what is planned. Where deviations from the plan occur, further investigations are triggered and/or adjustments may be made to management actions to ensure that the planned outcomes are met. While many variants of adaptive management are to be found in the literature the basic tenet is to plan, implement, monitor and review. Since risk is taken into account during the initial planning stage, operations would normally not be halted should adjustments in management arrangements need to be made.

Planning is dependent upon identifying those elements of the environment that need to protected (environmental values), identifying potential hazards and resultant risks to these environments from the release of associated water, identifying which risks are real or perceived and, where possible, quantifying those risks which are most evident. To aid in these considerations it is useful to develop a conceptual model of the environment which identifies those processes or end-points of most concern.

This project has adopted an investigative approach to quantifying risks from the release of associated water to the surface environment. The key steps taken are listed below and discussed in the following sections:

1) Engagement with DNRW and EPA in the development of a conceptual model and identification of key risks
2) Review of the sensitivity of biota to salinity
3) Assessment of the importance of macroinvertebrate drift
4) Review of existing water quality in streams and from wells
5) Assessment of the potential for weed growth from increased discharges
6) Consideration of the erosion potential of discharges
7) Review of the potential impacts on surficial aquifers
8) Assessment of hydrological change from discharges to streams
9) Consolidation of risks
10) Review of associated water discharge opportunities

2.1 Associated Water Production

Methane trapped in coal is adsorbed onto the coal surface in cleats and joints or micropores and held in place by reservoir and water pressures. To access the methane it is typically necessary to reduce the pressure by first removing water. Consequently, in CSG development water production is often initially high before dropping off, and gas production is initially low before rising to a plateau that can be maintained for a number of years depending on the capacity of the reservoir.

Typically water production is higher earlier in the life of a CSG field and drops as gas production increases (Figure 2-1). The combined production curves of a well field average out the variations in individual curves and prolong the life of the field.

Figure 2-1 Stages of CSG Water and Gas Production
Figure 2-2 shows the water production for Well 1 at Fairview Field approximately 150 km north of Roma in Queensland. Similar behaviour is typically seen from other wells producing water in the field.

Figure 2-2 Water Production Curve at Fairview Field - Well 1
CSG development is by its nature an incremental activity involving modelling, exploration, proving and establishment of gas wells in a step-wise fashion. For this reason, the exact location, timing, quality and volumes of water discharges are unknown until investigations are complete. For example, despite modelling indications to the contrary, a number of the wells at the existing Fairview Field north of Roma have been found to be dry and do not require the removal of water to access gas reserves.

2.2 Overseas Experience

Active exploration or production of CSG is taking place in the United States, Canada, Western Europe, Japan, Australia and New Zealand (Talkington, 2002; Johnson, 2004). Natural gas exploration and development is expanding worldwide due to the demand for a clean and economical energy source (King, 2001).

The disposal of associated water has been a significant challenge for CSG production for some time now (Mount et al., 1993). The potential for wasting useable groundwater (though generally requiring treatment) and the disposal of associated water are considered serious social and environmental issues.

According to Mount et al. (1993), based on a number of research studies in Alabama, the disposal of associated water to streamlines can avoid environmental consequences provided it is managed and monitored appropriately. Certainly 'discharge to grade' is widely used in the industry in the USA. In large part this appears to be driven by the remoteness of the activities from population centres, and by the low cost of disposal compared with treatment.

Considerable research has been completed in the Powder River Basin in Wyoming where discharge to grade occurs widely from both conventional oil and gas operations as well as CSG operations (e.g. Boelter et al. 1992; Rice et al. 2000; McBeth et al. 2003; Patz et al. 2004; Stearns et al. 2005; Jackson and Reddy 2007; Johnson 2007; Wang and Yang 2008). A number of environmental concerns arising from discharge to grade have been investigated including (e.g. King, 2001):

- Changes to stream hydrology (variation in surface water discharges).
- Effects of CSG production water discharge on water quality (temperature, salinity, pH , dissolved oxygen, Sodium Adsorption Ratio).
- Effects of CSG waters on biological diversity (fish and macroinvertebrates).
- Damage to instream aquatic vegetation.
- Stream bank erosion
- Sedimentation

The impact of associated water discharges on instream environments is considered to be proportional to the relative difference between the water quality of the associated water and the target stream. However, the quality of the associated water is highly variable in composition between development sites. This might be expected given the wide range of formation characteristics, oil and gas hydrocarbon compositions, and the range of well development and maintenance activities adopted by companies (Hayes and Arthur, 2004).

The physical characteristics and flow regimes of streams to which associated water is discharged will also have a large bearing on the environmental outcomes from discharge to grade.

The applicability of transferring results from US research to the Australian environment is therefore uncertain, and investigations of local water quality and hydrology are required to investigate the potential environmental outcomes from associated water discharges.

2.3 The Quality of Associated Water

Hayes and Arthur (2004) provide an overview of emerging technologies for associated water treatment prior to disposal or reuse in North America. Key parameters for treatment in associated water produced in North America were identified as:

Section 2

- Oil and grease removal
- Salinity (TDS)
- Benzene
- Biological Oxygen Demand (due to soluble organics)
- Suspended solids
- Total and faecal coliforms
- Special constituents of concern that restrict a beneficial use (e.g. boron or fluoride might limit irrigation use)
- Sodium Adsorption Ratio (SAR) adjustment

Table 2-1 provides an approximate comparison of average water quality between the Fairview Field and US fields. The comparison is approximate since multiple sources were combined to represent some fields or states in the US; because the available water quality parameters are limited in some cases; and because averages have been used. Nevertheless, the table highlights the high degree of water quality variability between and within CSG fields. The quality of associated water currently discharged at Fairview is considerably better than overseas experience. Salinity and sodium concentrations are typically an order of magnitude less than overseas, chloride and magnesium concentrations are two orders of magnitude lower, sulphate and calcium concentrations are two to three orders of magnitude lower and the remaining constituents including bicarbonate are of a similar order of magnitude or are very low compared with discharge water quality standards. The temperature at Fairview is considerably higher than overseas and coliforms are effectively non-existent, perhaps suggesting that the processes generating gas from the coal may be different (i.e. thermogenesis vs biogenesis). pH is also considerably higher than the overseas data cited here.

2.4 The Study Area

The proposed CSG field development area consists of a number of regions in central Queensland: Roma, Fairview, Arcadia Valley, Denison, Comet and Mahalo. These areas are defined by either Production Leases (PLs) or Authorities to Prospect (ATPs) and are situated within a number of different surface water catchments. In order to provide an assessment of surface water environments it is necessary to consider catchments as a whole. This report therefore makes reference to three catchments; the Condamine-Balonne River Catchment (part of the Murray Darling Basin), the Upper Dawson River Catchment and Comet River Catchment (forming part of the Fitzroy Basin). Figure 2-3 shows the extent of each catchment and the proposed GLNG field development area. A detailed discussion of each catchment and relevant environmental values is provided in Appendix E.

2.4.1 Condamine-Balonne Catchment

The Roma CSG field area lies within the Condamine-Balonne catchment. The main towns in the vicinity of the CSG field area are Roma (population 7,000), Mitchell (population 2,000) located to the east on the Maranoa River and Surat (population 500) located on the Balonne River.

Background

Figure 2-3 Surface water catchments and study area

Section 2	Background

Table 2-1 Comparison of Average (Mean) Water Quality from Fairview Field vs Overseas

WQ Parameter		Units	GLNG	Overseas Site Comparisons			USGS National Production Water Database (f)					
		Fairview	Powder R (a, b, c)	Alabama (d, e)	San Juan (e)	New Mexico	Oklahoma	Kansas	Wyoming	Alaska		
	Electrical Conductivity		$\mu \mathrm{S} / \mathrm{cm}$	1998	3150a 1300c	900-44500h	400-6800h	144300h	255500h	169500h	22600h	43500h
	Temperature	${ }^{\circ} \mathrm{C}$	37.9	22b 19.6c								
	pH	$\log \left[\mathrm{H}^{+}\right]$	8.8 (median)	7.8a 7.1b 7.3c	$3.7-9.2$	$7.4-8.8$	7.16	6.45	6.9	7.8	7.19	
	Dissolved O_{2}	mg/L	5.1	0.58b								
	Redox Potential	mV	-175 to +247									
	Total Dissolved Solids	mg / L	1279	850c	550-26700	263-4050	86564	153282	101689	13531	26095	
	Total Suspended Solids	mg/L	66 (j)									
	Total Alkalinity Bicarbonate Alkalinity Carbonate Alkalinity Hydroxyl Alkalinity Free CO_{2}	mg/L	$\begin{gathered} \hline 892 \\ 823 \\ 68 \\ 0.4 \\ 3.4 \end{gathered}$	950c	76-12000	7.8-1450	749	164	263	1343	800	
	Sodium	mg/L	491	300c	0-6800	26-1290	11523	43273	28825	4348	6213	
	Sodium Adsorption Ratio	-	149 (i)	33a 12c			108	290	244	123	96	
	Chloride	mg/L	136	13c	<1-15000	1-720	51330	94321	61779	6075	15211	
	Calcium	mg/L	10 (i)	32c			4214	9347	5408	501	1884	
	Magnesium	mg / L	3 (i)	16c			1484	1812	1576	128	202	
	Sulphate	mg/L	1.5 (i)	2.4c	ND - 650	ND - 2700	1900	328	1197	1633	175	
	Manganese	mg/L	149 (i)	0.046b	0.005-3.8	NA						
	Fluoride	mg/L	2.2	0.75b 0.92c	ND - 20	0.1-3.6						
	Boron	mg/L	0.8	0.159b								
	Lead	mg / L	0.01	<0.1c								
	Mercury	mg/L	<0.1	<0.1c								

URS

WQ Parameter	Units	GLNG	Overseas Site Comparisons			USGS National Production Water Database (f)				
		Fairview	Powder R (a, b, c)	Alabama (d, e)	San Juan (e)	New Mexico	Oklahoma	Kansas	Wyoming	Alaska
Zinc	mg/L	0.01	1c	0-0.36	NA					
Total Iron	mg/L	0.6	3b 0.8c	0.005-246	ND - 5					
Ammonia N	mg/L	0.7	2.4c							
Total Petroleum Hydrocarbons C1 to C6 (BTEX) C6 to C9 C10 to C14 C15 to C28 C29 to C36	mg / L mg/L mg/L mg / L mg/L	$\begin{gathered} \text { ND } \\ \text { ND } \\ 0.01 \\ 0.09 \\ 0.01 \end{gathered}$		1-62	NA					

Notes:
(a) Johnson, 2007
(b) Patz et al., 2005
(c) Rice et al., 2001
(d) Mount et al, 2000
(e) Rogers RE 1994 Coalbed methane: principles and practice, PTR Prentice Hall, Englewood Cliffs, NJ 345p quoted in Peterson et al. (2002)
(f) http://energy.cr.usgs.gov/prov/prodwat/data2.htm
(g) All Fairview water quality is from the Fairview EMP (URS, 2008) or Coal-bed Methane Water Treatment Technology Assessment, URS, August 2007
(h) Approximate electrical conductivities were calculated from TDS by dividing a 0.6 conversion factor and rounding to the nearest $100 \mu \mathrm{~S} / \mathrm{cm}$. For high salinities ($>35,000$ TDS) this relationship may not be appropriate.
(i) Figures from combined field data see Section 6
(j) Average biased upwards by results in a single well

	GLNG GAS FIELD DEVELOPMENT - ASSOCIATED WATER DISCHARGE STUDY
Section 2	Background

The catchment contains extensive but largely ephemeral or intermittent stream networks with summer rainfall dominant and periods of low to zero flow during which time the streams become a series of waterholes. The topography is predominantly flat with wide alluvial floodplains. Major streams within the Upper Balonne River Catchment include Bungil Creek, Wallumbilla Creek, Yuleba Creek and minor tributaries. Bungil Creek flows roughly north to south. Wallumbilla and Yuleba Creeks flow to the south-southwest. The three creeks discharge to the Balonne River which in turn flows to the Murray Darling Basin. Another principal stream, Bungeworgorai Creek, is located in the western portion of proposed CSG field operations and flows in a south-westerly direction discharging into Bungil Creek.

2.4.2 Upper Dawson River Catchment

The Fairview project area lies within the Upper Dawson River catchment that extends upstream and westwards from Taroom, encompassing the townships of Injune and Wandoan. The catchment contains extensive but largely ephemeral or intermittent stream networks. Major streams in the area are the Dawson River, Hutton Creek, Baffle Creek, Juandah Creek, Eurombah Creek, Commissioner Creek and Broken Creek.

Since the initial settlement of Taroom circa 1850, the primary land use in the Dawson River catchment has traditionally been sheep and cattle grazing. This remains the predominant land use in the Upper Dawson River circa the Fairview and Springwater homesteads.

Downstream of Hutton Creek, grazing, forestry and cropping are widespread. A number of water storages and weirs are located on the Dawson River from Taroom downstream and are used for irrigation and recreational purposes supporting regional industry and urban communities.

Coal Seam Gas (CSG) production at Fairview has occurred since at least 1993, initially under the control of the Tri-Star Petroleum Company (1993 - 2002), then Tipperary Oil and Gas (Australia) Pty Ltd. (TOGA, 2002 2005). In 2005 TOGA was purchased by Santos Ltd.

Associated water discharge to grade has occurred throughout this period into small, often intermittent streamlines or gullies that, in turn, discharge to Baffle Creek, the Dawson River or Hutton Creek. Santos currently captures associated water with salinity greater than $3,500 \mu \mathrm{~S} / \mathrm{cm}$ and uses it for plant works or for injection into the basement Timbury Hills Formation.

2.4.3 Comet River Catchment

The Arcadia Valley, Denison, Comet and Mahalo project areas are within the Comet-Brown Catchment area, extending from the Carnarvon Ranges north to Emerald. The Comet-Brown sub-catchment is part of the larger Fitzroy Basin, which comprises almost 10% of the agriculturally productive land in Queensland. The primary river within the basin, the Fitzroy River, discharges into the marine environment at the southern end of the Great Barrier Reef, near the major urban centre of Rockhampton.

The primary land uses in the catchment include grazing and cropping. The catchment contains extensive but largely ephemeral or intermittent stream networks with summer rainfall dominant. The major stream in this part of the CSG field area is the Brown River, which becomes the Comet River in the vicinity of Rolleston, flowing north and discharging to the McKenzie River. Major tributaries enter the Comet-Brown River from the east and west. The only township in the Arcadia Valley, Rolleston, is situated on the Comet River.

Risk Analysis Framework

3.1 Introduction

Risk is an often used, and often misused concept. Hazards, risks and consequences are often confused.
For people living downstream of a dam, a hazard might be the failure of the dam wall. The consequence arising from the occurrence of the hazard would be the death and destruction to people and property that would occur downstream as water is released and rushes downstream.

The risk of the hazard occurring (i.e. damage arising from a dam break) is proportional to both i) the consequences that would occur if the hazard is realised and ii) to the likelihood of failure of the dam wall. The likelihood of dam wall failure is dependent on the design criteria used, the appropriateness of engineering techniques used in planning and construction, geology, flooding and storage operation amongst other things.

Since risk is proportional to both likelihood and consequence, it is defined as:

> Risk = Likelihood x Consequence

3.2 Ecological Risk Assessment Framework

For this project, the Ecological Risk Assessment (ERA) framework outlined by Webb and Hart (2004) was adopted to assess the risks of discharge to grade (Figure 3-1). ERA is the application of the principles of risk assessment to the environment and concentrates on the consequences of management decisions and the likelihood of these consequences arising.

Figure 3-1 The Risk Management Cycle (reproduced from Webb and Hart (2004))

Section 3
 Risk Analysis Framework

Key components of the ERA framework are:

Problem formulation	Where a conceptual model of the environment is developed to aid in the definition of hazards and potential system end points. A core component of the framework is the identification of ecosystem hazards and defining the scope of the ERA.
Identification of Data and Methods	To quantify risk it is necessary to consider both the likelihood and consequence of a hazard occurring. Take account of combinations of risks in considering overall risks.
Filling Knowledge gaps	By further research, data collection and modelling, fill the gaps in knowledge as far as possible
Risk Assessment	For various management scenarios use the risk framework to quantify risks of undesirable outcomes

This framework was discussed in a one day workshop at Indooroopilly with representatives of the Queensland Department of Natural Resources and Water (DNRW) and the Queensland Environmental Protection Agency (EPA). Details of the workshop are provided in the workshop report (Appendix A). Key findings are presented below.

In developing the risk management framework consideration was given to earlier work for the Fitzroy Basin (Duivenvoorden et al, 2001) as well as local work undertaken for Fairview Project Area and a recent application to amend the existing Environmental Authority for the Pony Hills development. It also takes into account existing salinity risk assessment models developed by the Co-operative Research Centre (CRC) for Freshwater Ecology and the availability of information to inform models.

3.3 Conceptual Ecosystem Model

A broad conceptual model was developed during the workshop to highlight the conceptual linkages between three key stressors thought to arise from the discharge of associated water and ecosystem responses for both perennial and ephemeral streams. The model is focussed on the aquatic environment recognising that this is the likely area of most significant impact. Terrestrial fauna or opportunistic water bird use of the flowing streams are not considered in this document.

The conceptual model has been updated based on further feedback from EPA and DNRW during the review of the Santos Fairview Project Area Environmental Management Plan to include concerns regarding "salt bulges" in near stream aquifers; by highlighting the linkage between diatoms and macroinvertebrates ${ }^{1}$, and by more clearly delineating issues such as assemblage shifts and toxic effects that might occur from salinity (Figure 3-2).

The three key stressors considered to arise from associated water discharge are:

[^0]
Risk Analysis Framework

- Changes (typically increases) in flow
- Changes (typically increases) in salinity; and
- Changes (typically increases) in water temperature.

The assumption that associated water discharge only leads to 3 key stressors needs to be challenged and/or confirmed prior to considering water management options. This is particularly true if the associated water contains chemicals in sufficient concentration to harm humans, stock or the local ecology.

Figure 3-2 Conceptual Model of Ecosystem Responses to Associated Water Discharge

3.3.1 Potential impacts of changes in flow

Potential impacts of changes in flow include:

- Associated water discharges are unlikely to change the flood regime of streams since the relative volumes of discharge are very small compared with flood events.
- Discharges are likely to change ephemeral streams into perennial streams for the life of the discharge.
- Changes in flow regimes will change habitat availability for macroinvertebrates and instream flora and will increase the connectivity of the stream systems for ephemeral streams. It may also affect the behaviour of species by removing initiation-of-flow and cessation-of-flow triggers.
- If flow regimes are changed markedly then ecological responses to flow triggers (e.g. fish movement and breeding) may also be affected.
- Weeds and erosion might also be increased due to prolonged flow periods. Erosion might also be affected by inadequate management of discharge points (i.e. lack of protection), increased velocities and chemical constituents of the associated water.

Section 3
 Risk Analysis Framework

- Riparian vegetation may be affected by changes in the availability of water, or by the salinity or other chemical constituents.
- Near stream aquifers might be recharged and saline water may intrude.

3.3.2 Potential impacts of changes in salinity

Changes in salinity lead to ecosystem responses in a variety of ways.

- Significant shifts (presses) in salinity below toxic levels may shift species abundances of macroinvertebrates, diatoms and fish.
- Sudden changes (pulses) in salinity might lead to increases in drift events leading to a reduction in instream fauna.
- Toxic concentrations of salinity may lead to death of fauna and flora.
- Opportunistic fish breeding may not be significantly affected because of existing boom/bust cycles of eggs.
- Potential for increases of salinity in refugia to toxic levels.

3.3.3 Potential impacts of changes in temperature

Changes in temperature may lead to:

- Homogenised temperature regimes (press response) may lead to preferential conditions for certain species. A species shift may occur under constant temperature flows.
- Less variable temperature regimes lead to slowed growth (lower productivity) of waterways.
- If water is released intermittently then pulse responses (e.g. thermal shock) might occur with fauna deaths or major drift events.
- Diurnal variation in temperature is identified as a fundamental requirement for ecosystem health.

3.3.4 Endpoints and indicators

The conceptual model identifies four primary endpoints - diatoms, fish, macroinvertebrates, and primary and secondary respiration. The endpoints identify those elements of the ecosystem which might be used as indicators to measure ecosystem response to associated water discharge.

- Macroinvertebrates were identified as the preferred indicators due to the availability of existing methods for assessing river health using these species, existing data sets, their use in previous ecological risk assessments and the small spatial range within which an individual would normally exist.
- Diatoms where identified as a potentially useful indicator for ephemeral systems where there would be limited availability of macroinvertebrates during dry periods.

Risk Analysis Framework

3.4 Knowledge Gaps

Based on the above analysis, the project identified the following studies and actions to quantify the consequences and likelihood of ecosystem responses to associated water discharges. These studies are discussed in the next Section.

Table 3-1 Identified Actions to Fill Knowledge Gaps

Knowledge Gap	Action
Resilience to salinity	Review existing databases (AUSRIVAS Qld, Bailey and Boon) and derive species sensitivity distributions to salinity (after ANZECC \& ARMCANZ 2000 and Webb \& Hart 2004).
	Update Hart et al. (1991) review of salinity tolerances of Australian fauna through a literature review
	Review existing salinity and ecological data at Fairview.
Macroinvertebrate drift	Literature review of macroinvertebrate drift especially for ephemeral streams.
	Review of salinity impacts on stream biota with a particular focus on ephemeral/arid streams and the ranges of salinity that can cause impacts on diatoms, fish, macroinvertebrates, algae, riparian vegetation and algae.
Review water quality	Examine water quality results against defined (Queensland EPP \& ANZECC \& ARMCANZ 2000) trigger values to identify any potential issues. If considered an issue, define appropriate method for its assessment.
Macroinvertebrate relationships with other variables	Review local data for trends in species associated with gradients in temperature, turbidity, flow or other environmental variables
Review AUSRIVAS model availability	Contact and review DNRW AUSRIVAS models
Potential for spread of aquatic weeds	Identify the occurrence of weeds in the project area and their relative preferences for flowing water / perennial streams.
Threatened species	Check if there are any threatened species or communities that could be impacted by the development. [being completed as part of broader EIS]
Diatom assemblages	Review whether changes in diatom assemblages matter to the fish as a food supply.
Stratification in pools	Assess likely impacts on pool refugia from associated water discharge to grade by sampling at Fairview
Infiltration to surficial (near river) aquifers	Assess potential for infiltration increase and movement of constituents
Assess the magnitude and frequency of changes in ecosystem drivers (i.e. flows and water quality)	Utilise E2 and/or other appropriate modelling tools to assess changes in flows, salinity and temperature.

Section 4

Sensitivity of Biota to Salinity

This section examines the sensitivity of freshwater flora and fauna to salinity and discusses sensitivity to various inorganic ions such as sodium, chloride, potassium, and bicarbonate. Threshold levels and ecotoxicology reports are investigated before data from Fairview field is used as a case study in Queensland, and conclusions are drawn.

4.1 Background

For streams typical of those observed across the CSG field project area, the Central Queensland water quality guideline for electrical conductivity (EC) is $340 \mu \mathrm{~S} / \mathrm{cm}$. This guideline value is consistent with observed typical water quality data in the region (see Appendix E and Appendix F). However, the variability of EC in the CSG field project area streams is very large. Observed continuous electrical conductivity data shows regular excursions to $<100 \mu \mathrm{~S} / \mathrm{cm}$ and as high as circa $1000 \mu \mathrm{~S} / \mathrm{cm}$. But typically EC ranges from circa $200-400$ $\mu \mathrm{S} / \mathrm{cm}$. Spot electrical conductivity readings have been recorded as high as $1647 \mu \mathrm{~S} / \mathrm{cm}$ in Bungil Creek (Appendix E).

Salinity exerts impacts on aquatic systems via three mechanisms (Kozlowski 1997, Bailey et al. 2006)

- Direct toxic impacts arising from the accumulation of Na^{+}and Cl^{-}in cells, and to a lesser extent by the disruption of the uptake of other essential ions (e.g., Ca^{++}and Mg^{++}) by the presence of high external NaCl concentrations;
- Direct osmotic impacts caused by the effect of dissolved salts on the availability of water to plant and animal cells; and
- Indirect impacts arising from the effects of salinity on physio-chemical characteristics of water and/or aquatic systems.

The data that are available on the salt sensitivity of the Australian freshwater biota come from relatively few primary sources. The reviews by Hart et al. $(1990,1991)$ provide primary meta-data sources but are now dated. These reviews were updated by Bailey et al. (2002) in a report that is available on the website of Land \& Water Australia. More recently, the Australian Journal of Botany devoted an entire issue to the topic of salinisation (e.g. James et al. 2003, Nielsen et al. 2003) and a book chapter has been published recently on the impacts of secondary salinisation on arid and semi-arid zone systems in Australia (Bailey et al. 2006).

Professor Paul Boon (Dodo Environmental) was engaged to identify the literature published on the ecological impacts of salinity on the Australian aquatic biota since 2000 (roughly when the Bailey et al. (2002) review ceased its inspection of the literature), and to provide an overview of salinity impacts on Australian biota (Appendix B). Key findings of Professor Boon's review are discussed below.

4.2 Direct Impacts of Salinity on the Biota of Australia

4.2.1 Microbes

No literature was found on the impacts of salinity on microbes and Boon concludes that there has been little advance in this area since the review by Hart et al. (1991).

4.2.2 Algae

There is little information on the salinity tolerance of freshwater phytoplankton. Recent data indicates blue-green alga Microcystis aeruginosa was largely unaffected by salinity up to about $10,000 \mathrm{mg} \mathrm{L}^{-1}$ and it could temporarily

Sensitivity of Biota to Salinity

endure salinities of up to $17,500 \mathrm{mg} \mathrm{L}^{-1}$. Similarly data on macroscopic charophytes indicates that $10,000 \mathrm{mg} \mathrm{L}^{-1}$ is an upper limit for Chara and Nitella.

4.2.3 Aquatic Vascular Plants

Hart et al. (1990) concluded that the majority of macrophyte species in fresh waters were salt sensitive and that changes in plant performance and decreased botanical diversity commenced at salinities of about $1,000 \mathrm{mg} \mathrm{L}^{-1}$. A salinity of about $4,000 \mathrm{mg} \mathrm{L}^{-1}$ was proposed in Hart et al. (1990) as the upper limit tolerated by most species of freshwater macrophytes, such as Myriophyllum propinquum, Triglochin procera, Crassula helmsii and Isoetes muelleri. It was noted, however that sub-lethal effects, such as reduced vigour, were likely to operate at salinities less than the maximum that were tolerated by the adults of a given species.

The species richness, but not necessarily the productivity, of aquatic vascular plant communities decreases with increasing salinity (Hart et al. 1991). Bailey et al. (2002) found that plant genera from a range of sources were restricted to salinities $<5,000 \mathrm{mg} \mathrm{L}^{-1}$ which is consistent with Brock and Lane (1983) who concluded that freshwater macrophytes occur at salinities $<4,000-5,000 \mathrm{mgL}^{-1}$. Nevertheless, many vascular freshwater plants occur at much higher salinities.

4.2.4 Zooplankton

Zooplankton is a diverse group and it is not possible to generalise the salinity response of this group.

- Rotifers are critical in food webs and have been collected in field surveys in waters ranging from less than $1,000 \mathrm{mgL}^{-1}$ to greater than $15,000 \mathrm{mgL}^{-1}$ (Hart et al., 1991). Bailey et al. (2002) suggest that there is a bimodal response to salinity by rotifers with one group preferring salinities $<500 \mathrm{mgL}^{-1}$ and another group preferring salinities in the range 7,000 to $8,000 \mathrm{mgL}^{-1}$.
- Similarly, cladocerans are often restricted to waters with salinities less than $1000 \mathrm{mgL}^{-1}$, and some may be restricted to waters with salinities less than $500 \mathrm{mgL}^{-1}$.
- Copepods also appear to be bimodal in behaviour with some groups preferring salinities less than 1,000 to $2,000 \mathrm{mgL}^{-1}$, while other groups prefer more saline waters (Hart et al.1991, and Bailey et al.2002).
- Many ostracods are found in highly saline waters (> $35,000 \mathrm{mgL}^{-1}$) but freshwater species are rarely found at salinities greater than $1,000 \mathrm{mgL}^{-1}$ (Hart et al, 1991). Data from Bailey et al. (2002) indicates that the abundance of ostracod genera peaks at salinities less than $500 \mathrm{mgL}^{-1}$.

4.2.5 Macroinvertebrates

Aquatic macroinvertebrates are the best studied group of the Australian freshwater biota in terms of salt tolerance. Some generalisations are possible due to the wealth of data available (Table 4-1).

Table 4-1 Macroinvertebrate Salinity Tolerances

Macroinvertebrate	Salinity Tolerances
Molluscs	Can be divided into two groups: one group is limited to salinities $<3,000 \mathrm{mgL}^{-}$ 1, and another is found in waters $>8,000 \mathrm{mgL}^{-1}$. Some species were limited to salinities less than $1,000 \mathrm{mgL}^{-1}$.
Aquatic cnidaria	Seem to be limited to waters with salinities $<2,000 \mathrm{mgL}^{-1}$.
Annelid worms	Seem to be restricted to salinities of less than $1,000 \mathrm{mgL}^{-1}$ (Hart et al., 1991).

Section 4
 Sensitivity of Biota to Salinity

Macroinvertebrate	Salinity Tolerances
Mayflies	Generally not reported at salinities $>6,000 \mathrm{mgL}^{-1}, 45 \%$ of genera are only found at salinities $<500 \mathrm{mgL}^{-1}$.
Dragonflies and damselflies	Most found in waters less than $1,000 \mathrm{mgL}^{-1}$. However, some dragonflies survive over a very wide salinity range.
Water bugs	Restricted to waters with salinity $<6,000 \mathrm{mgL}^{-1}$, some genera restricted to waters with salinity $<1,000 \mathrm{mgL}^{-1}$
True flies	Can be found across a wide range of salinities, though some species are restricted to salinities $<1,000 \mathrm{mgL}^{-1}$.

4.2.6 Fish

Most Australian fish have a high salinity tolerance. Bailey et al. (2002) concluded that no fish had a salinity maximum below $4,000 \mathrm{mgL}^{-1}$ and over 80% of reported genera had a maximum salinity tolerance of $>8,000 \mathrm{mgL}^{-1}$.

4.2.7 Amphibians

No Australian studies of salt tolerance have been found. However, data from overseas suggests that most adult frogs are probably intolerant to salinity. Smith et al. (2007) suggests that tadpoles in south-eastern Australia should not be affected by salinities of up to $\sim 1,800 \mathrm{mgL}^{-1}$, but most will be excluded if salinities exceed $3,600 \mathrm{mgL}^{-1}$.

4.3 Local Data on Macroinvertebrate Sensitivity to Salinity

4.3.1 Salinity tolerances

Local salinity tolerances of macroinvertebrates were developed using the approach of Webb and Hart (2004) for the combined dataset from the National River Health Program in Queensland (Condamine-Balonne and Fitzroy River data only) and biological sampling completed at Fairview (Simmonds and Bristow, various). Details of this procedure and results for individual taxa are provided in Appendix C.

Many of the macroinvertebrate families in Queensland were found at salinities higher than preferences identified by Webb and Hart (2004). Figure $4-1$ shows that 25% of the taxa are found at or below electrical conductivities of $340 \mu \mathrm{~S} / \mathrm{cm}, 50 \%$ are found below $1,000 \mu \mathrm{~S} / \mathrm{cm}$, and 65% are found below $1,500 \mu \mathrm{~S} / \mathrm{cm}$.

Figure 4-1 Frequency of observed Queensland macroinvertebrates with salinity

Sensitivity of Biota to Salinity

(Horrigan et al. 2005) demonstrated changes in macroinvertebrate communities in Queensland, with a salinitybased index decreasing rapidly as salinities increased to approximately $800-1000 \mu \mathrm{~S} \mathrm{~cm}^{-1}$ and thereafter decreasing at a slower rate as salinities further increased.

4.3.2 Relationships between macroinvertebrates and salinity

Univariate and multivariate analyses of Queensland data were undertaken by Dr Angus Webb from Melbourne University (Appendix C). Results show that

- There is a weak grouping of macroinvertebrate assemblages between sites suggesting small but real differences; and
- There are no major correlations of assemblages with environmental variables including EC, temperature, turbidity and flow. The greatest correlation appears to be with EC, although this is weak (Spearman's rank correlation coefficient <0.2) and is not reflected in the results of the univariate analyses.

These results suggest that there are small but significant regional differences in macroinvertebrate assemblages possibly caused by:

- differences in underlying geology and water chemistry which was not able to be tested using the broad physical variables tested;
- the nature of streams in terms of depth, spring flow, connectedness, water regulation, etc.;
- the riparian zone condition; or
- instream habitat availability.

4.4 Ecotoxicology

4.4.1 Literature review

In the U.S., Ceriodaphnia dubia (water flea) and fathead minnows (Pimphales promelas) have been used to investigate the toxicity of associated water in accordance with US EPA guidelines. C. daphnia has also been used.

- Boelter et al. (1992) investigated the instream toxicity of associated waters and found that C. dubia were sensitive but P. promelas were not sensitive to test conditions. Toxicity could not be related to sulphides, trace metals or nonpolar organic compounds but was related to the major inorganic ions $\mathrm{K}^{+}, \mathrm{Na}^{+}, \mathrm{Cl}^{-}, \mathrm{HCO}_{3}^{-}$ and $\mathrm{CO}_{3}{ }^{2-}$. Exposure of C. daphnia to associated waters was found to significantly reduce survival and reproduction compared with an upstream control, and increased as flow decreased and was increasingly dominated by associated water.
- Mount et al. (1993) found no toxicity effects instream when chloride concentrations were at or below 519 mgL^{-1} which is considerably higher than 1988 USEPA guidelines $\left(230 \mathrm{mgL}^{-1}\right)$. They also found that toxicity tests in laboratories were consistent with the results of instream studies suggesting that the laboratory results could be used to predict the instream effects of associated water. Boelter et al. (1992) sites where toxicity effects were observed all had chloride concentrations well above $1000 \mathrm{mgL}^{-1}$.
- In the laboratory, Mount et al. (1993) found the toxicity of individual ions (chloride and sulphate) to vary considerably for C. dubia and it was concluded that the toxicity of TDS was dependent on the ionic

Section 4

Sensitivity of Biota to Salinity

composition of associated water. Fat head minnows were not acutely sensitive to the associated water and had no significant mortality at chloride concentrations as high as $2160 \mathrm{mgL}^{-1}$ (ibid.).

- Bicarbonate is often present in associated waters, and may have toxicity independent of or concurrent with chloride. Consequently, Mount et al. (1993) conducted further laboratory experiments to investigate the toxicity of bicarbonate while maintaining chloride at the USEPA guideline level. Chronic bicarbonate toxicity of C. daphnia was found to occur at alkalinity $588 \mathrm{mgL}^{-1}\left(\mathrm{as}_{\mathrm{CaCO}}^{3}\right.$). It was suggested that operators maintain alkalinities below $400-500 \mathrm{mgL}^{-1}\left(\mathrm{as} \mathrm{CaCO}_{3}\right)$ after dilution to $230 \mathrm{mgL}^{-1}$ chloride to protect instream fauna while meeting Alabama discharge guidelines for chloride.
- Mount et al. (2003) further found that relative C. daphnia ion toxicity in the laboratory was $\mathrm{K}^{+}>\mathrm{HCO}_{3}{ }^{-}>$ $\mathrm{Mg}^{2+}>\mathrm{Cl}^{-}>\mathrm{SO}_{4}{ }^{2-}$. For Daphnia magna similar relative ion toxicities were evident though magnesium toxicity was slightly higher than bicarbonate.
- Johnson (2007) investigated the toxicity of associated water to instream plants and animals in the Powder River Basin. He found that toxicity was mitigated by instream biogeochemical reactions (discussed in Section 6.1.2).
- USGS (2006, cited in Johnson (2007) concluded that 96-h LC50s for early life stage fish exposed to simulated Powder River associated waters were 1100 to $1600 \mathrm{mgL}^{-1} \mathrm{NaHCO}_{3}$.

4.4.2 Tests at Fairview

Envirotest Pty Ltd (2004) reported results from an ecotoxicology investigation of associated water at Fairview Field. Envirotest engaged Ecotox Services Australia Pty Ltd (ESA) to undertake the laboratory studies.

- ESA utilised Ceriodaphnia dubia as the indicator species and tested for both chronic and acute toxicity in both dilute mineral water and Dawson River water dosed with associated water. Doses of associated water were applied to achieve $6.25 \%, 12.5 \%, 25 \%, 50 \%, 75 \%$ and 100% of solution.
- Acute toxicity testing over 48 hours (and chronic toxicity - survival testing over 7 days) identified a Lowest Observable Effect Concentration at 75% dilution equivalent to an electrical conductivity $\sim 3135 \mu \mathrm{~S} / \mathrm{cm}$. The No Observable Effect Concentration was identified at 50% dilution ($\sim 2130 \mu \mathrm{~S} / \mathrm{cm}$).
- Chronic toxicity testing for reproduction over 7 days identified No Observable Effect Concentration at 12.5% dilution ($\sim 690 \mu \mathrm{~S} / \mathrm{cm}$) and Lowest Observable Effect Concentration at 25% dilution ($\sim 1210 \mu \mathrm{~S} / \mathrm{cm}$). The 7 day Inhibition Concentration was estimated as 14.5% dilution ($\sim 753 \mu \mathrm{~S} / \mathrm{cm}$).

These results are consistent with those reported in Section 4.2.5 for other water bugs.

4.5 Indirect Impacts of Salinity on Biota

Indirectly, salinity may exert influences on dissolved oxygen (DO) concentrations, pH and altered availability of other dissolved material, especially sulphate. In the case of soils, increased salinity may cause an indirect effect via modification of soil structure.

- Dissolved oxygen levels reduce with temperature and increasing salinity. However, reductions in dissolved oxygen concentration are less than 3% between 0 and $5000 \mathrm{mg} / \mathrm{L}$ TDS and circa 5% between 5000 and $10,000 \mathrm{mg} / \mathrm{L}$ TDS.
- Increased salinity may be associated with increased rates of acidification (reduced pH) due to water drawdown in wetlands (Bailey et al., 2006).

Sensitivity of Biota to Salinity

- Saline disposal waters and saline groundwater often contains salts other than the NaCl that is most commonly responsible for toxic-ion and osmotic effects. Ecological impacts may arise from elevated concentrations of these other ions. Loads and/or concentrations of sulphate ($\mathrm{SO}_{4}{ }^{2-}$), for example, are often elevated in salinised systems and the increased availability of $\mathrm{SO}_{4}{ }^{2-}$ has serious ramifications for decomposition pathways in wetland sediments; sulphate-reduction can result in the production of phytotoxins such as $\mathrm{H}_{2} \mathrm{~S}$ and the subsequent generation of acid-sulphate soils.

4.6 Ecological Responses to Press and Pulse Salinity Changes

Boon (Appendix B) notes that the way that salt is introduced to aquatic systems is a critical, but often neglected, aspect of secondary salinisation.

- Nielsen et al. (2007) grouped aquatic plants and zooplankton into five groups according to how they responded to salinity increases that were delivered as pulse increases or as press increases. The emergence of aquatic plants and zooplankton from resting stages in sediments did not seem to be affected by short pulses of high salinity; although such pulses could prompt some zooplankton taxa to hatch.
- Marshall \& Bailey (2004) compared the effect of press and pulse salinisation on macroinvertebrates in the ephemeral Hughes Creek of central Victoria. The abundance of the gastropod Ferrissia tasmanica, the mayfly Baetis spp. and scraper and predator functional groups were significantly reduced at a salinity of $1,500 \mathrm{mg} \mathrm{L}^{-1}$, and the effect was strongest in the pulse treatment. However, the abundance of 49 other macroinvertebrate taxa, composition of collector-gatherer functional groups, and species diversity were unaffected by the way salt was increased in the creek system. Marshall \& Bailey (2004) concluded that delivering multiple, short pulses of salt was more detrimental than delivering the same salt load at a low concentration over a longer duration.

4.7 Fairview Biomonitoring Case Study

AUSRIVAS national macroinvertebrate sampling protocols have been used to monitor river health across a range of sites at Fairview since 2003.

River health at a given site is measured as the ratio of the observed fauna to the expected fauna at the site based on sampling from reference streams. Reference sites are typically influenced by human activities such as land clearing, but are relatively unaffected in other respects. Different models are used to predict expected fauna at pool and edgewater habitats both of which were sampled at Fairview.

- Results indicated a high degree of variability in river health indices at sites upstream of associated water discharges as well as at sites downstream. It seems likely that this variability may be related to the ephemeral nature of the streams in the area and the occurrence of some large floods which significantly altered instream and riparian habitat (Simmons and Bristow, various).
- Comparison of river health indices across the field (collected between 2003 and 2007) provides evidence of improvement downstream of Fairview Field. Interpretation of this result is complicated by the existence of spring inflows downstream of the Dawson River and Hutton Creek confluence (see Appendix D). Nevertheless, investigation of water quality data under low flow conditions suggests that macroinvertebrate impacts may be expected along Hutton and Baffle Creeks downstream of associated water discharges.

Section 4
 Sensitivity of Biota to Salinity

4.8 Summary and Conclusions

Many aquatic vascular plants are salt sensitive and salinities of $1,000-2,000 \mathrm{mgL}^{-1}$ could be lethal to these saltsensitive taxa. Of the animal taxa, invertebrates seem the most sensitive to increases in salinity and some species would show adverse effects from salinities as low as $1,000 \mathrm{mgL}^{-1}$ (Hart et al. 1991). The most sensitive insects seem to be stoneflies, some mayflies, caddisflies, dragonflies and damselflies, and some species of water bugs.

Examination of regional Queensland macroinvertebrate data suggests that there are some regional differences in assemblages found across sites. These regional differences are not explained by differences in salinity but 50% of families are only found in waters below $1000 \mu \mathrm{~S} / \mathrm{cm}$, and 25% of families are only found when electrical conductivity is below $340 \mu \mathrm{~S} / \mathrm{cm}$.

International literature and local ecotoxicology data indicates that fish are unlikely to be affected if salinities are maintained below $4000 \mu \mathrm{~S} / \mathrm{cm}$, although care needs to be taken since impacts on early life stages (eggs, larvae) have not been investigated.

The international literature also strongly indicates that the toxicity of associated water is related to the ionic mix rather than simply the total salinity of discharge water. For C. daphnia it was found that the relative toxicity of ions was $\mathrm{K}^{+}>\mathrm{HCO}_{3}{ }^{-}>\mathrm{Mg}^{2+}>\mathrm{Cl}^{-}>\mathrm{SO}_{4}{ }^{2-}$. However, the relative toxicity is likely to alter for different species.

Investigations of associated water from Fairview indicates that C. dubia experiences acute impacts within 48 hours if electrical conductivity is greater than $\sim 2130 \mu \mathrm{~S} / \mathrm{cm}$. Chronic testing of reproduction over 7 days indicates that inception of observable effects occurs when electrical conductivity reaches $\sim 753 \mu \mathrm{~S} / \mathrm{cm}$.

Johnson (2007) notes that toxicity is mitigated by biogeochemical reactions related to interactions with soils and surface water (see Section 6.1.2 for further discussion).

Based on the above research it is concluded that:

- The Central Queensland trigger level of $340 \mu \mathrm{~S} / \mathrm{cm}$ is very conservative.
- It is likely that there are limited impacts on instream fauna or flora when electrical conductivity is maintained below $\sim 700 \mu \mathrm{~S} / \mathrm{cm}$.
- There is a need to investigate the ionic balance in associated water in order to assess toxicity to salinity.

Figure 4-2 provides an approximate risk profile for biota to increasing salinity based on the above review.

Figure 4-2 Biological Risk Profile for Salinity

GLNG GAS FIELD DEVELOPMENT - ASSOCIATED WATER DISCHARGE STUDY
 Section 5
 Macroinvertebrate Drift

This Section examines the causal factors and consequences of macroinvertebrate drift by examining the available literature. Conclusions are drawn with respect to the likelihood and consequence of macroinvertebrate drift corresponding to associated water discharges.

5.1 Literature Review

A short literature review of macroinvertebrate drift due to changes in salinity, temperature, turbidity or flow was undertaken by Dr Peter Newall (Consulting Aquatic Ecologist) (Appendix C). The focus was on key triggers for drift in ephemeral streams during dry season periods. Aquatic macroinvertebrate drift is a phenomenon in which the invertebrate fauna of a flowing stream enters the water column from the benthic zone and drifts with the water current (Newall, 2008).

Newall found there is little literature on the drift fauna of subtropical, ephemeral Australian streams and no information on the influences of salinity, temperature and sediment inputs to drift in these streams. The review was therefore restricted to international literature on drift.

5.1.1 Macroinvertebrate Fauna in Ephemeral Streams

The invertebrate fauna of a stream system includes the bottom-dwelling fauna ('benthic fauna') and the fauna that inhabits the subsurface waters below rivers and their banks ('hyporheic fauna') (Clinton et al. 1996; Del Rosario \& Resh 2000). The drift community within a stream is normally the portion of the benthic fauna that enters the main water body. The hyporheic fauna do not typically form part of the drift (Clinton et al. 1996).

In ephemeral rivers during prolonged dry spells when there are periods of no surface water (i.e. not even in intermittent ponds), a benthic fauna is not normally supported (Del Rosario \& Resh 2000). However, hyporheic fauna may be supported at, or near the water table. Under such circumstances it is unlikely that any significant drift events would be caused by associated water discharges during dry periods.

Where ephemeral streams retreat to isolated refugia (pools, wetlands) some macroinvertebrate drift might be expected due to changes in flow or water quality.

The benthic community in an ephemeral stream during a wet season most likely originates through colonisation from nearby habitats (including refugia) and upstream areas, rather than from dormant stages of the fauna (Miller \& Golliday 1996; Stanley et al. 1994). However, a small percentage of the fauna (primarily zooplankton) may survive dry periods in the egg stage of the life cycle (e.g. URS, 2006).

Many of the small streams receiving discharge to grade are more episodic (event-driven) rather than ephemeral (seasonal). A number of drainage lines at Fairview Field have been observed to flow for less than 2 days after rain events in wet season. There is unlikely to be substantial colonisation of fauna under these conditions. For these streams there is unlikely to be any significant macroinvertebrate drift due to associated water discharge.

For larger streams, where wet season flows allow colonisation by macroinvertebrate benthos, the drift response to changes in flow, temperature and turbidity could conceivably be similar to responses seen in the literature as described in the following sections.

5.1.2 Responses to Changes in Flow

The influence of flow changes on invertebrate drift has long been recognised with a substantial number of studies showing that an increase in flow volumes or velocity leads to increased drift (Brittain \& Eikeland, 1988). Studies of stream flow influences on macroinvertebrate drift include those that assess the effects of reduced

Macroinvertebrate Drift

flows (e.g. Corrarino \& Brusven 1983; Clinton et al. 1996; Del Rosario \& Resh 2000), increased flows (e.g. Brooker \& Hemsworth 1978; O’Hop \& Wallace 1983; Matthei et al. 1997) and both increased and decreased flows (e.g. Perry \& Perry 1986; Miller \& Golladay 1996). Many studies have reported an increase in drift during 'river freshes', with some taxa drifting in the initial phases of the fresh whereas other taxa drift following the flow peak (Brittain \& Eikeland, 1988).

In a study examining the effects of flow reduction on invertebrate drift, Corrarino \& Brusven (1983) demonstrated that catastrophic drift was created by substantial reductions in stream flows, although the drift response was influenced by season, channel shape and time of day. Observation of the drying phase of an intermittent prairie stream in Oklahoma, USA indicated that the drying phase led to a lower diversity of taxa by preventing flow dependent taxa from completing their life-cycle (Miller \& Golladay, 1996). The study did not test for drift migration of invertebrates from riffles to pools during the drying period, but noted that this phenomenon has been reported in several studies, including one study in Australia (Boulton \& Lake, 1992). In contrast, a study of intermittent streams in northern California, USA showed that the invertebrates did not migrate to either pools or the hyporheos to avoid stream drying (Del Rosario \& Resh, 2000).

A study of drift in an Australian tropical stream (Benson \& Pearson 1987) noted that there was a distinctly seasonal drift pattern, with greater drift during the wet (summer) season and that this was related to life-cycles rather than disturbance. The authors suggest that this drift pattern was therefore dispersive, distributing young nymphs to new habitats while conditions were favourable. No flood events occurred during the study or in the few months prior to sampling. Therefore, impacts of event flows could not be assessed.

5.1.3 Responses to Changes in Suspended Solids

Results of several studies have been mixed, with authors reporting that the importance of streamflow versus suspended sediment loads are difficult to separate as drift triggers. Some researchers suggest that suspended sediment cannot be separated from flow as the cause of drift (O'Hop \& Wallace, 1983). Others have used elevated suspended sediment concentrations to mimic high flow events and found drift increased significantly in number of individuals and number of taxa (Doeg \& Milledge, 1991). One study of an artificial discharge downstream of an impoundment reported a dramatic increase in drift with the increased flow and noted that although this was accompanied by a large increase in the total load of suspended sediment, although the actual concentration never increased above $6 \mathrm{mgL}^{-1}$ (Brooker \& Hemsworth, 1978).

5.1.4 Responses to Temperature Changes

Studies of the influence of temperature on macroinvertebrate drift have often concentrated on the differences between night and day, or on seasonal differences. Brittain \& Eikeland (1988) note that one author had suggested that rising temperatures may be a trigger for species that drift during the daytime, whereas another author had found a negative correlation between rising temperatures and drift.

Svendsen et al. (2000) state that in general, stream temperature has not been shown to have a primary influence on stream drift, but secondary drift might occur due to increases in insect activity. A complicating factor in considering effects of temperature on drift is the multiple confounding with season, photoperiod and flow rates.

5.1.5 Responses to Changes in Salinity

Wood \& Dykes (2002) recorded increased in drift response to salt solution injections in a groundwater dominated river regardless of discharge. Drift was also increased in a regulated river, but under high flows drift was not significantly different due to the change in flow.

	GLNG GAS FIELD DEVELOPMENT - ASSOCIATED WATER DISCHARGE STUDY
Section5	Macroinvertebrate Drift

Silva \& Davies (1999) reported difficulty in distinguishing between the effect of a salinity "spike" on drift and the effects of a specific "trigger" salinity concentration.

5.2 Summary and Conclusions

Drift is a natural feature of macroinvertebrate behaviour and has been observed in response to flood flows in ephemeral streams under Australian conditions.

The literature is heavily governed by studies of regulated river systems and drift responses to increases in flow which have been found to be significant under some circumstances. It remains unclear whether there is a specific drift response to suspended solids or whether this is related to the changes in flow that also occur on initiation of a river 'fresh' or flood.

Some authors have examined the effects of reductions in flow rates or dropping water levels and have noted either no drift response, or retreat to pool or wetland refugia.

There is little evidence for increased drift related to temperature changes within the literature. However, substantial episodic increases in temperature might be expected to induce dissolved oxygen slumps and possibly trigger an onset of drift.

Responses to changes in salinity have been observed regardless of flow suggesting that episodic changes in salt are likely to increase drift. It also appears likely that drift might increase as a salinity threshold is reached, though the literature is silent on this.

It is concluded that:

- Most drift responses are related to rapid changes in an environmental variable.
- It is unlikely that continuous associated water discharges will result in increased drift events compared with natural flow conditions in the study area.
- If a continuous and consistent salinity discharge regime is maintained it is unlikely that any significant change in the frequency of drift events will be observed.
- If episodic releases of associated water are made, drift responses will be determined by the relative volume and salinity of the discharge to that instream.
- If this ratio is large then a significant drift response might be expected due to increased flow or salinity or both. If the ratio is small, the relative flow change will be small and mixing will restrict the footprint of impacts from changes in salinity.

Water Chemistry

This Section examines the quality of associated water, potential chemical changes on discharge and the key water quality parameters of interest when compared with local stream water quality data. Water quality of streams in the CSG field study area is presented and consideration is given to the likely changes in instream water quality if associated water is discharged. Examination of existing discharge to grade at Fairview is used as a case study before conclusions are drawn.

Much of the discussion on the existing water quality of surface waters, and on the quality of associated water, is based on the detailed work and information presented in Appendix E. The Fairview case study is presented in Appendix F.

6.1 Associated Water Quality

A brief discussion of associated water quality in Section 2 placed the quality of associated water from the CSG fields in the context of overseas developments. It was found that:

- Average salinity and sodium content in the CSG field associated water under consideration is typically an order of magnitude less than overseas;
- Average chloride and magnesium concentrations are around two orders of magnitude lower than overseas;
- Average sulphate and calcium concentrations are two to three orders of magnitude lower than overseas; and
- Other water quality parameters are of a similar order of magnitude.

In Section 2 it was also noted that there is considerable variability both between fields and within fields. Many of the studies in the Powder River Basin show considerable variability in salinity, sodium, chloride, calcium and magnesium contents. The following section discusses the variability of associated water quality in the study area.

6.1.1 Variability in Associated Water Quality

CSG field developments are incremental and the quality of the associated water arising from a particular point is unknown until exploration is completed. Water quality samples are only available from the Fairview and Roma well fields (Appendix E). No data is available from the Arcadia Field in the Comet-Brown River catchment.

The water quality data for individual parameters at Fairview and Roma is often significantly skewed with a few large outliers, though parameters such as pH , bicarbonate, total alkalinity and dissolved oxygen are symmetrically distributed. In assessing the suitability of associated water for various uses, this study has utilised median values and also considered the distribution and range of observations.

The quality of associated water is similar between the two fields. However, Roma is typically more saline and contains higher chloride levels than Fairview water (Figure 6-1). Regardless, both fields have few wells that can meet trigger values for the protection of aquatic ecosystems without dilution. Dilution is obviously a challenge in ephemeral stream systems.

Figure 6-1 Distribution of electrical conductivity and sodium at Roma and Fairview fields
Distributions of a wide range of parameters are investigated in Appendix E. It is concluded that associated water typically has:

- High pH, low dissolved oxygen and low to moderate salinity;
- Moderately high temperature $\left(\sim 40^{\circ} \mathrm{C}\right)$;
- Elevated sodium, fluoride and boron concentrations;
- Trace hydrocarbons;
- No coliforms;
- Elevated ammonia concentrations (compared with Queensland guidelines) but well below national guidelines);
- Elevated lead, copper or zinc concentrations at some wells;
- Low phosphorus and iron concentrations from most wells; and
- Low nutrients (with the exception of ammonia and phosphorus).

6.1.2 Longitudinal Changes in Associated Water Quality

Wellhead water quality has the potential to change once the water reaches the surface. A number of studies are described in the literature and they provide some understanding of how the chemistry of associated water changes when exposed to the surface environment in the Powder River Basin (e.g. Sessoms et al. 2002; McBeth et al. 2003; Patz et al. 2004, Jackson and Reddy 2006).

Sessoms et al. (2002) indicate that when associated water high in sodium bicarbonate is exposed to air it undergoes the following transformations:

$$
\mathrm{NaHCO}_{3} \rightarrow \mathrm{H}^{+}+\mathrm{CO}_{3}^{-}+\mathrm{Na}^{+}
$$

This allows free calcium from the water or soil to form calcium carbonate - a precipitate, plus water and carbon dioxide.

$$
\mathrm{Ca}^{2+}+2 \mathrm{HCO}_{3}^{-} \rightarrow \mathrm{CaCO}_{3}^{+}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}
$$

The pH of the water can also increase since the dissolution of the sodium bicarbonate also leads to the formation of sodium hydroxide as:

$$
\mathrm{Na}^{+}+\mathrm{H}^{+}+\mathrm{CO}_{3}^{-} \rightarrow \mathrm{NaOH}+\mathrm{CO}_{2}
$$

McBeth et al. (2003) found that Sodium Adsorption Ratio, electrical conductivity, TDS and pH increased between wellheads and retention ponds in the Powder River Basin. They postulated that precipitation of CaCO_{3} was the underlying cause of the observed changes.

Patz et al. (2004) investigated downstream changes in chemical composition of production water as atmospheric and sediment interactions occurred. They observed increases in pH , TDS and total alkalinity in the downstream channel and a decrease in calcium concentration, due to precipitation of calcium carbonate. It was postulated that increases in pH were in response to degassing of CO_{2}.

Jackson and Reddy (2006) also investigated differences in chemistry between wellhead discharges and associated water ponds across a range of catchments in the Powder River Basin. They found significant natural differences in the chemistry of each watershed. Responses to the introduction of associated water lead to more significant chemical changes in some watersheds than others. However, the basic chemical changes between wellhead and pond are that pH , alkalinity, electrical conductivity, and sodium increased; and calcium decreased. No significant changes in magnesium concentrations were observed. These results are consistent with the chemistry identified above.

Johnson (2007) considered the acute toxicity effects of ammonia and sodium bicarbonate in laboratory and field experiments. He found that super saturated CO_{2} in the associated water maintained lower pH at the discharge point where ammonia was elevated. As water flowed downstream the CO_{2} degassed and pH began to increase, but only gradually due to the precipitation of CaCO_{3} and subsequent buffering to around $\mathrm{pH} 8.0-8.5$. Johnson (2007) also noted that the dissolution of gypsum $\left(\mathrm{CaSO}_{4}\right)$ resupplies Ca^{2+} ions allowing more CaCO_{3} precipitation and formation of barite $\left(\mathrm{BaSO}_{4}\right)$ decreasing concentrations of Ba^{+}as associated water flows downstream.

It is not unreasonable to expect that these simple chemical reactions will also occur in the associated waters of the GLNG project.

URS (2008) completed a survey of minor streamlines (dry gullies) at Fairview to investigate physical chemistry, loss rates and biological changes relating to associated water discharge. Results showed increases in pH and

Section 6

Water Chemistry

possibly EC as water moves downstream from wellheads presumably due to similar reactions to those discussed above. The results also showed that dissolved oxygen rapidly increases from low to high levels within around 500 m of the discharge point, and temperature equilibrates to background levels within a similar distance. Observations of the instream benthic environment noted "powdery sediments". Some white encrustations were also noted on rocks in contact with associated waters. These observations are consistent with the presence of precipitates.

In summary, it is expected that the chemistry of associated water will change once it is delivered to the surface environment. These changes include precipitation of calcium carbonate, barium sulphate, and the release of carbon dioxide with associated increases in pH and salinity. Chemical reactions for existing small associated water flows in dry gullies appear to equilibrate within a short distance downstream of the discharge point suggesting that these reactions may be relatively local to the discharge point.

6.2 Instream Water Quality

6.2.1 Catchment Water Quality

Appendix E describes URS' compilation and collection of water quality information from the CSG field study area. Data sources include DNRW spot and continuous water quality data, Queensland Murray Darling Commission (QMDC) community monitoring program, data collected by other consultants, and data collected under this study (spot and continuous data). Generally the available data (prior to the conduct of URS' water quality sampling program) was limited in spatial coverage and appears to have been subject to variable quality control arrangements.

The review shows that:

- The majority of waters sampled fall in the $6.5-8.5 \mathrm{pH}$ range consistent with the protection of all environmental values. However, some pH readings around 9.0 were observed. These readings are slightly higher than recommended for recreation and drinking water supply, but are still consistent the protection of irrigation use.
- All systems are subject to significant dissolved oxygen sags which correspond with the high levels of chemical and biological oxygen demand measured. The observed DO levels are well below those recommended for recreation, drinking water supply or the maintenance of aquatic ecosystems.
- All catchments are subjected to a wide range of electrical conductivity (EC - a surrogate for salinity) over time and space. However, most streams typically have EC levels consistent with the recommended trigger level ($340 \mu \mathrm{~S} / \mathrm{cm}$).
- Sodium is normally found in the range $30-40 \mathrm{mg} / \mathrm{L}$ which is well below the trigger values for irrigation, recreation or drinking water supply. There is no trigger value for the protection of aquatic ecosystems.
- Chloride has a wider range in the Condamine - Balonne system ($1-40 \mathrm{mg} / \mathrm{L}$) compared with the Upper Dawson and Comet-Brown catchments ($10-20 \mathrm{mg} / \mathrm{L}$). All chloride concentrations are below the recommended trigger values for irrigation, recreation and raw water drinking water supply. There are no trigger values for stock watering or the protection of aquatic ecosystems.
- Fluoride concentrations are usually below the recommended trigger levels for stock, irrigation and drinking water supply. There are no trigger values for the protection of aquatic ecosystems or for recreation.

Water Chemistry

Section 6

- Boron concentrations are usually below the recommended trigger levels for the protection of all environmental values (aquatic ecosystems, stock, irrigation, recreation and drinking water supply).
- Surface waters across all catchments are nutrient enriched (eutrophic) with concentrations of nitrogen, phosphorus, and ammonia above recommended trigger levels for the protection of aquatic ecosystems.
- Turbidity and suspended solids concentration are orders of magnitude above the recommended trigger values for the protection of aquatic ecosystems.
- At least 25% of all samples have copper concentrations higher than the relevant trigger value for the protection of aquatic ecosystems, but substantially lower than the trigger values for stock watering, irrigation, recreation and the taking of raw water for drinking water supply.
- Iron concentrations are often well above the recommended trigger levels for irrigation, recreation and the taking of raw water for drinking water supply.
- Zinc concentrations regularly exceed the trigger level for the protection of aquatic ecosystems across all catchments. The observed maximum concentration is below the trigger levels for stock watering, irrigation, recreational use and the taking of raw water for water supply.
- Lead concentrations are above the trigger level for the protection of aquatic ecosystems in approximately 50% of samples. However, the maximum recorded lead concentration is well below the relevant trigger levels for stock watering, irrigation, recreational use and the taking of raw water for water supply.

These results suggest that the Queensland water quality guidelines are overly conservative with respect to a range of parameters observed in the streams of the GLNG CSG field catchments. The results also suggest a considerable influence from regional land clearing and stock access on water quality (particularly nutrients).

6.2.2 Instream water quality changes due to associated water discharge

The changes in the water chemistry of streams to which associated water is discharged will vary in accordance with the chemistry of the associated water at the wellhead, any changes that occur during transit or storage, the chemistry of stream waters, and the relative volumes of associated water and streamflow. For example, Patz et al. (2004) found no significant changes in water quality upstream and downstream of an influent stream in Powder River due to the relative volumes of flow in the mainstream compared with the influent.

For ephemeral streams, associated water discharges are likely to be the main component of flow during the dry season. Under such circumstances the quality of the discharge would be dominated by associated water quality and it is reasonable to assume that there is either no dilution or limited dilution in residual pools. This is examined at Fairview in the following case study (Section 6.3).

For perennial streams it is likely that there is an upper bound in terms of the dilution capacity of the stream to avoid significant water quality changes. This upper bound will be limited during the dry season when flows are at a minimum, be much greater during wet season, and be much greater still during flood events. The consideration of this assimilative capacity needs to be completed on a whole-of-catchment basis to ensure the cumulative effects of development are accounted for.

Water quality issues are examined by parameter in Table 6-1 below.

Water Chemistry

Table 6-1 Potential instream water quality changes from discharge of associated water

Water Quality Parameter	Associated Water Comparison With Trigger Values	Existing Surface Water Quality
pH	Generally suitable for aquatic ecosystems, stock, irrigation, recreation and raw drinking water supply.	The pH of associated water is typically more alkaline than existing surface waters, but well within the range of variability. No significant impacts are expected.
Dissolved oxygen (DO)	Suitable for stock, irrigation, recreation and drinking water supply.	DO levels are low, but typically equilibrates within 500 m downstream of discharge. Surfaces waters across all catchments experience very low DO levels, therefore associated water discharges considered unlikely to lead to any significant instream impacts.
Temperature	Provided discharges are small compared with instream flows, associated water temperature will be suitable for most purposes.	Temperature is significantly higher than surface waters, particularly during the dry season, but equilibrates within approximately 500 m of discharge point for small discharges.
Electrical Conductivity (EC)	Generally suitable for stock watering. Greater than trigger levels for protection of aquatic ecosystems, irrigation and drinking water supply	EC is typically well above background levels instream.
Sodium	No trigger values exist for aquatic ecosystems or stock watering. Majority of wells above trigger levels for irrigation, drinking water supply and recreation.	Surface waters generally below trigger value for irrigation, drinking water supply and recreation.
Chloride	No trigger levels exist for aquatic ecosystem protection or stock watering. Concentrations at Fairview below trigger levels for irrigation, drinking water and recreation. Concentrations at Roma are higher than trigger levels for irrigation, drinking water supply and recreation.	Significant dilution or treatment of associated water is required at Roma Field
Fluoride	No trigger values for recreation or the protection of aquatic ecosystems. Associated water from approximately 50% of wells from Fairview and Roma fields contains fluoride concentrations above the guideline trigger value for raw drinking water supply and stock watering. Trigger level for irrigation is also regularly exceeded.	Concentrations generally higher than existing environment.
Boron	Suitable for stock watering and raw water for drinking water supply. Concentrations regularly exceed trigger values for irrigation and recreation purposes. Concentrations at Fairview often greater than trigger value for protection of aquatic ecosystems.	Due to the turbidity of surface waters in the project area it is likely that toxicity will be reduced, but significant dilution of associated water would be required for conservative management.

Water Chemistry

Water Quality Parameter	Associated Water Comparison With Trigger Values	Existing Surface Water Quality
Nutrients	Ammonia levels in associated water are above Queensland guideline values but below National guidelines for protection of aquatic ecosystems. No trigger values provided for recreation, stockwater or irrigation.	Concentrations within the current range in surface waters in the region. High pH reduces toxic effects associated with the ammonium ion, therefore it is unlikely that discharges of associated water would significantly alter the nutrient regime or toxicity of surface waters.
Copper	The majority of samples have concentrations below the (modified of aquatic ecosystems. trigger level for protection of aquats Concentrations are below all other trigger values.	There is potentially a small risk of toxic effects due to copper in associated water.
Iron	Greater than recommended trigger values for irrigation. No trigger value for protection of ecosystems or stockwater.	Iron concentrations in associated water are similar in range to those observed in surface waters. Iron does not present a risk to livestock or ecosystem health at the concentrations detected. High levels of iron in irrigation water may result in precipitation and biofouling resulting in blockages of equipment (ANZECC \& ARMCANZ, 2000).
Zinc	Concentration in majority of samples below the (modified) trigger value for protection of aquatic ecosystems. Associated water from most wells below trigger value for stock watering, irrigation, recreation and raw water drinking water supply.	Background zinc concentrations are variable, but generally less than in associated water. Unlikely to be any significant effects on aquatic ecosystems due to zinc in associated water.
Lead	Concentrations generally below the (modified) trigger value for aquatic ecosystems. Concentrations below the trigger values for stockwatering, irrigation and recreation.	Concentrations of lead across all catchments are variable, generally greater than the trigger value for aquatic ecosystems (limited data available). Unlikely to be any significant effects due to lead in associated water.

6.2.3 Key water quality parameters

Based on the above review the key water quality parameters of concern in associated water are:

- Salinity (electrical conductivity)
- Sodium
- Chloride
- Fluoride
- Boron

[^1]
GLNG GAS FIELD DEVELOPMENT - ASSOCIATED WATER DISCHARGE STUDY

 Section 6

 Section 6

 Water Chemistry

 Water Chemistry}

In addition, due care needs to be taken to manage pH , dissolved oxygen, suspended solids and temperature.

6.3 Fairview Case Study

The release of associated water at the Fairview Field for approximately 15 years provides a case study to investigate the real effects of discharges on river systems in Central Queensland. Details of the case study are provided in Appendix F. The following provides a summary of the findings.

6.3.1 Existing Associated Water Discharges

Considerable discharges have been released into the Baffle Creek, Hutton Creek and Dawson River circa the Fairview property since 1993. Records on these releases are historically limited but qualitative evidence suggests that discharges were not controlled early in the life of the development, with considerable erosion from uncontrolled wellhead discharge. Discharge is now better controlled in terms of erosion with black polythene pipes used to convey water considerable distances to points of stable rock formations or bedrock in formerly dry gullies.

Discharging associated water to dry gullies is advantageous since chemical reactions have time to occur (see Section 6.1.2), dissolved oxygen and temperature equilibrate to background levels, and losses due to infiltration, pondage and evaporation occur before discharges reach the main creek systems.

Attempts have been made over time to restrict the salinity of waters discharged with an operational aim to maintain salinity in the Dawson River below $1500 \mu \mathrm{~S} / \mathrm{cm}^{3}$.

Ultimately discharges occur to Baffle Creek, Hutton Creek and Dawson River in what are believed to be ephemeral areas.

6.3.2 Observed Water Quality Changes

Appendix F investigates the statistical changes in river health and median water quality across a range of sites upstream and downstream of associated water discharges. The following conclusions are drawn:

Water Quality Grab Samples Upstream and Downstream of Discharges

- There is no significant change in water temperature between sites in the Dawson River upstream and downstream of associated water discharges with the exception of the Dawson River at Arcadia site (upstream of associated water discharge) which had a higher temperature, probably associated with its small cross-section and lack of riparian cover.
- There is a statistically significant increase in median EC between Dawson River at Arcadia ($215 \mu \mathrm{~S} / \mathrm{cm}$) and Dawson River downstream of Baffle Creek ($876 \mu \mathrm{~S} / \mathrm{cm}$).
- There is a statistically significant decrease in median EC between Dawson River downstream of Baffle Creek and Dawson River at Yebna Crossing ($247 \mu \mathrm{~S} / \mathrm{cm}$).

For some sites there is insufficient information to consider upstream to downstream changes, but there is sufficient information to compare water quality pre and post associated water discharges. At the Dawson River

[^2]
Water Chemistry

Section 6
at Utopia gauging station, data has been collected since 1964. Comparison of water quality between the periods 1964-1985 (pre discharge) and 1985-2007 (post discharge) found:

- Statistically significant reductions in EC, TDS, calcium, magnesium, alkalinity, chloride, and sulphate;
- A statistically significant increase in boron concentrations.
- No significant differences in the number of exceedances of Central Queensland trigger levels for EC and suspended solids.

Continuous EC Records at Utopia

- Review of continuous EC records at the Utopia gauging station (1997-2007) does not show any significant step changes or increasing trends.
- Records show significant reductions in EC on the rising limbs of hydrographs consistent with substantial dilution as flows increase. EC returns to pre-flood levels after approximately 20 days.

Other Continuous Water Quality Records

Continuous multi-parameter data loggers were deployed upstream and downstream of associated water discharges on Baffle Creek and Hutton Creek, and at Dawson's Bend and Yebna Crossing on the Dawson River. Electrical conductivity, turbidity, water depth, dissolved oxygen and pH were recorded at 0.5-1 hour intervals between June and August 2008.

- EC at the site on Hutton Creek downstream of discharges is approximately $300 \mu \mathrm{~S} / \mathrm{cm}$ higher than upstream, and shows less variation during floods. Both traces show an initial peak in EC on the rising limb of a small flood event possibly related to flushing of pools.
- EC at the site on Baffle Creek downstream of discharges is approximately $1200 \mu \mathrm{~S} / \mathrm{cm}$ higher than upstream, until a small flood passes, at which time EC reduces to approximately $200 \mu \mathrm{~S} / \mathrm{cm}$ higher than upstream. After that point salinity gradually increases once more consistent with increased salinisation of the small ponds at the downstream site from associated water discharges.
- $\quad \mathrm{pH}$ at upper and lower Hutton Creek sites remain circumneutral and within 0.5 units of each other. The upstream site shows some evidence of increasing pH as a small fresh passes through the section, while the lower site shows some evidence of a reduction in pH as the fresh passes.
- $\quad \mathrm{pH}$ at the upper Baffle Creek site is approximately 8 prior to a small flood when it reduces to circumneutral. pH at the lower Baffle Creek sites is approximately 1 unit higher but shows a similar degree of variation to the upstream site.
- Dissolved oxygen concentrations at the upper and lower Hutton Creek sites show significantly lower DO concentrations and less diurnal variation downstream than upstream. In response to the passage of a small flood flow the dissolved oxygen levels rise significantly.
- Dissolved oxygen concentrations at the upper and lower Baffle Creek sites show reduced diurnal variation downstream than upstream but much lower DO at the upstream site. Both sites show a significant reduction in dissolved oxygen in response to a minor flood following the flood peak suggesting organic matter may be disturbed and scavenging oxygen from the water column.

Section 6

Water Chemistry

Dawsons Bend and Yebna Crossing

- Temperature is approximately $2^{\circ} \mathrm{C}$ higher at Dawsons Bend compared with Yebna Crossing but shows a similar diurnal variation.
- EC is approximately 10% lower at Yebna Crossing compared with Dawson's Bend.

6.3.3 Stratification in Pools

Stratification of pools in Hutton Creek, Baffle Creek and the Dawson River was investigated during a single dry season field sampling run using a multi-parameter probe lowered through the vertical profile at 0.1 m intervals.

- At Upper Hutton Creek there is no discernable stratification in pH, DO, EC, temperature or Redox potential. At Lower Hutton Creek there is evidence of a chemocline between 1 m and 2 m depth, with a significant reduction in DO to anoxic conditions and a $200 \mu \mathrm{~S} / \mathrm{cm}$ increase in EC.
- At Dawson's Bend, pH and DO remain relatively constant through the vertical profile. EC increases steadily to approximately 1.2 m depth then remains relatively constant until approximately 2.7 m depth, where it reduces steeply to levels seen at the surface. Temperature reduces steeply from surface to approximately 0.8 m depth then reduces more slowly to 3 m depth. Redox potential increases steadily through the profile.
- At Lower Baffle Creek, pH reduces constantly through the profile. EC remains constant to approximately 0.7 m depth at which point it rises sharply. DO reduces slowly to 0.3 m depth, below which it drops to anoxic conditions by 0.7 m depth. Redox remains constant to approximately 0.6 m depth, then drops significantly to 0.8 m , then slowly drops from there down. Temperature drops fairly consistently through the profile.

These single sampling run results suggest that more saline and low dissolved oxygen associated water may be causing stratification in ponds downstream of discharges. However, additional information is required before this can be confirmed.

6.3.4 River Health Data

River health sampling has been undertaken from pool and edgewater habitats at a range of sites across the Fairview area since 2003 (EnviroTest various, Simmonds and Bristow 2007 \& 2008). Samples have been taken using the AusRivas macroinvertebrate and habitat sampling protocols. Sites sampled include control sites upstream of impacts, and sites down the Dawson River in an attempt to assess any longitudinal changes in river health.

Results of sampling are highly variable suggesting significant variation in available habitat year to year even at sites upstream of associated water discharges. Variation in results is probably significantly affected by the water at the site at the time of sampling, as well as hydrological events occurring prior to sampling (floods, droughts).

Results suggest that the Lower Hutton Creek site has a significantly lower river health than downstream and upstream sites on the Dawson River. There is some evidence to indicate that river health in Baffle Creek is lower than in the Dawson River downstream. There is evidence to support improving river health in the Dawson River at Dawson's Bend, at Yebna Crossing and at Utopia.

Water Chemistry

6.3.5 Spring Flows and Assimilative Capacity

Observations of improving water quality and river health downstream of Dawson's Bend suggest that some amelioration of the effects of associated water discharges is occurring at or around this location. A stream flow gauging in October 2007 suggested that low salinity inflows are occurring in this reach.

Water Quality Grab Samples

- A small but significant increase in median EC is evident between Yebna Crossing and Dawson River at Utopia stream gauge ($289 \mathrm{~S} / \mathrm{cm}$). This may be related to spring flows.
- Median sodium and chloride concentrations are higher at Yebna compared with Dawson's Bend. No associated water discharges are known to occur between these two sites.
- Median pH is higher at Yebna than Dawson's Bend.

Spring Flow \& Water Quality Assessment

Release of maps of springs by Queensland EPA in early 2008 confirmed the existence of springs in the area.
A survey of spring flows was initiated to identify the incremental flows and water quality inputs from the springs.
The survey progressed upstream from Yebna Crossing to upstream of Dawson's Bend. Gaugings were taken instream every $\sim 200 \mathrm{~m}$, and springs recorded with flows and water quality measurements taken where possible. Travel further upstream was restricted by topography.

- The survey discovered over 30 springs with various levels of discharge and water quality.
- A number of springs were noted in the stream bed and these appear to contribute the majority of flow in the area.
- Flow at Yebna Crossing was found to be approximately 250\% greater than upstream of Dawson's Bend, with the main contribution of flow occurring within 1.5 km downstream of Dawson's Bend.
- Flow at Yebna was 171 litres/second compared with 68 litres/second measured upstream of Dawson's Bend. Peak flow rate measured was 273 litres/second upstream of Yebna pond suggesting losses in or near the pond possibly to extractive farm use.
- Water from the surface springs has a flow weighted $\mathrm{EC}=254 \mathrm{~S} / \mathrm{cm}$, temperature $=21^{\circ} \mathrm{C}$ and $\mathrm{pH}=6.8$.
- Surface springs also exhibit higher alkalinity, major ion and fluoride concentrations than the Dawson River.

Spring flows add significantly to the water flowing in the reach of the Dawson River downstream of Hutton Creek. It is estimated that the spring flow is approximately $17 \mathrm{ML} /$ day.

This additional flow offer potential to dilute permeate discharges from the Pony Hills Water Treatment Plant and Central Water Treatment Plant while maintaining EC below the Central Queensland trigger level (Appendix F).

6.4 Summary and Conclusions

Before associated water can be discharged to grade there is a need to carefully consider the range of water quality parameters that exceed recommended trigger levels and the potential for dilution of this water quality in stream. The ability to discharge untreated associated water to streams while protecting aquatic ecosystems is

	GLNG GAS FIELD DEVELOPMENT - ASSOCIATED WATER DISCHARGE STUDY
Section 6	Water Chemistry

limited unless significant dilution occurs. Nevertheless, associated water is often suitable for stock watering purposes and (with care) for use in irrigation, and for recreational purposes.

Many CSG wells produce associated water with elevated salinity, sodium, chloride, fluoride and boron levels. These parameters are of most concern of all the water quality parameters investigated and warrant treatment where discharges are to be made to watercourses without significant dilution flows. Other parameters such as iron content may also require treatment from time to time.

The degree of impact on chemistry and biota is dependent on flow volumes and dilution in the main stream.

In this Section the limited available literature on riparian vegetation responses to associated water are examined. An assessment is then made of significant weeds within the CSG fields to establish the likelihood and consequence of increased weed problems if associated water is discharged to streams. More details are available in Appendix G.

7.1 Literature Review

The only information found with respect to vegetation and associated water discharge relates to the Powder River Basin in the USA:

- Bergquist et al. (2007) reported an investigation of non-native species richness in CSG fields compared with control sites and found increased richness associated with combined primary disturbances (including the development of well pads, roads, pipelines, dams and discharges) and combined "secondary disturbances" (i.e. subplots established adjacent to primary disturbance sites). Although statistical comparisons are made between control sites and discharge areas which indicate non-native species richness is higher in discharge areas, it is unlikely this conclusion can be drawn as control sites include areas which are not drainage lines and which are shown by Bergquist et al. (2007) to have significant different native and non-native species richness and soil chemistry.
- Nevertheless, Stearns et al. (2005) using data from the same experimental arrangement as Bergquist et al. (2007) did compare the vegetation in one control gully with vegetation in another gully subject to associated water discharge. They found that there was a significant difference in both native species richness (lower) and non-native species richness (higher) compared with the control. No significant differences were found between salt tolerant species between the gullies. Although Stearns et al. (2005) suggest their results are not conclusive, the results provide supportive evidence that vegetation in gullies subjected to associated water is prone to non-native vegetation invasion.

The reason for the observed change in species composition cannot be inferred from the results presented above. Possible causes include land disturbance, traffic (foot, animal, vehicle) and/or addition of water to a dry environment.

7.2 Queensland Situation

Observations

The CSG field catchments appear to be largely free of aquatic weed species, though five observations of declared species (Alligator Weed, Salvinia, Water Lettuce, Water Hyacinth and Hymenachne) have been recorded in or near the CSG field catchments.

- Lippia (an undeclared species) is known to be widespread in floodplain environments across the catchments and is known to be dispersed by floodwater.
- No observations of aquatic weeds have been made in the Upper Dawson River catchment.
- Alligator Weed (a "Class 1" species) was detected to the south of Roma in 2005 but has not been detected since.
- Weed outbreaks (Lippia, Salvinia) in the Comet - Brown River catchment have generally been in the vicinity of Emerald and to the east of the CSG field catchments.

Section 7

Weed Growth

- Hymenache has been identified in southern Arcadia (Comet-Brown River catchment).
- Salvinia and Water Hyacynth outbreaks have occurred at locations more than 100 km east and south east of Roma.
- Water lettuce was recorded approximately 100 km to the east of the Comet River in 2006, and occasional localised outbreaks have been recorded due east of Roma and south of Roma near the NSW border.

Predicted Distributions

Queensland Department of Primary Industries and Fisheries (DPIF) predictive distribution maps for declared weed species were examined. These maps estimate the distribution of declared weed species based on climate, but do not take into account soil types or other ecological parameters. The maps (Appendix G) grade the CSG field catchments by weed species as follows:

Table 7-1 Suitability of CSG field catchments for declared weed species

Weed	Suitability in GLNG Region
Alligator Weed	Marginal
Water Lettuce	Suitable circa Roma grading to Highly Suitable to north of Emerald
Salvinia	Unsuitable around Roma grading to marginal to Highly Suitable around Comet.
Water Hyacinth	Suitable to Highly suitable north of Comet.
Cabomba*	Highly suitable
Water Milfoil ${ }^{\star}$	Highly - Very Highly suitable

* Cabomba has only been detected in coastal areas of Queensland. Water Milfoil has not been detected in the region.

Appendix G considers the habitat preferences and life cycles of the various weed species.

7.3 Potential for Weed Infestations with Field Development

There is limited evidence for spread of non-native species associated with associated water discharges.
Flowing water is one primary mechanism for weed dispersal but this is normally associated with the large natural seasonal floods in the region (e.g. for Lippia). It is therefore important that any discharges do not significantly alter the frequency of flooding, and are kept at a level that avoids erosion in channel. Since associated water volumes are likely to be insignificant compared with these natural events it appears unlikely that discharge of associated water will increase the likelihood of dispersal via this mechanism.

The introduction of water to previously ephemeral streams may create a favourable habitat for the establishment of aquatic weed species and provide opportunities for changes in species composition. However, the chemistry of associated water is likely to preclude significant weed or native plant growth if untreated.

The primary mitigation measure against weed infestation is careful management of human and vehicular traffic, including the transfer of plant material and soils between areas. Provided these defences are maintained, the likelihood of significant weed infestation is low. The natural turbidity of waters in the area also act to limit the growth of instream vegetation, though temperatures are high and nutrients are readily available there is little macrophyte growth.

Provided flood frequency is maintained and erosion of banks is avoided it is considered unlikely that a significant increase in weed infestation will occur due to associated water discharges.

In this Section, the potential for erosion arising from associated water discharges is examined, firstly through a literature review, then in relation to the GLNG CSG fields under various associated water discharge scenarios.

8.1 Literature Review

The only information found with respect to erosion and associated water discharge relates to the Powder River Basin in the USA:

- In a public notice related to management of discharges, the Wyoming Department of Environmental Quality (Anon., 2006) notes concerns from landholders regarding "discharges ...accelerate erosion within Willow Creek and its ephemeral tributaries; unwanted channel cuts, bank de-stabilization, gouging behind spreader dams, beneath road fill, etc; potential for increased sedimentation in flatter areas and increased turbidity in flowing waters".
- This is consistent with comments made in various other articles and references regarding the Powder River associated water discharges (e.g. King 2001).
- Anon. (2006) also refer to stream surveys that have been undertaken to determine constriction points where flows might be expected to exceed channel capacity (i.e. overflow the banks of the streams) or where velocities are expected to be sufficiently high to exacerbate erosion.

These sources indicate that the main concerns relate to the volume and velocity of water discharged rather than to chemical properties of associated water.

Ganjegunte et al. (2005 and 2008) studied the effects of repeated irrigation application of sodic associated water on soils in the Powder River Basin and found an accumulation of sodium and salt in the soil profile that led to degradation in the soil structure particularly for fine grain soils. The effects of degradation include increased surface crusting, reduced infiltration and reduced hydraulic conductivity (So \& Aylmore 1993; Park \& O'Conner 1980 cited in Ganjegunte et al. 2005).

However, in the context of discharging associated water to grade, since the beds and banks will remain saturated it is probable that ions (such as sodium and chloride) will move into the soil profile, rather than affecting the surface soils.

8.2 Channel Size and Associated Water Discharges

Streams in the CSG field catchments are typically heavily incised due to the large episodic channel forming flows that occur during wet season. Investigation of flow rates at Fairview (Appendix F) showed that current and 2008/09 planned associated water volumes are many orders of magnitude smaller than flood flows in Hutton Creek and the Dawson River. Further investigations were also made into the relative height changes arising from associated water discharges at known stream gauging locations in these streams.

Appendix H provides a conservative review of average velocity and depths in streams across the CSG field project area under a range of development scenarios and discharges.

Section 8

Erosion

Two methods were used to assess velocities and depths of flow in each stream.

1) Cross-sectional and discharge information was sourced from stream gauging stations and used to estimate flow velocities and depths. While these sites will have similar cross-sections as other locations, they will have different discharge characteristics than other parts of the stream due to downstream hydraulic controls (e.g. weirs, natural bars).
2) Manning's equation was used to estimate depths and velocities assuming a conservative roughness coefficient, bed slope equivalent to average catchment slope, and cross-section as per the relevant gauging station.

Velocities of associated water flows are typically less than $0.1 \mathrm{~m} / \mathrm{s}$ except in the case of the Dawson River at Utopia where $0.19 \mathrm{~m} / \mathrm{s}$ was estimated. Natural flood flow velocities are in the range $3 \mathrm{~m} / \mathrm{s}$ for the region. The estimated velocity for inception of erosion in the sandy-clay soils of the region is in the range ($0.3-0.5 \mathrm{~m} / \mathrm{s}$).

Flows are always maintained within the thalweg ${ }^{4}$ of the streams studied even under the most conservative assumption of concentrated flow to individual streams.

8.3 Potential for Erosion with Field Development

The potential for increased erosion from chemical changes to soils in the beds and banks of streams is considered small compared with the potential for erosion by mechanical means due to the discharge of water to ephemeral streams.

Investigation of velocities likely in stream shows that velocities are likely to be well below the range that could cause erosion.

The storage capacity of the stream will only be marginally utilised by associated water discharge and it can be concluded that the frequency of flooding will be maintained.

The main potential for erosion is at the points at which water is discharged to a stream. Any discharge points would be engineered to ensure appropriate protection measures are in place including rocks and geofabric as necessary.

It is concluded that the risk of additional erosion induced by associated water discharges to streams is minimal.

[^3]This Section discusses the potential for contamination of 'near river aquifers' by infiltration from streams within the CSG field development area should associated water be discharged.

9.1 Discussion

The relative contribution of surface water infiltration from ephemeral rivers to regional groundwater recharge has been the subject of a number of studies in recent years. It is clear that infiltration rates vary considerably in both space and time. Infiltration is higher during periods of high flow than low flow, and recent research suggests that consideration of the rising limb of a hydrograph is important in determining the total infiltration volume of a flow event. The effects of soil swelling and pore sealing are also important issues (Mace and Amrheim, 2001).

Higher infiltration rates occur under flood conditions since (from Darcy's Law) the driving head of water above the soil surface, and the cross-sectional area in contact with the soil are both proportional to the rate of infiltration. When floods occur in the CSG field catchments the driving head can increase to 10-20 metres. This may or may not be associated with a significant change in cross-sectional area depending upon the topography.

While low flows in channel will have much lower infiltration rates than flood flows, the duration of low flow discharge is much longer than the flood duration. Infiltration from small continuous associated water discharges can therefore be expected to increase the total annual infiltration that occurs from a stream.

Application of sodic water through irrigation practices has been found to reduce infiltration rates in Darling Downs soils by an approximate factor of 10 (So \& Aylmore, 1993). It is unclear whether this would occur in continuously inundated streambeds. Under constant water levels there is potential for vertical infiltration of associated water and constituents into the subsurface. However, adherence to soil particles may allow constituents to settle out of the water column under low velocities.

Recent drilling in the Fairview and Roma areas suggests that the water table is probably some metres ($>10 \mathrm{~m}$) below the bed of the river channels. This indicates that infiltration will be into the unsaturated zone where contaminants may accumulate over a considerable period of time before scouring during flood or passage to the water table.

Under flood conditions, velocities instream are sufficient to induce scouring that is likely to physically remove any surface crusts returning infiltration rates to normal (Appendix H). However, dissolution may also enhance movement of chemicals into the subsurface on the rising limb of the hydrograph.

Estimates have been made of the relative contributions of infiltration from associated waters vs floods or seasonal flows (typically a ratio of around $1: 5$ is found), but it is clear that these calculations are subject to considerable errors and are heavily dependent on the assumptions made.

9.2 Conclusions

The variability of soils, and water and chemical processes in the stream and subsurface environment makes it difficult to assess the risks associated with the contamination of near river aquifer systems. The above discussion suggests that the dynamics of flood and seasonal flows will be a significant factor, not only in terms of the scour and movement of chemicals, but also in terms of the potential dilution of infiltrated water.

It is considered that the contamination of near river aquifers is a lower order risk compared with direct contamination of the surface water environment, or changes in hydrology of the system.

	GLNG GAS FIELD DEVELOPMENT - ASSOCIATED WATER DISCHARGE STUDY
Section 9	Near River Aquifers
Should untreated associated water discharge be identified as a management option, then the instrumentation of a river reach and aquifer system would provide useful information to further assess any risks posed. Since associated water has been discharged at Fairview for a considerable period of time, the well field could provide a useful location to investigate this issue.	

Hydrologic Changes Arising from Discharges

Hydrological and water quality (EC and temperature) modelling of the three CSG field catchments is reported in Appendices I, J and K.

10.1 Aims

The aims of the modelling were to:

- Develop estimates of natural flows where there was limited data available.
- To extend existing flow records using rainfall data.
- To allow assessment of development hazards (flow, EC, temperature) at selected (i.e. not previously measured) locations in a catchment.
- To investigate various management scenarios.

10.2 Model Development

The two candidate models considered for modelling were IQQM (Integrated Quantity and Quality Model) and E2, both of which are utilised in Queensland. Neither model provides for temperature modelling.

- E2 was chosen as the main modelling platform since it is finding increasing use in Queensland and it was understood that there were difficulties in calibrating electrical conductivity in IQQM.
- Temperature modelling was completed using the US EPA's QUAL2K model.

The Australian Water Balance Model was adopted as the water balance modelling algorithm within E2. Muskingum routing was typically used to transfer water between model nodes ${ }^{5}$.

Significant challenges were faced in the development of the E2 models. Key challenges were:

- Limited flow data in some catchments (especially the Condamine-Balonne streams near Roma).
- Inadequacy or incorrectness of SILO rainfall coverages (Queensland Centre for Climate Applications).
- Limited local rainfall information.
- Concerns regarding some rating curves.
- Concerns related to some continuous EC data.
- Limitations of E2 water quality algorithms.

Data validation was completed and modelling progressed by focussing on catchments with the best available datasets then moving to less data rich catchments.

SILO rainfall coverages provide a spatially interpolated set of daily or monthly rainfall data that DNRW recommends for use in E2 modelling. For this project the daily rainfall coverages were used to generate daily flow estimates. Flow estimates were compared with actual records and found to be inadequate for the Upper Dawson River catchment since significant rainfall events were often identified when there was: a) no local

[^4]
Section 10

Hydrologic Changes Arising from Discharges

record of rainfall; and b) no recorded flood event instream. Similar results were found in other catchments and a decision was made to utilise local data for each subcatchment where possible, and interpolation between rain gauges where necessary using Thiessen polygons.

The limitations of using SILO data on daily time step to generate flows are not unexpected. The SILO data set represents spatial smoothing of recorded rain gauge data and would be expected to perform well in representing monthly rainfall totals rather than daily totals.

Flow modelling was undertaken initially to ensure that water storages and catchment responses were well modelled prior to consideration of salinity. Fitted model parameters were consistently found to be outside the normally recommended range for parameters though not excessively so. It is believed that the "normal" recommended range of parameters reflects fitting models to perennial stream records rather then to ephemeral stream records. The fitted parameter estimates do not contradict any model assumptions nor do they represent unrealistic ranges.

Two checks were used to assess the validity of the fitted model parameters. In the first test, comparisons were made of parameter fits at multiple stream gauges in the Comet River catchment. These fits were all found to be consistent and supported common model parameters on different subcatchments. The second test was to build an identical AWBM model in an alternative modelling package to eliminate any impacts arising from the use of E2. Model calibrations and fitted parameters were found to be identical between the two modelling packages. Since the fitted parameters were found to be consistent across different subcatchments and independent of modelling package they were adopted as being representative of catchment conditions for this study.

Flow calibrations in E2 are generally considered acceptable once the objective function (Nash-Sutcliffe coefficient, CE) is over 0.7. Tests were also made to ensure conservation of mass.

Attempts to model salinity using E2 algorithms were abandoned. E2 provides two basic options for modelling of water quality; neither produced reasonable results for the study catchments. The E2 modelling algorithms are simple and the degree of switching between wet and dry modes in the ephemeral CSG field catchments lead to wild fluctuations in EC.

Continuous and spot EC data were investigated and a consistent empirical model for salinity was developed for all catchments in Excel. Care was taken to ensure that salinity was conservatively estimated and parameters allowed for the different salinity responses in each catchment. Salinity inputs from associated water discharges were then simply added to modelled catchment salinity using a flow weighted algorithm to estimate resulting EC ${ }^{6}$. Conservation of mass was ensured.

Temperature was only modelled in the Upper Dawson River catchment for particular scenarios related to the discharge of cooled (to $5^{\circ} \mathrm{C}$ above than the ambient air temperature) associated water into Hutton Creek. Similar results are expected for other sites.

[^5]
Hydrologic Changes Arising from Discharges

10.3 Calibration

10.3.1 Upper Dawson River

Calibration of flows is excellent with $C E=0.73$, and good representation of low flows, hydrograph shapes and timing with the exception of very large floods. Over 26 years the net volume difference in modelled vs observed flows is less than 4%. As large flood events are of less concern to this project the calibration is considered suitable.

EC modelling is conservative and tends to over-estimate the salinity in the system on average over the ten years of available record. Over-estimation was necessary to allow calibration of the peak EC events considered critical for this study.

Temperature modelling is considered appropriate for purpose and provides a good correlation with downstream data.

10.3.2 Comet-Brown River

Calibration of flows is considered excellent with CE $=0.73$ and a net volume difference over 31 years of 0.2%. Some difficulties were found in matching all components of the flow regime, and preference was given to matching low flow behaviour as this is more critical for this project.

The EC model was calibrated at three points in the catchment including Arcadia valley, mid catchment and catchment outlet. Only spot data was available for calibration for the Arcadia Valley, but continuous data was available at the other two sites. The models are calibrated conservatively with greater emphasis given to peak EC periods.

10.3.3 Condamine-Balonne Catchment

Calibration of the flow regime is excellent with CE= 0.75 and a net volume difference over 13 years of observed flow record of 0.4%. General fit to hydrograph timing, peak and volumes is good, although flows in the mid range $30-50 \mathrm{~m}^{3} \mathrm{~s}^{-1}$ are not well fitted. Given the concentration is on low flows for this study the calibration is considered appropriate. However, the model encompasses streams where no flow record is available. Until data is available from these streams the model must be considered preliminary.

No suitable continuous EC records were available so model calibration was completed against limited spot readings taken by DNRW and URS. Parameters were adjusted to achieve the best possible fit but the data is limited.

10.4 Modelling Scenarios and Results

10.4.1 Modelling Scenarios

Scenarios for untreated associated water discharge were developed based upon estimated peak associated water production rates from the fields. This is very conservative since not all water is likely to be of a quality suitable for discharge to grade. For the Roma and Arcadia fields the quality (electrical conductivity) of associated water was assumed to be constant at $3480 \mu \mathrm{~S} / \mathrm{cm}$ based on data from Roma. For Fairview the

Section 10

Hydrologic Changes Arising from Discharges

assumed electrical conductivity of untreated associated water was $1998 \mu \mathrm{~S} / \mathrm{cm}$ based on data analysed at the time of modelling ${ }^{7}$.

For treated water discharge scenarios, volumes were reduced by 25%. For the ephemeral streams in the Roma and Arcadia fields the permeate EC was assumed to be $280 \mu \mathrm{~S} / \mathrm{cm}$. For the perennial Dawson River various permeate salinities were considered.

For the Comet-Brown catchment it was assumed that discharges will occur in the upper, middle and lower catchment, or else be concentrated mid-catchment.

For the Condamine-Balonne catchment discharge was considered to be either concentrated in Bungil Creek, distributed evenly across the three main creeks in the area, or be delivered directly to the Balonne River at Surat Weir.

Further details of the scenarios are provided in Appendices I , J and K .

10.4.2 Upper Dawson River Salinity

Untreated associated water discharge will significantly increase the salinity of streams in the area.
Permeate discharge can be assimilated within the existing flow regime downstream of the springs at Dawson's Bend provided the flows do not exceed certain levels (see Appendix I). For the Pony Hills Treatment Plant (4.5 ML/day) it is reasonable to discharge at up to $500 \mu \mathrm{~S} / \mathrm{cm}$ (Environmental Management Plan for Fairview Project Area, May 2008). However, for the proposed Central Water Treatment Plant it would be necessary to reduce the permeate salinity to background levels instream.

10.4.3 Comet-Brown River Salinit y

Modelling shows that untreated discharge of associated water will significantly increase salinity instream from $242-405 \mathrm{mg} / \mathrm{L}$ TDS to $2300 \mathrm{mg} / \mathrm{L}$ TDS over most flow ranges. Opportunities to discharge into high flow events where concentrations would be significantly diluted are limited and intermittent.

Discharge of treated water at the nominated treatment level would reduce salinities over all flow ranges.

10.4.4 Condamine-Balonne Catchment Salinity

Untreated associated water discharges are shown to significantly increase the salinity of streams in this area across all flow ranges.

Discharges of treated water will maintain the salinity regime of the streams within background levels. However, it is noted that even treating water to background levels may result in a salinity debit being required under the Basin Salinity Management Strategy (BSMS) 2001-2015.

The BSMS supersedes the 1988 Salinity and Drainage Strategy and is the Murray-Darling Basin Ministerial Council's response to the salinity impacts identified in the Salinity Audit (MDBC, 1999). It addresses both dryland and irrigation salinity. The objectives of the BSMS are:

[^6]
Hydrologic Changes Arising from Discharges

Objective 1: Maintain water quality of shared water resources of the Murray and Darling Rivers for all beneficial uses - agriculture, environmental, urban, industrial and recreational;

Objective 2: Control the rise in salt loads in all tributary rivers of the MDB, and through that control, protect their water resources and aquatic ecosystems at agreed levels;

Objective 3: Control land degradation and protect important terrestrial ecosystems, productive farm land, cultural heritage, and built infrastructure at agreed levels Basin-wide; and.

Objective 4: Maximise the net benefits from salinity control across the Basin.
The BSMS contains the 9 Strategic Elements that guide actions to address salinity risks and establish accountability measures.

Element 1: Developing Capacity to Support the BSMS;
Element 2: Identifying Values and Assets at Risk;
Element 3: Setting Salinity Targets;
Element 4: Managing Trade-offs with Available Within-Valley Options;
Element 5: Implementing Salinity and Catchment Management Plans;
Element 6: Redesigning Farming Systems;
Element 7: Targeting Reforestation and Vegetation Management;
Element 8: Constructing Salt Interception Schemes; and.
Element 9: Ensuring Basin-wide Accountability: monitoring, evaluating, and reporting.
Under Element 9 (Ensuring Basin-wide Accountability: monitoring, evaluating, and reporting) a basin salinity register has been developed that accounts for salinity credits (e.g. interception of salt prior to entering the Basin rivers) and debits. Salinity credits represent reductions in the long term discharge of salt to the Basin rivers and can arise from actions such as salt interception schemes or improvements in irrigation efficiency. Salinity debits arise from new inputs of salt to the Basin rivers.

10.4.5 Temperature Modelling

Modelling of instream temperatures was completed as part of the investigations for the Santos Fairview Environmental Management Plan (Upper Dawson River catchment). Modelling shows (Appendix I) the persistence of a temperature effect downstream is related to the volumes of discharge and the relative temperature of the discharge compared with the ambient environment.

Under low-flow scenarios and temperature maintained within $+5^{\circ} \mathrm{C}$ of ambient conditions, the persistence of a $1^{\circ} \mathrm{C}$ temperature difference would be at worst case 2.5 km downstream, but most scenarios indicate that temperatures will equalise within $0-1 \mathrm{~km}$. Where associated water is released at $\sim 40^{\circ} \mathrm{C}$, the distance required before temperatures return to within $1^{\circ} \mathrm{C}$ of ambient are up to 10 km in dry season and 5 km in wet season.

Under high flow scenarios and temperature maintained within $+5^{\circ} \mathrm{C}$ of ambient, the persistence of a $1^{\circ} \mathrm{C}$ temperature difference instream would be at worst case 12.5 km in dry season and $\sim 9 \mathrm{~km}$ in wet season.

Section 10

Hydrologic Changes Arising from Discharges

Since the Dawson River has considerable spring flows circa Dawson's Bend, this offers a significant ameliorating effect on temperature (and other water quality parameters). Modelling suggests that even if the water temperature of associated water is not reduced below $40^{\circ} \mathrm{C}$ when discharged the spring flows will reduce the plume length to $\sim 1.5-2 \mathrm{~km}$. With temperatures of associated water maintained within $5^{\circ} \mathrm{C}$ of ambient the plume length is reduced to less than 1 km .

10.4.6 Changes in Instream Hydrology

The associated water discharge scenarios used in this study provide for constant flow releases into the bottom of the stream channels (Appendix H). The hydrological regime of these streams will therefore shift upwards by the amount discharged (worst case scenario), or by the unquantified amount of flow remaining instream after infiltration and evaporation losses.

Since the discharge volumes are small they would comprise a very small percentage of the flows under moderate to high flow conditions. Since they are constant they will not alter the variability of the systems significantly except in the low flow regime.

The major change in hydrology is therefore the persistence of instream pools and the increased connectedness between pools as flow is maintained downstream.

10.5 Conclusions

The associated water discharge scenarios used in this study provide for constant flow and constant conductivity releases. As a result the only real change in the hydrologic regime is a shift of all flows up by (worst case scenario) the amount of discharge. The volumes of discharge are small; therefore this shift becomes less significant as flow increases. The only significant change in hydrology is therefore the change in the streams from ephemeral to perennial. This could be expected to shift the types of biota in the stream by providing new habitat.

Discharges of saline associated water will require treatment unless there are considerable flows instream. For the truly ephemeral streams associated with the Roma and Arcadia fields there will be few opportunities to dilute associated water instream.

For the Fairview Field, the perennial nature of the Upper Dawson River downstream of Dawson's Bend provides significant assimilative capacity for existing discharges. However, once associated water discharges reach a certain level they will start to dominate the instream water chemistry. This is true for both temperature and salinity.

Floods are seasonal, intermittent and of short duration. While they offer the advantage of dilution, the practicalities of building storages with sufficient driving head or pumps to discharge during flood conditions may be impractical, and would need to be assessed.

The existence of the BSMS (applicable to the Condamine-Balonne catchment) means that very careful consideration would need to be given to discharging additional salt in the Roma area even if the water is treated to background levels.

Opportunities to discharge treated water would best be limited to those areas where there is perennial flow, or where there are effectively perennial ponds and significant changes in the instream environment have already occurred (see Section 12).

Review of Risks from Associated Water Discharge

Based on the reviews undertaken in the previous chapters the risk framework identified in Figure 3-1 and Figure $3-2$ is revisited.

In some cases consequences identified in the framework have been able to be assessed as minor, in other cases they have been reaffirmed and more detailed information on processes and consequences is available than previously.

In other cases, the likelihood of a consequence has been assessed as very low, and therefore the potential hazard can be assigned a very low risk (assumed negligible).

- Central Queensland trigger values for EC are probably over-conservative with national literature and local data showing considerable variability in salinity and higher concentrations prior to significant effects on species. A risk profile is proposed in Figure 4-2.
- Catastrophic drift of macroinvertebrates appears unlikely to be a key issue for continuous treated or untreated associated water discharges.
- The chemistry of associated water is highly spatially variable and there are a number of constituents that are of key importance in understanding environmental risks. Where these constituents are at levels below trigger values, or there is sufficient instream flow to dilute concentrations to below trigger values there would be a low ecological risk associated with discharge. Otherwise there will be a moderate-high ecological risk, especially if the water is untreated.
- Characterisation of associated water from the Fairview and Roma fields suggests that the water from most wells will require treatment for sodium, chloride, boron, and fluoride prior to discharge to surface water.
- In addition, the temperature of discharges will need to be managed to ensure diurnal and seasonal variations are maintained in stream.
- Weed growth is likely to be a minor issue.
- Erosion is unlikely to be a significant issue away from the entry point of discharges. This is the case even if associated water is concentrated from a number of wells across a field.
- Contamination of surficial aquifers is considered a low order risk, but should be investigated further should discharge of untreated associated water be identified as a management option.
- Hydrologic regime changes from associated water discharges are limited to low/zero flow periods. The volumes of associated water are very small compared with channel sizes and flood flows so no discernable changes in flood or high flow frequency are predicted.
- The results of modelling indicates the need to treat associated water due to the ephemeral nature of the streams in the area

Section 12
 Associated Water Discharge Options

Discharge of untreated associated water is not a viable option for the majority of wells that will be developed for the GLNG Project. This is because the water quality is generally insufficient to protect aquatic ecosystems. However, there are some wells where the quality is sufficient to protect all environmental values, particularly if there are options to dilute the discharge with instream flows.

Since many of the streams in the project area are ephemeral, discharge (especially during dry season) may be limited by regulators to areas where the discharge does not significantly alter the instream environment. Reaches of the Dawson River downstream of Dawson's Bend provide this opportunity since flows in this area are maintained by spring flows. Consideration of other areas where springs are known to occur across the

Associated Water Discharge Options

project region

Section 12
 Associated Water Discharge Options

Figure 12-1) indicates that the Upper Hutton Creek (Upper Dawson River catchment), Bungil Creek (Condamine-Balonne catchment) and Carnarvon Creek (Comet-Brown catchment) are the only areas where substantial numbers of springs have been identified. Examination of Bungil Creek and Carnarvon Creek suggests that these streams do not continue to flow during dry season, but can maintain isolated pools possibly supported by groundwater-surface water connections. Access to Hutton Creek in the relevant region is limited. However, investigation of reaches downstream of this area indicates the permanent presence of long shallow pools which may be sustained by seepage flows.

The following sections provide a summary of the options considered viable for associated water discharges (treated or untreated) in the three CSG field catchments. Where streams do not continue to flow during the dry season, consideration is given to minimising the impact of discharges by limiting flows to certain sections/streams or to discharging to areas where water is already ponded artificially or naturally.

No consideration is given in this report to discharging to irrigation dams on farms closer to wells. This might provide a more viable option given pipeline costs.

12.1 Fairview Field

Only limited wells produce associated water that meets trigger levels for the protection of aquatic ecosystems. While this is also true for some parameters in existing streams in the area, the difference between the water quality of current streams and associated water is significant for a range of parameters.

If discharge to grade is contemplated, then treatment will be required. However, the perennial nature of the Dawson River downstream of Dawson's Bend means that there is continuous assimilative capacity. This capacity is sufficient to meet proposed 2008 development levels while still maintaining instream water quality below trigger levels with a high degree of certainty. However, the capacity will be exceeded under full field development. This will require desalination to $340 \mu \mathrm{~S} / \mathrm{cm}$ to ensure the protection of aquatic ecosystems.

Even if treatment is undertaken prior to discharge then it is also considered advisable to provide sufficient ponded storage to ensure that temperatures are suitably reduced to close to ambient to minimise impacts on instream biota.

Full field discharge to the Dawson River will not change the low flow hydrology significantly, nor would it affect flood carrying capacity or frequency in the river.

Discharges to the Dawson River would increase the security of water supply downstream while maintaining all environmental values including stock water supply, protection of aquatic ecosystems, and irrigation.

The identified options for discharge to grade all require treatment. Advantages and disadvantages of each option are provided in Table 12-1.

Figure 12-1 Known Spring Locations - CSG Field Catchments

Section 12

Associated Water Discharge Options

12.2 Roma Field

There is little if any associated water that meets minimum trigger levels for the protection of aquatic ecosystems. While this is also true for some parameters in existing streams in the area, the difference between the water quality of current streams and associated water is significant for a range of parameters.

If discharge to grade is contemplated then treatment will be required to background levels. That is, the permeate would need to have an electrical conductivity in the range $325-340 \mu \mathrm{~S} / \mathrm{cm}$ for this catchment. However, even at this low salinity negotiations would be required between Santos, the Queensland Government and the Commonwealth regarding discharging water, as salt will be added to the Murray Darling Basin. The Basin Salinity Management Strategy (BSMS) may require accounting for this on the Basin salinity register (as a salinity debit).

If treatment is undertaken prior to discharge then it is also advisable to provide sufficient ponded storage to ensure that temperatures are suitably reduced to close to ambient to minimise impacts on instream biota.

Discharge to streams in the Roma area may change the low flow hydrology and seasonality of flows during the dry season, but is unlikely to change any other part of the hydrologic regime. The main issue will be the maintenance of discharge in streams which normally are either totally dry, or maintain ponds in limited locations. Environmentally, this would result in the creation or enhancement of aquatic habitat availability in the dry season and allow for unseasonable persistence of aquatic biota in ephemeral environments. Such changes would be expected to favour the establishment and proliferation of filamentous algae and exotic flora and fauna, such as mosquito fish, and may reduce the diversity of local aquatic communities. It is highly unlikely that the shift in hydrology will affect the trigger signals for fish which migrate upstream. However, maintenance of wetted streamline would certainly impact on any wet/dry triggers for macroinvertebrate lifecycles.

Discharge to streams offers opportunities for social benefit in downstream communities should DNRW create new allocations for the discharged water. Allocation of the discharge may also remove the issue of the basin salinity register.

The identified options for discharge to grade all require treatment. Pros and cons of each option are provided in Table 12-2.

12.3 Arcadia Field

Based upon existing knowledge of the Fairview and Roma fields, there is likely to be little if any associated water that meets the minimum trigger levels for the protection of aquatic ecosystems from this well field. While this is also true for some parameters in existing streams in the area, the difference between the water quality of current streams and associated water is likely to be significant for a range of parameters.

If discharge to grade is contemplated then treatment will be required to background levels. That is, the permeate would need to have an electrical conductivity at least as low as the trigger value for the protection of aquatic ecosystems which is $340 \mu \mathrm{~S} / \mathrm{cm}$ for this catchment.

If treatment is undertaken prior to discharge then it is also advisable to provide sufficient ponded storage to ensure that temperatures are suitably reduced to close to ambient to minimise impacts on instream biota.

Discharge to streams may change the low flow hydrology and seasonality of flows during the dry season, but is unlikely to change any other part of the hydrologic regime. The main issue will be the maintenance of discharge in streams which normally are either totally dry, or maintain ponds in limited locations. Environmentally, this would result in the creation or enhancement of aquatic habitat availability in the dry season and allow for

Associated Water Discharge Options

Section 12

unseasonable persistence of aquatic biota in ephemeral environments. Such changes would be expected to favour the establishment and proliferation of filamentous algae and exotic flora and fauna, such as mosquito fish, and may reduce the diversity of local aquatic communities. It is highly unlikely that the shift in hydrology will affect the trigger signals for fish which migrate upstream. However, maintenance of wetted streamline would certainly impact on any wet/dry triggers for macroinvertebrate lifecycles.

Discharge to streams offers opportunities for social benefit in downstream communities should DNRW create new allocations for the discharged water.

Lake Nuga Nuga is a wetland listed by ANCA (1996) in the Directory of Important Wetlands in Australia. According to ANCA (1996) the lake has a surface area of 2050 ha with a typical depth of $2 m$ (estimated total volume is therefore circa 40,000 ML when full). It had "fallen dry" twice in living memory prior to 1996, and is partially dry at the present time. Land use in the lake bed includes grazing, water extraction, boating, camping and fishing. Examination of Google Earth satellite photos indicates a desiccated and cleared area exists where water once lay. The lake may not have a defined tenure (ANCA, 1996).

With such a large potential storage volume and cleared area, Lake Nuga Nuga could be an important candidate for associated water discharges, though treatment would still be required. Re-establishment of the lake as a tourist area, together with active planting of macrophytes could provide an important bird sanctuary and focal point for the community. However, water balance modelling would be required to assess the potential for the maintenance of the lake water levels through associated water discharges.

Lake Maraboon, near Emerald, also offers a potential on-river discharge site for treated associated water.
Advantages and disadvantages of each discharge option are provided in Table 12-3. It is noted that these are preliminary options only. Other options such as potential discharge to local lakes require further detailed investigation.

Associated Water Discharge Options

Table 12-1 Fairview Well Field Treated Discharge Options - Pros and Cons

Well Field	Discharge Option	Advantage	Disadvantage
Fairview	Discharge to Dawson R	Discharge to perennial river system Increased water supply security downstream	-

Table 12-2 Roma Well Field Treated Discharge Options - Pros and Cons

Well Field	Discharge Option	Pros	Cons
Roma	Distributed Discharge (three creeks)	Minimum discharge to creeks Increased water supply security downstream	Maximum footprint Requires decentralised treatment and ponds BSMS salinity debits may arise (credits may be required to offset)
	Discharge to Bungil Creek	Minimises footprint of discharge to creeks Increased water supply security downstream	Footprint (though limited) Increase level of impact in chosen stream BSMS salinity debits may arise (credits may be required to offset)
	Discharge to Balonne River	No discharge to creeks (Minimum footprint) Discharge to wetted area (Surat weir pond) Increased water supply security downstream	Downstream of Surat BSMS EC debits may be required Significant pipeline required
	Discharge to Dawson River	BSMS EC debits not required. Increased water supply security downstream	Cross-basin transfer of water, disinfection may be required to avoid pest or weed transfer May lead to increased erosion (requires close study)

Table 12-3 Arcadia Well Field Treated Discharge Options - Pros and Cons

Well Field	Discharge Option	Pros	Cons
Arcadia	Distributed Discharge (3 points)	Increased water supply security downstream	Maximum footprint Requires decentralised treatment and ponds
	Discharge to Central Location	Increased water supply security downstream	Footprint (though limited) Increase level of impact in chosen stream Significant pipeline required
	Lake Nuga Nuga	Increased bird habitat and opportunities for tourism Potential for social engagement through development of wetland including community planting and management. Large surface area	May disturb natural water regime, but likely to be minimal footprint Likely that successionally development of the wetland will occur with different species dominating but settling down over time. Significant pipeline required
	Lake Maraboon	Increased water supply Dilution may allow lower level of treatment for salinity?	Almost no footprint likely. Significant pipeline required
	Discharge to Dawson R	Increased water supply security downstream	Cross-catchment transfer of water disinfection may be required to avoid pest or weed transfer Significant pumping costs Very significant pipeline required May lead to increased erosion (requires close study)

Section 13
 References

All Consulting, 2003. Handbook on Coal Bed Methane Produced Water: Management and Beneficial Use Alternatives. Consultancy report prepared for Groundwater Protection Research Foundaton, US Department of Energy, July 2003.

ANCA (1996). Directory of Important Wetlands in Australia, Second Edition. Australian Nature Conservation Agency, Canberra

Anon. 2006, Willow Creek Watershed General Permit for Surface Discharges Related to Coal Bed Methane Production, Wyoming Department of Environmental Quality, Water Quality Division, WYPDES Program, Public Notice Date: February 16, 2006

ANZECC \& ARMCANZ (2000). Australian and New Zealand Guidelines for Fresh and Marine Water Quality, National Water Quality Management Strategy No. 4, Environment Australia.

Bailey PCE, Boon PI, Blinn D \& Williams WD, 2006. Salinity as an ecological perturbation to rivers, streams and wetlands of arid and semi-arid zones. In Ecology of desert rivers, ed. R. Kingsford, pp 280-314. Cambridge: Cambridge University Press.

Benson L and Pearson R, 1987. Drift and upstream movement in Yuccabine Creek, an Australian tropical stream, Hydrobiologia 153:225-239.

Bergquist E, Evangelista P, Stohlgren TJ and Alley N, 2007. Invasive species and coal bed methane development in the Powder River Basin, Wyoming, Environ Monit Assess (2007) 128:381-394

Boelter AM, Lamming FN, Farag AM and Bergman HL, Environmental Effects of Saline Oil-Field Discharges on Surface Waters, Environmental Toxicology and Chemistry, Vol 11, 1992 pp 1187-1195

Boon PI \& Bailey PCE (1998). Implications of nutrient enrichment for management of primary productivity in wetlands. In Wetlands in a dry land: understanding for management, ed. W.D. Williams. Canberra: Environment Australia.

Boulton J and Lake PS, 1992. The ecology of two intermittent streams in Victoria, Australia. III. Temporal changes in faunal composition. Freshwater Biology 27:123-138.

Brittain JE and Eikeland TJ, 1988. Invertebrate Drift - A Review, Hydrobiologia 166:77-93.
Brooker M and Hemsworth R, 1978. The effect of the release of an artificial discharge of water on invertebrate drift in the R. Wye, Wales, Hydrobiologia 59:155-163.

Clinton S, Grimm N and Fisher S, 1996. Response of a hyporheic invertebrate assemblage to drying disturbance in a desert stream, Journal of the North American Benthological Society 15:700-712.

Corrarino C and Brusven M, 1983. The Effects of Reduced Stream Discharge on Insect Drift and Stranding of near Shore Insects, Freshwater Invertebrate Biology. 2:88-98.

Del Rosario R and Resh V, 2000. Invertebrates in intermittent and perennial streams: is the hyporheic zone a refuge from drying? Journal of the North American Benthological Society 19:680-696.

Doeg T and Milledge G, 1991. Effect of experimentally increasing concentrations of suspended sediment on macroinvertebrate drift, Australian Journal of Marine and Freshwater Research 42:519-26.

Duivenvoorden L, 2003. Assessment of Ecological Risk associated with irrigation in the Fitzroy Basin, Phase 2 Analysis and characterisation of risk with emphasis on effects on macroinvertebrates, Central Queensland University report to National Program for Sustainable Irrigation, December 2003

Envirotest Pty Ltd, 2004. Toxicity Assessment of Fairview Field Produced Formation Water, Consultancy report to Santos Pty Ltd, February 2004

Ganjegunte GK, Vance GF and King LA (2005). Soil Chemical Changes Resulting from Irrigation with Water CoProduced with Coalbed Natural Gas, J. Environ. Qual. 34:2217-2227

Ganjegunte GK, King LA and Vance GF (2008). Cumulative Soil Chemistry Changes from Land Application of Saline-Sodic Waters, J. Environ. Qual. 37:S-128-S-138

Hart BT, Bailey P, Edwards R, Hortle K, James K, McMahon A, Meredith C \& Swadling K (1990). Effects of salinity on river, stream and wetland ecosystems in Victoria, Australia. Water Research 24: 1103-1117.

Hart BT, Bailey P, Edwards R, Hortle K, James K, McMahon A, Meredith C \& Swadling K, 1991. A review of the salt sensitivity of the Australian freshwater biota. Hydrobiologia 210: 105-144.

Hayes T and Arthur D, 2004. Overview of Emerging Produced Water Treatment Technologies, $11^{\text {th }}$ Annual International Petroleum Environmental Conference, Albuquerque, October 12-15, 2004

Horrigan N, Choy S, Marshall J and Recknagel F, 2005. Response of stream macroinvertebrates to changes in salinity and the development of a salinity index. Marine and Freshwater Research 56:825-833.

Jackson RE and Reddy KJ, 2007. Geochemistry of Coalbed Natural Gas (CBNG) Produced Water in Powder River Basin, Wyoming: Salinity and Sodicity. Water Air Soil Pollut. (2007) 184, pp 49-61.

Johnson LA, 2007. Longitudinal Changes in Potential Toxicity of Coalbed Natural Gas Produced Water Along Beaver Creek in the Powder River Basin, Thesis presented in completion of a Master of Science Degree University of Wyoming, November 2007, Pages i-165.

King J, 2001. The Dirty Side of Clean Energy: Coalbed Methane Productuion in Wyoming's Powder River Basin, Vermont Journal of Environmental Law 1998-2004.

Kozlowski TT (1997). Responses of woody plants to flooding and salinity. Tree Physiology Monograph 1: 1-29.
Mace JE \& Amrheim C, 2001. Leaching and Reclamation of a Soil Irrigated with Moderate SAR Waters, Soil Science Society of America Journal 65: 199-204

Matthei C, Uehlinger U and Frutiger A, 1997. Response of benthic invertebrates to natural versus experimental disturbance in a Swiss prealpine river. Freshwater Biology 37:61-77.

McBeth IH, Reddy KJ and Skinner QD, 2003. Coalbed Methane Product Water Chemistry in Three Wyoming Watersheds, Journal of the American Water Resources Association, Pages 575-585.

Miller AM and Golladay S, 1996. Effects of spates and drying on macroinvertebrate assemblages of an intermittent and a perennial prairie stream, Journal of the North American Benthological Society 15:670-689.

Mount DR, O'Neil PE and Evans JM, 1993. Discharge of Coalbed Produced Water to Surface Waters Assessing, Predicting, and Preventing Ecological Effects. Quart. Rev, Methane from Coal Seams Technology, December 1993. Vol 11(2):18-25.

Section 13

References

O'Hop J and Wallace JB, 1983. Invertebrate drift, discharge, and sediment relations in a southern Appalachian headwater stream, Hydrobiologia 98:71-84.

Patz MJ, Reddy KJ and Skinner QD, 2004. Chemistry of Coalbed methane discharge water interacting with semi-arid ephemeral stream changes. Journal of the American Water Resources Association, October 2004, pp 1247-1255.

Perry S and Perry W, 1986. Effects of experimental flow regulation on invertebrate drift and stranding in the Flathead and Kootenai Rivers, Montana, USA. Hydrobiologia 134:171-182.

Peterson NM, Peterson EB and Chan Y-H, 2002. Bibliography on Water Handling, Environmental, and LandUse Aspects of Coalbed Methane Development. Prepared by Western Ecological Services Ltd for the British Colombia Ministry of Energy and Mines, February 2002 pp 1-12.

Rice CA, Ellis MS and Bullock JH Jr 2000. Water co-produced with coalbed methane in the Powder River Basin, Wyoming: preliminary compositional data, US Dept Interior, USGS, Open file Report 00-372

Sessoms HN, Bauder JW, Keith K and Pearson KE (2002) Chemical Changes in Coal Bed Methane Product Water Over Time Montana State University Bozeman

Silva E and Davies R, 1999. The effects of simulated irrigation induced changes in salinity on metabolism of lotic biota. Hydrobiologia 416:193-202.

So HB \& Aylmore LAG, 1993. How do Sodic Soils Behave? The Effects of Sodicity on Soil Physical Behaviour. Aust. J. Soil Res. 31:761-77

Stanley E, Buschman D, Boulton A, Grimm N and Fisher S, 1994. Invertebrate Resistance and Resilience to Intermittency in a Desert Stream. American Midland Naturalist 131:288-300.

Stearns M, Tindall JA, Cronin G, Friedel MJ and Bergquist E (2005). Effects of Coal-Bed Methane Discharge Waters on the Vegetation and Soil Ecosystem In Powder River Basin, Wyoming, Water, Air, and Soil Pollution (2005) 168: 33-57

Svendsen CR, Quinn T and Kolbe D, 2004. Review of Macroinvertebrate Drift in Lotic Ecosystems. Final Report, Wildlife Research Program Environmental and Safety Division Seattle City Light, WA, USA

Talkington, C. 2002. An overview of the global market for coalbed methane and coalmine methane. Presented at the SMI Coalmine Methane and Coalbed Methane Conference March, 18-19 2002, London, England. Available: http://www.epa.gov/coalbed/international.html

URS, 2006. Aquatic Communities of Ephemeral Stream Ecosystems. Arid West Water Quality Research Project: Executive Summary. Prepared by URS Corporation, Albuquerque, New Mexico and GEI Consultants, Inc./Chadwick Ecological Division, Littleton, Colorado.

URS 2008(draft). Quantitative Streamline Assessment - Fairview Field, Consultants report to Santos Ltd, September 2008

Wang X and Yang W, 2007. Modelling potential impacts of coalbed methane development on stream water quality in an American watershed. Hydrological Processes, vol 22-1, 2008, pp. 87-103.

Webb JA and Hart BT, 2004. Environmental Risks from Salinity Increases in the Goulburn-Broken Catchment, Water Studies Centre, Monash University, Melbourne, August 2004

60

Wood P and Dykes A, 2002. The use of salt dilution gauging techniques: ecological considerations and insights. Water Research 36:3054-3062.

	GLNG GAS FIELD DEVELOPMENT - ASSOCIATED WATER DISCHARGE STUDY
Section 14	Limitations

URS Australia Pty Ltd (URS) has prepared this report in accordance with the usual care and thoroughness of the consulting profession for the use of Santos Ltd and only those third parties who have been authorised in writing by URS to rely on the report. It is based on generally accepted practices and standards at the time it was prepared. No other warranty, expressed or implied, is made as to the professional advice included in this report. It is prepared in accordance with the scope of work and for the purpose outlined in the Proposal dated 12 October 2007.

The methodology adopted and sources of information used by URS are outlined in this report. URS has made no independent verification of this information beyond the agreed scope of works and URS assumes no responsibility for any inaccuracies or omissions. No indications were found during our investigations that information contained in this report as provided to URS was false.

This report was prepared between October 2007 and November 2008 and is based on the conditions encountered and information reviewed at the time of preparation. URS disclaims responsibility for any changes that may have occurred after this time.

This report should be read in full. No responsibility is accepted for use of any part of this report in any other context or for any other purpose or by third parties. This report does not purport to give legal advice. Legal advice can only be given by qualified legal practitioners.

REPORT

Summary Report - Ecological Risk Assessment Workshop

Table of Contents

1 Introduction 1
1.1 Introduction 1
1.1.1 Aims and objectives 1
2 Background 2
2.1 Background 2
2.1.1 Study area/values 2
2.1.2 Operations 2
2.1.3 Key issues 3
2.1.4 Overview of potential analytical approaches 3
3 Conceptual Modelling 5
3.1 Conceptual modelling 5
3.1.1 Assessment end points 5
3.1.2 Characterising likelihoods 5
3.1.3 Characterising effects 6
4 Way Forward 9
5 Limitations 11
6 References 12

Tables, Figures, Appendices

Tables

Table 2-1 Issues to be considered during the ERA process 3
Table 3-1 Attributes to be sampled as part of the ERA process 7
Table 4-1 Knowledge gaps and activities to address gaps. 9
Figures
Figure 2-3 The Risk Management cycle. Reproduced from Webb and Hart (2004) 4
Figure 3-1 Conceptual model 6

Appendices

A	Peter Cottingham
B	David Fuller
C	Angus Webb

1.1 Introduction

1.1.1 Aims and objectives

Santos is considering a range of options for the management of 'associated water', a by-product of coal seam gas production from the Santos Gladstone Liquid Natural Gas Project (GLNG) project. Options include the use of evaporation ponds, water treatment facilities, re-injection and discharges to grade. Santos has engaged URS Pty Ltd to assess the potential risks posed to environmental, social and economic values across the study area.

An Ecological Risk Assessment (ERA) workshop was held to agree on the key features of a framework to assess the likely adverse effects on aquatic assets of the potential discharge of associated water to grade. Risk was defined as:

The product of the probability or likelihood of a hazard occurring and the ecological consequences if that hazard occurs. Risk assessment involves combing information on the probability or likelihood of some hazardous event occurring, the consequence or severity of that event if it occurs, and the sensitivity of the risk to management interventions.

Objectives of the day were to:

- Describe the current understanding of major ecosystem values and current stream conditions, and current investigations;
- Confirm the key issues and risks associated with the management of associated water;
- Agree on the characteristics of conceptual models of disturbance-response relationships;
- Confirm the spatial and temporal scales of disturbance and ecosystem response to be considered during the project;
- Agree on the ERA approach best suited to the each of the key issues/risks; and
- If possible, identify trigger values, thresholds or metrics that will be important for measuring end points.

The Ecological Risk Assessment Workshop was held on Friday $15^{\text {th }}$ February 2008 at the Indooroopilly Sciences Centre, Indooroopilly, Queensland. The workshop brought together a small and focussed group of experts, URS scientists representing Santos, Santos, DNRW and Queensland EPA. Attendees to the workshop included:

- Dr Angus Webb (Melbourne University),
- Dr Neil Tripodi (Queensland EPA),
- Renee Muller (DNRW),
- Emma Hicks (Santos),
- Dr Belinda Lovell (URS),
- David Fuller (URS).

The workshop was facilitated by Peter Cottingham of Peter Cottingham \& Associates. An overview of the workshop is presented in Appendix A.

2.1 Background

2.1.1 Study area/values

An overview of the study area and some of its associated values is presented in Appendix B The study area is approximately 300 km by 150 km, and includes tributaries of the Culgoa and Balonne (Murray Darling Basin) and Dawson (Fitzroy Basin) rivers. Seasonal rainfall and runoff patterns mean that many of the streams in the study area are ephemeral.

While URS has put a considerable amount of effort into the review of available information, it recognises that there remains data and information that it has yet to access. For example, there is a Ramsar wetland in the Comet catchment, but it was uncertain whether this would be impacted by the development. The presence of any threatened species or communities across the study area also needs to be confirmed.

Knowledge gaps:

Extent of information on aquatic systems for the study area held by DNRW.

Actions:

DNRW (Renee Muller) to advise on data and information held for the study area.
URS to identify any threatened species or communities that could be impacted by the development.

2.1.2 Operations

An overview of operations was provided and discussed. While Santos is considering a range of management options, the focus of the workshop was to examine discharge to grade (with and without prior treatment). Although discharge to grade is considered by the EPA to be the last choice as a management option, it was agreed that the risks associated with such an option need to be considered.

Outcome of discussion:

The risk assessment needs to consider potential impacts of the associated water being discharged to grade over the 20 year time-frame of operations, amongst other management options.

Risk assessment needs to allow for variability in quantity and quality of associated water produced by each well or group of wells.

2.1.3 Key issues

Some of the key issues associated with discharge to grade are presented in Appendix B Priority issues to be considered during the ERA process, along with other potential issues to be evaluated, are listed in (Table 2-1)

Table 2-1 Issues to be considered during the ERA process

Priority issues	Other potential issues
Increased salinity	Total suspended solids (because of management of discharge sites)
Changes in hydrology (flow) during the dry season/low flows	pH (if beyond 6.8 to 8.5)
Increased temperature	Boron concentration (note Boron can be toxic to citrus)
	Fluoride concentration
	Total Organic Carbon, Biological Oxygen Demand and Chemical Oxygen Demand
	Dissolved Oxygen
	Weeds spread and growth due to additional water

It was noted that there were challenges associated with identifying key issues using pre-defined water quality objectives because they are static, and not well suited to ephemeral systems. An adaptive management/risk based approach was seen as a more useful, as it allows for the protection of economic, social and environmental values.

The hydrological and water quality modelling package E2 (developed by the eWater CRC) was considered useful for determining the likelihood of the key issues (i.e. those related to altered stream salinity, hydrology and temperature). E2 can be used to model salinity, flow and potentially temperature, with results able to be used to help answer questions such as "Over what length of stream will temperature be raised by $>2^{\circ} \mathrm{C}$ as a result of associated water discharge?"

Outcome of discussion:

It was agreed that salinity, hydrology and temperature were key issues with respect to discharge of associated water to grade. Other potential issues identified will be further examined to (a) decide whether they should be included in the ERA process and (b) if so, what method is appropriate for their assessment.

2.1.4 Overview of potential analytical approaches

An overview of the ERA process is provided in Appendix C. The risk management cycle involves a repeating sequence of:

- Problem formulation,
- Characterising effects,
- Characterising likelihoods,
- Risk characterisation and associated uncertainties,
- Decision making process,
- Monitoring and evaluation?

These steps are presented diagrammatically below

Figure 2-1 The Risk Management cycle. Reproduced from Webb and Hart (2004)
While gaining prominence in Australia in recent years, most ERA projects to date have only addressed the first few steps in the process. The long-term nature of the GNLG project provides a rare opportunity to complete the risk management cycle.

It was recognised that the nature of Santos's operations meant that there was a need to consider local and regional effects. In particular, stakeholders with similar activities ${ }^{1}$ in the catchment need to be considered collectively.

The EPA typically adopt a 'conservation/hazard approach' to similar projects whereby a hierarchy is followed to (1) eliminate the hazard, (2) discharge only during wet-season flows, (3) treat associated water so that salinity is not a hazard. However, it was noted that such an approach does not consider the consequences to ecosystems (only the hazard). Additionally, the EPA typically refers to ANZECC/ARMCANZ guidelines as default or develop local water quality objectives as the basis for assessing the effectiveness of mitigation efforts.
${ }^{1}$ It was noted that Origin Energy had conducted an investigation that highlighted the need to discharge production water to a nearby creek only during high flows. An evaporation pond was built to increase storage capacity and avoid discharge to the stream during low flow periods.

3.1 Conceptual modelling

A broad conceptual model was developed at the workshop to provide a shared understanding of the interaction of the key issues (stressors) with ecosystem attributes, as well as to help identify knowledge gaps (see section 3.3). The conceptual model was also used to consider end points for monitoring and assessment of risk. It is also a tool that will be useful for communicating with stakeholders during the ERA process.

3.1.1 Assessment end points

A number of potential assessment endpoints were identified and discussed including:

- Macro-invertebrates (species richness, Signal, observed/expected, EPT) - affected by electrical conductivity.
- Fish (present/absence) - affected by electrical conductivity.
- Diatom assemblages - are affected by flow, temperature and electrical conductivity.
- Rates of production or respiration - affected by temperature.
- Riparian vegetation - affected by flow.

The first three of the endpoints listed above represent major taxonomic groupings. Macroinvertebrates are generally better as assessment endpoints because data are more readily available, previous examples of ERA are available to draw upon and there is a better understanding of likely consequences.

Socio-economic values were also recognised as important considerations for the ERA process. A stakeholder consultation process is to be initiated to complement the assessment of ecosystem risks as an input to the project.

Outcome of discussion:

Examination of assessment end-points was undertaken in the workshop whilst developing the conceptual model. Macroinvertebrate biodiversity was recommended as the major assessment endpoint for the risk assessment.

3.1.2 Characterising likelihoods

The following likelihood data requirements were identified:

- Daily flow,
- Daily electrical conductivity (i.e. robust estimates under different discharge scenarios),
- Daily temperature,
- Habitat area versus discharge relationships (i.e. via stage height).

It was agreed by the group that electrical conductivity and temperature data would be modeled and treated separately for characterising likelihoods, whilst bearing in mind that there may be synergies between the two. In addition, the following potential issues are to be evaluated and included in the ERA process if warranted:

- Depth/EC profiles in pools (i.e. stratification in pools);
- Boron, fluoride;
- pH ;

Conceptual Modelling

Section 3

- Dissolved oxygen;
- Weeds.

3.1.3 Characterising effects

Figure 3-1 provides a conceptual model characterising links between sources of stress (associated water), stressors (EC, Temperature, Flow), and endpoints (e.g. macroinvertebrates) during dry/almost dry conditions. This is when the discharge of associated water is likely to have the greatest influence on the receiving streams; it was agreed that the discharge of associated water would have little influence on water quality during high-flow conditions. The model considers the possibility of discharge of associated water both directly to streams, and to grade. For water discharged to grade, various processes affect the level of nutrients and solids in that water prior to it entering the stream. Both sources of water collectively affect flow, EC and temperature. The major flow effect is that of the associated water making ephemeral streams more perennial. This may lead to potential effects on hydraulic habitat, behavioral responses of biota, the spread of weeds and effects on riparian vegetation. The major single effect of salinity is seen as a direct toxic effect on macroinvertebrates that may lead to permanent changes in the assemblage. Moreover, salinity pulses may induce macroinvertebrates to drift as an escape response. The combination of flow and salinity may affect what were previously refugia in ephemeral streams. These pools may no longer act as refugia during low flow periods due to increased salinity and connectivity. Temperature is seen mainly as an accelerator of ecosystem processes such as primary production and respiration. Lastly, the diatom assemblage is expected to be affected by the combination of stressors. It is unknown whether the resultant change in assemblage's species composition has any ecological implications for the streams. The conceptual model will be refined and reviewed (using expert external reviewers) as the project unfolds.

Figure 3-1 Conceptual model
*1 Streams change from ephemeral to perennial.
*2 Electrical conductivity could become progressively worse downstream if there are no inflows from other areas. Press and pulse response to salinity may lead to a permanent shift in macroinvertebrate assemblages. *3 May not see serious effects on fish communities because of boom and bust cycles of eggs. Fish are opportunistic in these kinds of environments.
*4 If refugia are subjected to increases in salinity over time this may result in a toxic effect, reducing the effectiveness of the refugia.
*5 The main concern are pulse changes leading to thermal shock. Temperature may also have a homogenizing effect. Work has shown that less variable temperature regimes with the same overall mean temperature lead to slowed growth. Diurnal variation is a requirement.

A dry-season sampling strategy including recommended assessment endpoints was proposed (Table 1-2) to provide additional data and information to support the ERA process.

Table 3-1 Attributes to be sampled as part of the ERA process

Issues	Pulse Increase		Incremental Increase	
EC and Temp	Drift Macroinvertebrates	Toxic effect Macroinvertebrates Fish Diatoms	Drift Primary production Algae Diatoms	Toxic effect Macroinvertebrates Vegetation (riparian)
Hydraulic habitat	Macroinvertebrates	Algae Diatoms Vegetation (riparian)		

Other points considered relevant to risk characterisation included:

- A probabilistic approach is recommended for assessing potential effect of salinity on macroinvertebrate species assemblages. Such an approach has been previously utilized for assessing the risks of salinity to macroinvertebrates (Webb \& Hart 2004), and has a long history of use in Ecological Risk Assessment projects generally.
- ANZECC guidelines recommend that species sensitivity distributions for probabilistic risk analysis include at least 24 species in order to have confidence in the cumulative distribution.
- Utilizing salinity data where the highest salinity at which a species is observed is a conservative approach to characterizing risk as these salinities are almost certainly not the highest level that the species can tolerate (i.e. not all populations have been sampled, there are likely be populations living in higher salinity waters, and it is unlikely that the population was sampled when salinity for that particular water body was at its highest). This assumption can be checked by considering salinity tolerances from laboratory data.
- Confidence intervals are to be included with salinity distributions (not just a threshold value). This is a more robust method, especially with regards to determining where risks differ enough between sites to treat them differently.
- An alternative to using SIGNAL scores for the risk assessment of flow would be assessing effects on species counts. If this option is chosen, a Poisson model of species count, rather than a normal distribution, may be more representative of the data expected when considering the effects of changes to the flow regime.

Conceptual Modelling

Section 3

- A threshold approach was recommended for assessing potential effects of flow. This was based on the fact that we have a poor understanding as to how changes to flow of the type described here may impact biota. Thus, we would attempt to identify a threshold in change to flow that might engender such a change, rather than consider the probability of change continuously. This is due to a lack of detailed understanding of this particular stressor-response relationship.
- Estimating uncertainty in the effects of flow could be done by putting confidence intervals around SIGNAL grade scores for macroinvertebrate assemblages. Research by EPA Victoria has established the approximate uncertainty of individual SIGNAL scores, allowing confidence intervals to be placed upon individual samples. An example of this has been the treatment of EPA Victoria data in order to specify prior uncertainties on SIGNAL scores for a Bayesian modeling study (data custodian Leon Metzeling).
- Frequency of temperature jumps could be determined via a box model instead of E2. ANZECC guidelines could be used as a standard for consequence data. A modified point-wise comparison could be made, whereby the frequency with which temperature exceeds the ANZECC guideline could be used as the measure of risk at that node within the model.

The information from this workshop has been used to scope a range of investigations that will further inform the risk assessment process. The following table provides a summary of the knowledge gaps identified during the workshop process and the activities being undertaken to address these gaps.

Table 4-1 Knowledge gaps and activities to address gaps

K nowledge gap	Activities to address gap
Understanding previous work done, and the impact of increases in salinity, turbidity, temperature and flow on drift of macroinvertebrate species	Review of macroinvertebrate drift due to salinity, temperature, turbidity and flow (i.e. low flows versus moderate flows). The focus of the review, where possible, should be key triggers for drift and catastrophic drift in ephemeral streams during non event times (i.e. dry season/as streams dry). Local information is important because many organisms are expected to be adapted to an ephemeral environment. It is when there are large divergences from normal conditions that there is concern.
	Analysis of existing river health monitoring data to identify if there are different macroinvertebrate species found at different sites and whether this is related to salinity, temperature, turbidity, flow or other environmental gradients.
	Review of salinity impacts on stream biota with a particular focus on ephemeral/arid streams and the ranges of salinity that can cause impacts on diatoms, fish, macroinvertebrates, algae, riparian vegetation and algae.
Likelihood data	Build a process model of EC (E2 model) particularly focussed on the dry season to determine whether EC is likely to exceed tolerances. This model will also inform flow inputs to stream. A separate model will be developed for temperature.
Consequence data	Review of available databases including AUSRIVAS (DNRW data) and Bailey and Boon's salinity sensitivity database, as well as any literature that will aid the construction of macroinvertebrate species sensitivity distributions. In particular, identify: - The highest tolerance levels of salinity (and if there are any particularly sensitive species) for species found in the GLNG area - The maximum and minimum temperature tolerance levels for species found in the GLNG area (and if there are any particularly sensitive species) - Macroinvertebrate species likely to be present in ephemeral streams and non ephemeral streams (and if there are any particularly sensitive species). Tolerance levels will be based on field records rather than laboratory data. In addition, if sufficient information cannot be found for species found the GLNG area, the search might have to use a generic species list for western Queensland.
Other potential issues	Examine water quality results against defined (ANZECC) trigger values to identify any potential issues. If considered an issue, define appropriate method for its assessment. Need to check if there are any threatened species or communities that could be impacted by the development. Need to determine what river health monitoring, AUSRIVAS model

| SUMMARY REPORT - ECOLOGICAL RISK ASSESSMENT |
| ---: | ---: |
| WORKSHOP |\quad| Way Forward |
| ---: |

Know ledge gap	Activities to address gap
	development and investigations have and haven't been done by DNRW.
Impacts of water on the spread and abundance of noxious weeds and erosion	Examine work being undertaken for Fairview.
Changes in diatom assemblages	Review whether changes in diatom assemblages matter to the fish as a food supply.
Monitoring	Macroinvertebrate sampling using AUSRIVAS needs to occur 4 to 8 weeks after flooding for ephemeral streams. This is important because if macroinvertebrates haven't recruited following the flow pulse, a false negative result may be obtained. Perennial streams will always have macroinvertebrates present. Undertake testing of salinity profiles in pools (e.g. in the Dawson River)
Ecosystem health monitoring plan	Review annual reports for ecosystem health monitoring.

URS Australia Pty Ltd (URS) has prepared this report in accordance with the usual care and thoroughness of the consulting profession for the use of Santos Ltd and only those third parties who have been authorised in writing by URS to rely on the report. It is based on generally accepted practices and standards at the time it was prepared. No other warranty, expressed or implied, is made as to the professional advice included in this report. It is prepared in accordance with the scope of work and for the purpose outlined in the Proposal dated 10 July 2007.

The methodology adopted and sources of information used by URS are outlined in this report. URS has made no independent verification of this information beyond the agreed scope of works and URS assumes no responsibility for any inaccuracies or omissions. No indications were found during our investigations that information contained in this report as provided to URS was false.

This report was prepared between February 2008 and January 2009 and is based on the information reviewed at the time of preparation. URS disclaims responsibility for any changes that may have occurred after this time.

This report should be read in full. No responsibility is accepted for use of any part of this report in any other context or for any other purpose or by third parties. This report does not purport to give legal advice. Legal advice can only be given by qualified legal practitioners.

Webb, J.A. \& Hart, B.T. (2004) Environmental Risks from Salinity Increases in the Goulburn-Broken Catchment. Water Studies Centre, Monash University, Melbourne

Salinity - decision process

- Probably too early in the process to deal with in great detail here. May have bearing on future approaches such as multi-criteria analysis, scenario testing, formulation of risk management plans and communication plans.
- Adapted from Hart et al. (2005):
- What assets are most at risk?
- What hazards most threaten the assets and what actions can be taken to protect assets?
- Are actions acceptable to stakeholders?
- What actions are the most cost-effective?
- Also, what monitoring and assessment may be required?

URS

\qquad URS

- Water and gas production

Overview

- The project
- EIS context
- Risk based approach
- Focus of today

David Fuller
Project Leader

Background to Ecological Risk Assessment Workshop

UBS

Coal Seam Gas (CSG)

- Current energy market promotes CSG development
- Multiple players in Central Western Queensland
- Santos' Gladstone Liquid Natural Gas (GLNG) Project
- 300km N/S and 150 - 200 km E/W

Santos

URS

\qquad

UiS

\qquad
Associated Water

- Analyses suggest relatively consistent quality from each well.
- Significant gradients between wells e.g. salinity
- Key constituents pH, T, EC, sometimes F, B
- Trace hydrocarbons in odd samples.
- Large volumes of water but small in context of rivers?

UiS

Basic Principles

- Appraisal wells to prove gas resource.
- Water often but not always associated with gas.
- Generally more water pumped early, less later and vice versa for gas
- Separation via condensation
- Gas to pipeline, water to where?
- Appropriate water management is critical to achieve project delivery.

EIS Context

- A wide range of water management options are being considered.

URS

Focus of this study = discharge

- Untreated or treated
- Timing
- Uncertainties of discharge amounts and qualities
- Mainly, but not always, ephemeral streams.
- WQ objectives aim to protect environmental values, but static compared with highly dynamic systems
- Adaptive water management approach that protects ecological, social and environmental values?

URS

Ecological Risks

- Adaptive water management plans need to consider ecological risk.
- Hydrological and WQ models will be built to generate predicted WQ and flow changes generate pred
- Ecological models needed to define potential hazards (Consequence)
- Need to combine these models to interpret changes in quantity and quality in terms of risk.
- Pathway to investigate alternative management options.

Discussions may also inform data collection needs.

URS

My focus for today

I would like to see:
. Quantitative ecological risk models (remove individual bias, repeatable, consistent)

- Recognition that some hazards might be treated differently from others.
- Today push as far as possible to get ecological response models
- After today work up and seek comment

Angus Webb

Risk = Likelihood x Consequence

- LIKELIHOOD - The probability that an (undesirable) event will occur within the ecosystem being examined
- e.g. Probability of median salinity reaching 3000 for a certain stretch of the Comet River over the next 30 years
- CONSEQUENCES - The consequences if the event occurs
- e.g. loss of 50% of invertebrate species from the river due to the effects of the rise in salinity

Broad-Scale Conceptual Model

- A picture of the system
- Shows spatial relationships
- Helps to identify issues within the catchment
- Issues must be converted to assessment endpoints

Issue-Specific Conceptual Model

- A map of our understanding (or lack thereof) of how stressors combine to cause the ecological effect
- Helps to identify knowledge gaps in the system (identify research priorities)
- Helps with communication within and outside the ERA project team

Ecological Models

for Risk Assessment

- A model is an abstraction of reality
- "All models are wrong, but some are useful" (George Box)
- We create a model of the system / issue that we are assessing
- we can then look at the stressors (either singly or in combination) that may lead to an ecological consequence

Model Choice is Dictated by
 System Understanding and Data

- If we understand a process well, it can be represented as an equation
- We may note a correlation, but have no knowledge of why it exists
- We may have a belief about a relationship between a stressor and endpoint, but have few data to back this up
- We may have insufficient knowledge to employ a quantitative description

Process-based Model:

BGA in Bourke Weir

Each arrow in the conceptual model represents one or more equations

- Monitoring data from the red-bound boxes feeds into the model to create a virtual BGA population
Relationships and coefficient values taken from the literature or from site specific research

Statistical Model:

Native Fish in Goulburn-Broken

- The relationships are formed from data, and also from expert opinion
- Expert opinion is often all that we have to go on
- Bayesian Network software allows rapid assessment of probabilities under different scenarios

Point-Wise Data Comparison Risk Quotients

- Quick to compute, can provide relative comparisons
among a large number of sites / scenarios rapidly
- Don't utilise all the data available.
- No estimate of uncertainty

$$
\text { Risk }=\frac{\text { Median EC }}{\text { Threshold }}
$$

Risk Management:
 Putting ERA to use

- ERA can be used to support management decisions
- Natural resource managers must make decisions under uncertainty. They seek to balance possibility of making TWO kinds of mistakes:

> 1. False alarm - declaring an impact when there is none
> 2. False security - declaring a project is safe when it leads to unacceptable impact

- The ERA will sometimes be wrong
- If the process is done properly we can learn from our mistakes to do a better job in the future

Comparison of data distributions PRA

- Distributions of salinity Distributions of salinity sites (left)
- Distributions of salinity tolerances can be created from databases (right)
- Examine degree of overlap to determine risk to the assessment endpoint (species richness) etal. (2003) A J. Bot. 51: 689.702

REPORT

Fairview Field - Case Study of Associated Water Discharges

Project Manager:

Project Director:

Full

David Fuller
Senior Principal

Date:	21 January 2009
Reference:	Fairview Field - Case Study of Associated Water Status:
	Discharges
FINAL	

Table of Contents

ES Executive Summary 1
1 Introduction and Catchment Context 1
1.1 Introduction 1
1.2 Catchment Context 2
2 Environmental Values 3
3 Water Quality Guidelines and Objectives 5
3.1 Water Quality Guidelines 5
3.1.1 Water Quality Trigger Values Based on Guidelines 5
3.1.2 Minimum Trigger Values Based on Local Data 6
3.2 Application of Water Quality Guidelines 9
4 Existing Environment - Flow Regimes 10
4.1 Upper Dawson River and Tributaries 10
4.2 Dawson River Spring Flows 13
5 Existing Environment - Water Quality 17
5.1 Overview of General Water Quality 17
5.1.1 Waters upstream of associated water discharges 17
5.2 Longitudinal Changes in Dawson River Water Quality 18
5.3 Water Quality circa the Dawson River Springs 22
5.4 Existing impacts on water quality from discharge to grade 24
5.4.1 Minor Streamlines 25
5.4.2 Baffle Creek 25
5.4.3 Hutton Creek 26
5.4.4 Dawson River at Utopia 28
5.4.5 Continuous Salinity Data 28
5.4.6 Continuous Water Temperature Data 30
5.4.7 Continuous Water Quality Data at Fairview. 31
5.4.8 Water Quality Profiles 34
6 Existing Environment - River Health 39
6.1 River Health of Major Streams 39
6.2 River Health of Minor Streamlines Receiving Discharge 41
6.3 River Health of Other Minor Streamlines 42
FAIRVIEW FIELD - CASE STUDY OF ASSOCIATED WATERDISCHARGES
Table of Contents
7 Planned Permeate Discharges 2008/2009 45
7.1 Pony Hills Water Treatment Plant 45
7.1.1 Hutton Tributary 45
7.1.2 Permeate Discharge 45
7.1.3 Potential Impacts on Typical flows 47
7.1.4 Potential Impacts on Channel Erosion 49
7.1.5 Potential Impacts on Downstream Flooding 49
7.1.6 Potential Salinity Impacts from Permeate Discharge 49
7.1.7 Potential Impacts from Permeate Discharge on Salt Loads 51
7.1.8 Other Potential Water Quality Impacts 52
7.1.9 Potential River Health Impacts from Permeate Discharge 54
7.2 Central Desalination Plant 55
8 Limitations 56
9 References 57

Tables, Figures and Appendices

Tables

Table 2-1 Environmental Values for Major Streams - Upper Dawson River 4
Table 3-1 Spot water quality sampling sites with significant data 6
Table 3-2 Relevant MTV for major streams in the Upper Dawson River catchment 7
Table 4-1 Low flow gauging and water quality Upper Dawson River, October 2007 13
Table 5-1 Longitudinal water quality in the Dawson River 20
Table 5-2 Differences in median water quality along the Dawson River. 21
Table 5-3 Dawson River water quality circa spring flows 23
Table 5-4 Differences in median water quality Dawson Bend and Yebna Crossing 24
Table 5-5 Comparison of upstream and downstream water quality Baffle Creek 26
Table 5-6 Comparison of upstream and downstream water quality Hutton Creek 27
Table 5-7 Significant differences in median water quality - Dawson R at Utopia 28
Table 5-8 Data Logger Site Locations 32
Table 6-1 AusRivas river health bands 40
Table 6-2 AusRivas model bands for spring and autumn samples Sep 03-Apr 07 40
Table 6-3 Significant O/E Ratio Shifts Between Sites 41
Table 7-1 Predicted permeate discharge quality PHWTP 46
Table 7-2 Predicted permeate quality versus existing stream water quality 53

Figures

Figure 1-1 Upper Dawson River Catchment 1
Figure 4-1 DNRW Data Collection in the Upper Dawson Catchment 10
Figure 4-2 Observed Average Monthly flows in Upper Dawson Catchment 11
Figure 4-3 Duration Curves for Recorded Flows Upper Dawson River Catchment 12
Figure 4-4 Dawson River springs area, flows and salinities, October 2007 13
Figure 4-5 Springs in the vicinity of Dawson Bend and Hutton Creek 14
Figure 4-6 Dawson River spring locations 16
Figure 5-1 Distribution of Hourly Electrical Conductivity, Dawson R at Utopia 29
Figure 5-2 EC Time Series Record Dawson River at Utopia Downs, 2003-2007 29
Figure 5-3 Dawson River at Utopia Downs EC and Flow Relationships 30
Figure 5-4 Water Temperature and Flow at Dawson River at Utopia Downs 31
Figure 5-5 Water Temperature and Flow at Dawson River at Utopia Downs 32

Appendices

A Water Quality Data Tables

Executive Summary

The Fairview Field provides a unique opportunity to investigate the impacts of discharge of untreated associated water that has occurred since at least 1993. The field is part of the larger Gladstone Liquid Natural Gas (GLNG) development but any surface water impacts are effectively isolated from other well fields by surface catchment boundaries. The Fairview Field (Petroleum Leases 90, 91, 92, 99, 100 and 232) lies entirely within the Upper Dawson River catchment.

The document is effectively an update of an earlier piece of work submitted to the Queensland EPA as an attachment in support of the Fairview Environmental Management Plan (Santos \& URS, 2008).

Key additions are:

- A report on spring flows in and around Dawsons Bend which are believed to maintain flow in the river downstream of this point;
- The capture, interpretation and reporting of continuous water quality information;
- Updates to spot water quality data; and
- The investigation of stratification in pools.
- The report identified the environmental values for all the major streams in the vicinity of the Fairview Field (Dawson River, Hutton Creek and Baffle Creek) as:
- Protection of slightly to moderately disturbed aquatic ecosystems.
- Primary Industries: irrigation, water for farm use, stock watering, and human consumption of wild or stocked fish or crustaceans.
- Recreation \& aesthetics: primary recreation with direct contact, and visual appreciation with no contact.
- Industrial uses.

Based on the protection of these values and taking into account local water quality records, a set of minimum guideline trigger levels are recommended in Section 3.

In Section 4, the existing flowing water environment is described in detail. Hutton Creek is largely ephemeral compared with the Dawson River which is found to be a permanently flowing stream maintained by spring flows in the vicinity of Dawsons Bend.

Water quality data is examined in Section 5 to understand the impacts of current associated water discharges to small intermittent streamlines on Baffle Creek, Hutton Creek and Dawson River. Significant differences in salinity concentrations were found between Dawson River waters upstream of associated discharge and downstream of the Hutton Creek outflow. By Yebna Crossing however, dilution is sufficient under existing associated water discharges to reduce salinity to background levels.

Sites receiving associated water discharge on Hutton Creek, Baffle Creek and the Dawson River generally exhibit similar characteristics, with the exception of increased concentrations of one or more of fluoride, sodium, boron, EC and occasional pH.

The river health of major streams is examined in Section 6 and it is concluded that there is some evidence that Hutton Creek at FV66 and Baffle Creek fauna may be affected by associated water discharges. The changes

	FAIRVIEW FIELD - CASE STU DISCHARGES
	Executive Summary

are subtle and are not reflected in AusRivas bands. In general, the data set is minimal and differences may simply arise from sampling variability.

In Section 7, consideration is given to the environmental impacts of permeate discharge from the planned Pony Hills Water Treatment Plant (PHWTP) and the possible Central Treatment Plant (CTP). It is concluded that permeate release from PHWTP should be no higher than $500 \mu \mathrm{~S} / \mathrm{cm}$ in order to maintain the salinity at Utopia below Central Queensland Guideline value of $340 \mu \mathrm{~S} / \mathrm{cm}$. Moderate improvements in water quality in Hutton Creek are expected from the permeate discharge and little loss of habitat is likely to occur due to increased flows.

For the CTP, the increased volume of permeate means that releases should be no greater than the guideline value if Utopia salinity is to be maintained at this level. Additional investigations are required to understand the environmental impact of releases from this plant.

1.1 Introduction

The Fairview Project Area lies within the Upper Dawson River catchment that extends upstream and westwards from Taroom encompassing the townships of Injune and Wandoan (Figure 1-1). The catchment contains extensive but largely ephemeral or intermittent stream networks. Major streams in the area are the Dawson River, Hutton Creek, Baffle Creek, Juandah Creek, Eurombah Creek, Commissioner Creek and Broken Creek.

Coal Seam Gas (CSG) production at Fairview has occurred since at least 1993 initially under the control of the Tri-Star Petroleum Company (1993 - 2002), then Tipperary Oil and Gas (Australia) Pty Ltd. (TOGA, 2002 2005). In September (June) 2005 TOGA was purchased by Santos Ltd.

Associated water discharge to grade has occurred throughout this period into small, often intermittent, streamlines or gullies that, in turn, discharge to Baffle Creek, the Dawson River or Hutton Creek. Santos captures associated water with salinity greater than $3,500 \mu \mathrm{~S} / \mathrm{cm}$ for plant works or for injection into the basement Timbury Hills Formation.

Figure 1-1 Upper Dawson River Catchment

Section 1

Introduction and Catchment Context

1.2 Catchment Context

Since the initial settlement of Taroom circa 1850, the primary land use in the Dawson River catchment has traditionally been sheep and cattle grazing. This remains the predominant land use in the Upper Dawson River circa the Fairview and Springwater homesteads.

Downstream of Hutton Creek, grazing, forestry and cropping are widespread. A number of water storages and weirs are located on the Dawson River from Taroom downstream and are used for irrigation and recreational purposes supporting regional industry and urban communities.

The State of River report (Telfer, 1995) provides indicators of the physical condition of the Dawson River and its tributaries upstream of Utopia Downs station. In general the condition of land immediately adjacent to the State of River study reaches (i.e. the reach environs index) is rated very good for the Upper Dawson River, moderate for the Hutton Creek, poor for Christmas Creek, and good for Baffle Creek. Only 9\% of land was considered in poor condition.

Bed and bar stability has been rated as moderate to very stable along 90% of the catchment stream lengths. However, evidence of both aggradation and erosion is widespread. Large-scale land clearing of native vegetation across the catchment has resulted in land degradation with evidence of sheet, rill and gully erosion on over 80% of the cultivated areas of the catchment (Telfer, 1995).

Although stream bank stabilities in the upper Dawson River catchment area stream banks were ranked as moderate to very stable across approximately 95% of the stream lengths, widespread streambed erosion is common. This has been largely attributed to overgrazing of the streambed and banks, and runoff from cattle pads leading to watercourse or adjacent to streams causing bank scouring (Simmons and Bristow, 2007). Much of the soil displaced as a result of the widespread erosion of cultivated and grazed areas has been deposited in tributaries and alluvial plains in the downstream area.

Riparian vegetation along Dawson River at Yebna crossing has been rated exceptionally high. Baffle Creek and Hutton Creek also have areas of dense riparian vegetation in inaccessible areas. However, in the more accessible areas of these creeks and in agricultural areas of the Dawson River upstream of the confluence with Baffle Creek animal access and clearing has lead to significant degradation of riparian condition. Over 70\% of stream lengths in the area are ranked as having moderate to poor aquatic vegetation.

Aquatic vegetation along the entire upper Dawson River catchment is rated as poor to very poor. This is likely due to extreme dry conditions experienced at the time of survey. Aquatic habitats within the region are considered moderate to very good in over 80% of the stream length due to the relatively good riparian vegetation. However instream passage for aquatic organisms over reach lengths is restricted by logs or low to non-existent flows. Numerous road crossings, bridges and fords are also evident throughout the area, which in a number of locations, provide significant barriers to upstream fish movement under low flow conditions (e.g. Yebna crossing).

Scenic and recreational value ratings within the upper Dawson River catchment are predominantly good to very good. This is substantiated by the range of activities recorded as currently being undertaken in the Upper Dawson such as BBQs and picnics, day bushwalking, car camping, shore fishing and swimming. Areas of inherent natural beauty and scenic natural settings were identified in the State of River Report as major factors contributing to the overall scenic value.

Environmental Values

Environmental values are broadly defined in the EPP(Water) as maintaining water quality suitable for the biological integrity of an aquatic ecosystem (modified or pristine); recreational use; minimal treatment before supply as drinking water; agricultural use; and industrial use. Queensland EPA (2005) provides further clarity on the definition of environmental values based on the EPP (Water) and National Water Quality Management Strategy (NWQMS):

- Protection of aquatic ecosystems: ranging from high conservation/ecological value systems, slightly to moderately disturbed ecosystems, and highly disturbed systems.
- Primary Industries: irrigation, water for farm use (such as in fruit packing or milking sheds), stock watering, and human consumption of wild or stocked fish or crustaceans.
- Recreation \& aesthetics: primary recreation with direct contact, and visual appreciation with no contact.
- Drinking Water: raw drinking water for human consumption.
- Industrial uses: includes power generation, manufacturing plants.

Dawson River and Hutton Creek and its tributaries do not have prescribed environmental values listed under EPP (Water) Schedule 1. Since similar land uses exist across the entire Upper Dawson River catchment it is expected that the same environmental values will apply to all streams. The relevance of each of the above environmental values to these streams is therefore considered at the catchment scale in the following discussion.

Protection of aquatic ecosystems is applicable to all stream lengths within the proposed development area. The waterways of the upper Dawson River catchment are considered predominantly to consist of "slightly to moderately disturbed ecosystems" based on the State of the River Report for the region (Telfer, 2005). These are "systems that have undergone some changes, with aquatic biological diversity affected to some degree but the natural communities are still largely intact and functioning".

Water allocations under the Dawson Valley Water Supply Scheme are primarily for the purposes of 'agriculture' or 'any' (DNRM, 2006). Significant allocations are made along the Dawson River from approximately 20 km downstream of Taroom to the Fitzroy River junction. Some allocations are also made upstream of Taroom approximately 90 km downstream from Fairview. Allocations are for stock watering, irrigation and industrial water use. Between the Hutton Creek Junction and Fairview it is evident from river health surveys (EnviroTest various, Simmonds and Bristow, 2007 \& 2008) that stock access waterways in this area from time to time. However, stock access to the Dawson River is generally limited due to steep banks.

Fishing is a widespread recreational activity along the Dawson River including upstream of Yebna Crossing only 12 km downstream of Fairview (Mr Radel pers. comm.). Other recreational activities such as swimming are possible but realistically only along the Dawson River downstream of Yebna Station. Access along the Dawson River is restricted due to steep banks and limited road crossings. Swimming is probably occasional and intermittent. At Taroom, treated groundwater supplies are used to maintain the local swimming pool. Without specific evidence of swimming, primary contact recreation has not been identified as an environmental value.

Along the Dawson River downstream of Taroom, the Glebe Weir is utilised for primary recreation (such as swimming) and secondary recreation purposes (such as canoeing and fishing) (Taroom Shire Council pers. comm.). It is possible that other waterholes upstream and downstream along the Dawson River are also used for local recreational purposes. The aesthetics of the waterways are of relevance with parts of the region considered to be of "inherent natural beauty" (Telfer, 1995).

Section 2
 Environmental Values

The towns of Taroom and Injune draw drinking water from an artesian groundwater supply. Water from the Dawson River is used in the urban setting for irrigation of schools and sports fields only. It is understood that residential properties within the catchment but outside of the townships utilise rainwater or borewater for drinking purposes (Taroom Shire Council pers. comm.). On this basis the environmental value of drinking water is not considered to apply to the upper Dawson catchment. Whilst the possibility exists that local properties not connected to water supply will draw water from the river for personal use under riparian rights this is considered unlikely.

The following environmental values have therefore been identified as relevant to the Hutton Tributary, Hutton Creek and Dawson Rivers (Table 2-1).

Table 2-1 Environmental Values for Major Streams - Upper Dawson River

- Protection of slightly to moderately disturbed aquatic ecosystems.
- Primary Industries: irrigation, water for farm use, stock watering, and human consumption of wild or stocked fish or crustaceans.
- Recreation \& aesthetics: primary recreation with direct contact, and visual appreciation with no contact.
- Industrial uses.

Water Quality Guidelines and Objectives

3.1 Water Quality Guidelines

The National Water Quality Management Strategy (ARMCANZ \& ANZECC, 1994) has been adopted in Queensland through the EPP (Water).

The relevant water quality guidelines for Queensland in order of preferred use are:

- Locally derived guideline values;
- Queensland Water Quality Guidelines (QWQG) which provide guideline values tailored to Queensland regions and water types and were published in 2006 (there have been various updates since that time); , or
- Where the QWQG or local guidelines are not available, the default guidelines are the Australian Water Quality Guidelines (AWQG) published by ANZECC \& ARMCANZ (2000).

The EPP(Water) specifies WQOs for some water bodies throughout Queensland (Schedule 1). The water bodies within the Fairview field area are not listed, therefore WQOs become are the minimum set of water quality parameter values that will ensure each of the identified environmental values is maintained. However, the derivation of WQOs must also take into account social, economic and current condition factors. In many instances the technical guideline value may prove to be technically and economically unacceptable. Queensland EPA provides guidance on establishing draft WQOs for a waterway (QLD, 2005).

There have been no officially endorsed WQOs developed for the catchments influenced by the GLNG field development. For the purposes of evaluating and comparing the existing surface water quality and the predicted quality of associated water the appropriate guideline trigger values have been used as a point of comparison. Where several trigger values are available to protect different environmental values the most conservative, or minimum trigger value (MTV), has been adopted.

The QWQG defines fresh waterways as either:

- Upland stream: small (first, second and third order) upland streams (surrogate $=$ altitude $>250 \mathrm{~m}$): moderate-to-fast flowing due to steep gradients, substrate usually cobbles and bedrock, sometimes gravel, rarely sand or mud; or
- Lowland stream: larger (third, fourth and fifth order), slow-flowing and meandering streams and rivers, gradient very slight, substrates sometimes cobble and gravel but more often sand, silt or mud.

The predominant characteristics of the discharge streamlines, Hutton Creek, Baffle Creek and the Dawson Rivers are in keeping with the definition of lowland freshwater waterways.

3.1.1 Water Quality Trigger Values Based on Guidelines

Based on an examination of the Queensland and national water quality guidelines a set of MTVs has been identified for the Dawson River, Baffle Creek and Hutton Creek (Table 3-2). Since aquatic ecosystem protection generally provides the most restrictive guidelines which protect all environmental values only those water quality parameters identified for this purpose have been included in the table.

Section 3

Water Quality Guidelines and Objectives

3.1.2 Minimum Trigger Values Based on Local Data

The QWQG also establish a framework for deriving and applying local guidelines for Queensland waters. Development of local guideline values is important as they reflect existing local conditions which may vary substantially from broader guidelines developed at the regional scale. Local guidelines can therefore take into account natural and anthropogenic influences on water quality and flow that would not otherwise be recognised.

The preferred means of establishing local water quality guidelines is to establish reference condition (background condition, most commonly subject to minimal disturbance, but may be modified from natural condition) immediately upstream of an activity, or in the immediate region. Guidelines for reference condition must be derived from a minimum of at least 18 samples from one or more reference sites (QWQG, 2006).

Sufficient spot water quality data is available to establish local guideline values at the sites shown in Table 3-1. Twentieth and eightieth percentile values of water quality data from Dawson River at Utopia Downs are shown in Table 3-2 for comparison with the guidelines. Cells are shaded where local data exceeds water quality guidelines.

Table 3-1 Spot water quality sampling sites with significant data

Sampling Site	Water Quality Parameter
Upper Baffle Creek 1	Temp, EC, TDS
Lower Baffle Creek 2	Temp, EC, TDS
Dawson R d/s Baffle Ck ${ }^{2}$	Temp, EC, TDS
Dawson R at Yebna Crossing ${ }^{2}$	Temp, EC, TDS
Dawson R at Utopia Downs ${ }^{2}$	Temp, pH, DO, EC, TDS, TSS, Na, K, Mg, Ca, HCO3, CI, F, SO4, TN, TP, NH4, NO3, B, Cu
Dawson R at Taroom ${ }^{2}$	Temp, EC, TDS

Note:
1 upstream of associated water discharges
2 downstream of associated water discharges
It should be noted that while the site Dawson River at Utopia Downs (1964-2007) has the most significant set of spot sample water quality data, it also lies downstream of existing associated water discharges. The data from this site were therefore examined for differences in median water quality parameter values before and after associated water discharges commenced using two sided Mann-Whitney U tests at 95% significance. The only water quality parameter with a significant increase in median concentration was Boron. Other parameters with significant shifts in median values were EC, TDS, Ca, Mg, Alkalinity, Cl and SO_{4}. All these parameters exhibit a reduction in concentration pre to post associated water discharges. Details of the statistical tests are provided in Section 5.4.4.

The data from Dawson R at Utopia Downs was therefore used to derive $20^{\text {th }}$ and $80^{\text {th }}$ percentile water quality values for comparison with the guideline based water quality objectives (Table 3-2). The local data suggests that guideline trigger values should be relaxed for nutrients, turbidity and suspended solids. These parameters are not of particular interest in the following discussion of the impacts of associated water discharges.

Water Quality Guidelines and Objectives

Table 3-2 Relevant MTV for major streams in the Upper Dawson River catchment

WQ PARAMETER	UNITS	QWQG 2006 ${ }^{\text {a }}$		ANZECC GUIDELINES 2000				MTV	Local Data ${ }^{\text {\# }}$	
		Lowland	Upland	Aquatic Ecosystems ${ }^{\text {b }}$	StockWater	Irrigation ${ }^{\text {c }}$	Recreation		20\%ile	80\%ile
Temperature*	${ }^{\circ} \mathrm{C}$	20\%ile-80\%ile	20\%ile-80\%ile	NA	NA	NA	15-35	**	14.7	26.1
pH	units	6.5-8.0	6.5-7.5	NA	NA	6-9	6.5-8.5	6.5-8.0	7.56	8.1
Electrical Conductivity (at $25^{\circ} \mathrm{C}$)	$\mu \mathrm{S} / \mathrm{cm}$	$340{ }^{\text {d }}$	$340{ }^{\text {d }}$	NA	NA	$<650^{\text {e }}$	NA	$340^{\text {a }}$	223	330
Dissolved Oxygen	\% Sat.	85-110	90-110	NA	NA	NA	>80	85-110	72	86
Total dissolved solids	mg/L	-	-	-	$4000{ }^{\text {f }}$	-	1000	1000	131	189
Total suspended solids	mg/L	10	-	NA	NA	NA	1000	10	9	124
Turbidity	NTU	50	25	NA	NA	NA	NA	50	7.0	100
Sodium	mg / L	-	-			$<115^{\text {e }}$	300	<115	24	38.1
Potassium	mg / L							-	3.3	4.7
Calcium	mg / L	-	-		1000	-	-	1000	13.0	21.0
Magnesium	mg/L							-	4.48	8
Alkalinity HCO_{3}	mg / L							-	104	153
Chloride	mg/L	-	-	-	-	$<175^{\text {e }}$	400	<175	18.0	32
Fluoride	mg/L	-	-		2^{9}	1		1	0.1	0.16
Sulphate	mg/L	-	-		<1000		400	400	1	3.2
Total nitrogen	$\mu \mathrm{g} / \mathrm{L}$	500	250	NA	NA	5000	NA	500	118	795.8
Total phosphorous	$\mu \mathrm{g} / \mathrm{L}$	50	30	NA	NA	50	NA	50	21.7	146
Ammonia	$\mu \mathrm{g} / \mathrm{L}$	20^{1}	10	900	NA	NA	NA	20	8	37.3

 national guideline triggers for ammonia- N and ammonium ion concentrations.

Section 3
 Water Quality Guidelines and Objectives

WQ PARAMETER	UNITS	QWQG 2006 ${ }^{\text {a }}$		ANZECC GUIDELINES 2000				MTV	Local Data ${ }^{\text {\# }}$	
		Lowland	Upland	Aquatic Ecosystems ${ }^{\text {b }}$	StockWater	Irrigation ${ }^{\text {c }}$	Recreation		20\%ile	80\%ile
Oxidised nitrogen (NOx)	$\mu \mathrm{g} / \mathrm{L}$	60	15	NA	400,000 ${ }^{\text {k }}$	NA	NA	60	138	524
Boron	$\mu \mathrm{g} / \mathrm{L}$	-	-	370	$5000^{\text {i }}$	500	1000	370	20	100
Copper	$\mu \mathrm{g} / \mathrm{L}$	-	-	1.4	$1000{ }^{9}$	200	1000	1.4	0.02	0.05
Chlorophyll-a	$\mu \mathrm{g} / \mathrm{L}$	5	n/a	NA	NA	NA	NA	5		
Arsenic	$\mu \mathrm{g} / \mathrm{L}$	-	-	24/13 ${ }^{\text {j }}$	500^{9}	100	50	24/13	-	-
Cadmium	$\mu \mathrm{g} / \mathrm{L}$	-	-	0.2	10^{9}	10	5	0.2	-	-
Chromium	$\mu \mathrm{g} / \mathrm{L}$	-	-	1.0 (CrVI)	$1000{ }^{9}$	100	50	50	-	-
Iron	$\mu \mathrm{g} / \mathrm{L}$	-	-	300 (interim)	-	200	300	200	-	-
Lead	$\mu \mathrm{g} / \mathrm{L}$	-	-	3.4	100^{9}	2000	50	3.4	-	-
Mercury	$\mu \mathrm{g} / \mathrm{L}$	-	-	0.6	$2^{\text {h }}$	2	1	0.6	-	-
Nickel	$\mu \mathrm{g} / \mathrm{L}$	-	-	11	$1000{ }^{9}$	200	100	11	-	-
Zinc	$\mu \mathrm{g} / \mathrm{L}$	-	-	8	<20000	2000	5000	8	-	-

NOTES a Guideline trigger values for protection of aquatic ecosystems (Central Coast Region) j AsIII/AsV respectively
b Values for 95% protection of aquatic ecosystems
k For nitrate
c Values for long term irrigation trigger chosen as most conservative
NA indicates not applicable as QWQG take precedence
d $75^{\text {th }}$ percentile of EC in relevant salinity zone (Fitzroy Central). Source QWQG (2006)
e For sensitive crops
f Suitable for beef cattle and horses
g May be hazardous to animal health if exceeded indicates no applicable guideline value

These cells are the most conservative parameter values to satisfy all environmental values
n/a Not available
h Mercury may accumulate in edible animal tissues $>2 \mu \mathrm{~g} / \mathrm{L}$ and may therefore pose a human health risk
i Higher concentrations of Boron ($>5000 \mu \mathrm{~g} / \mathrm{L}$) may be tolerated for short periods of time.
^ MTV - minimum trigger value the.

* The QWQG recommends setting temperature guidelines for protection of aquatic ecosystems so that median discharge temperature lies within the 20th and 80th percentiles of observed temperature variations. Significant diel and seasonal variation in temperature are evident within river systems. Ensuring an appropriate data set from which to identify these percentiles is problematic since samples are often collected in particular seasons and during daylight hours

Water Quality Guidelines and Objectives

Section 3

3.2 Application of Water Quality Guidelines

The guideline trigger values can be used as a benchmark against which potential developments or discharges can be assessed. However, in assessing the impacts of any discharge to the environment the guidelines should not be used on a pass or fail basis, but rather within a risk assessment framework (s3.1.1.3, ANZECC \& ARMCANZ, 2000).

The in-stream dynamics of water flow and quality (as well as the interactions between contaminants) make it difficult to make definitive statements regarding the environmental effects of particular levels of water quality. QWQG and AWQG suggest the use of aquatic health measures in preference to physico-chemical measures since ecological systems reflect the full range of conditions encountered including droughts, floods, and episodic changes in water quality.

Setting water quality guideline values for ephemeral streams is problematic and is not dealt with definitively by either by the QWQG or the AWQG. Notes within the QWQG recognise that ephemeral streams and residual pools will have poorer water quality (particularly dissolved oxygen and nutrients) than flowing streams. Due to evaporative concentration of salts within pools, it can be expected that salinity would also be marginally poorer in such systems when compared with flowing waters.

Smith et. al. (2004) completed a literature review of the effects of mining discharges to ephemeral waters identifying a wide range of ecological responses to water quality. Responses were dependent upon factors such as the level and continuity of exposure to contaminants, the type of contaminants, and the nature of the fauna.

It is therefore appropriate to consider the ecological risks of any changes in water quality likely to arise from any discharges. There is significant local information on flows, water quality and river health in the Upper Dawson River catchment to support this type of assessment.

Section 4

Existing Environment - Flow Regimes

4.1 Upper Dawson River and Tributaries

Baffle Creek, Dawson River upstream of Baffle Creek and Hutton Creek are predominately ephemeral streams. Under natural dry season conditions, Baffle and Hutton Creeks have dry beds interspersed with reasonably deep freshwater pools that probably act as refugia for flora and fauna. While no flow records are available for Baffle Creek, the nature of the streamline, catchment size, geology, aspect and close proximity to Hutton Creek suggest similar flow regimes can be expected.

The Dawson River dries up above the confluence with Baffle Creek, with some pools observed higher up the catchment. Downstream of Baffle Creek the Dawson River appears to maintain deep pools even during dry periods. Downstream of Hutton Creek, the Dawson River appears to be a continuously flowing stream probably maintained by spring flows.

Minor streamlines that feed these watercourses have intermittent flows and few refugia even during the wet season.

Flow and water quality records are available from a number of DNRW stations in the area (Figure 4-1).

Figure 4-1 DNRW Data Collection in the Upper Dawson Catchment

Existing Environment - Flow Regimes

Flow records from Hutton Creek (1972-1988) show substantial seasonal variation in flows. Monthly average flows exceed $33 \mathrm{ML} /$ day ($\sim 1000 \mathrm{ML}$ per month) in Hutton Creek on average one month in three. For wet season months there is a 50:50 chance of monthly flows exceeding $33 \mathrm{ML} /$ day. Maximum recorded average monthly flow in Hutton Creek is $18,275 \mathrm{ML} /$ day. The maximum recorded peak flow rate in Hutton Creek is 36,542 ML/day.

Flow records from Dawson River at Utopia (1966 - current) and from Dawson R at Taroom also show substantial seasonal variation in flows. The relative magnitude and peakiness of monthly average flows are shown for Hutton Creek, Dawson R at Utopia and Dawson R at Taroom in Figure 4-2.

Figure 4-2 Observed Average Monthly flows in Upper Dawson Catchment
Comparison of flow regimes is difficult from simple time series plots like the one shown above.
Flow duration curves are empirical cumulative distribution functions derived from observed flow data. They demonstrate the proportion of time that flows are less than or greater than particular values.

Figure 4-3a) is the flow duration curve for Hutton Creek, Dawson R at Utopia and Dawson R at Taroom truncated at $6000 \mathrm{ML} /$ day for clarity - it normally extends to $35000 \mathrm{ML} /$ day.

Figure 4-3 b) has been further truncated to demonstrate the low flow behaviour of each of the streams. It is clear that Hutton Creek regularly dries up. Based on the records, Dawson R at Utopia and Dawson R at Taroom are continuously flowing streams.

Section 4

Existing Environment - Flow Regimes

a) Full Duration Curve

b) Low Flow Portion of Flow Duration Curve

Figure 4-3 Duration Curves for Recorded Flows Upper Dawson River Catchment

Existing Environment - Flow Regimes

4.2 Dawson River Spring Flows

Stream gaugings under baseflow conditions at the end of the 2007 dry season show there are substantial freshwater inputs to the Dawson River downstream of the Hutton Creek confluence (URS, unpub. data) with over 80\% of the flow (Table 4-1) at Yebna Crossing coming from the shaded area in Table 4-4. According to a local land owner (Radel, pers. comm.) there are significant inflows to the Dawson River from a spring fed creek approximately 2 km downstream of the Hutton Creek confluence. Discharges from the Dawson River stream banks have also been observed in this area during river health surveys (S. Anderson, pers. comm.). Queensland EPA (2008) provides maps of springs that support these observations (Figure 4-5).

Table 4-1 Low flow gauging and water quality Upper Dawson River, October 2007

Site	Discharge (L/s)	Discharge (ML/day)	Electrical Conductivity ($\boldsymbol{\mu S} / \mathbf{c m}$)
Dawson d/s Baffle Creek	30	2.6	1500
Hutton u/s Dawson River	7	0.6	1400
Dawson River at Yebna Crossing	210	18.1	290
Estimated Spring Flows Hutton Creek Confluence to Yebna	173	14.9	35

Notes: ${ }^{1}$ by mass balance calculation
Spring inflows are fresh, but it seems unlikely that their electrical conductivity (EC) is as low as calculated in Table 4-1. Background EC in the Dawson River at Dawsons Bend at Yebna is normally of the order of $250 \mu \mathrm{~S} / \mathrm{cm}$. This is similar to the median water quality in water bores in the Precipice and Hutton Sandstone aquifers. Nevertheless, continuous EC records have occasionally detected values as low as $57 \mu \mathrm{~S} / \mathrm{cm}$ at Utopia (DNRW data). Presumably this reading is representative of locally fresh spring flows, but the possibility of instrument error or incorrect calibration also exists.

Figure 4-4 Dawson River springs area, flows and salinities, October 2007

Figure 4-5 Springs in the vicinity of Dawson Bend and Hutton Creek

Existing Environment - Flow Regimes

During March 2008 a detailed investigation was undertaken of the flows and water quality of springs discharging into the Dawson River along the reach extending Yebna Crossing upstream to the outflow of Hutton Creek to Yebna Crossing. Travel further upstream was restricted by topography.

Physical parameters (pH, EC, temperature, turbidity and DO) were measured using a Hydrolab ${ }^{\text {TM }}$ MS-5 multiprobe instrument at each spring inflow and at approximately 200 m intervals along the Dawson River. Where sufficient spring flow was present water samples were collected for laboratory analysis of a range of parameters (total metals, physico-chemical parameters, major cations and anions, nutrients indicators).

Flow measurements (gaugings) were taken where possible at springs and at regular intervals along the Dawson River. Gaugings were taken using a current meter to measure velocities at points along a cross section of the stream. Corresponding width and depth measurements were taken to provide an estimate of the flow.

With respect to flow regimes the survey identified ${ }^{2}$:

- More than thirty springs between the outflow of Hutton Creek and Yebna Crossing (Figure 4-6). Spring discharges ranged from very small bank seepages to flows of approximately $0.5 \mathrm{~L} / \mathrm{s}$.
- Extensive cattle access was evident particularly towards Yebna Crossing.
- A number of springs were noted in the stream bed and these appear to contribute the majority of flow in the area.
- Flow at Yebna Crossing was found to be approximately 250\% greater than upstream of Dawson’s Bend with the main contribution of flow occurring within 1.5 km downstream of Dawson's Bend.
- Flow at Yebna was 171 litres/second compared with 68 litres/second measured upstream of Dawson's Bend. Peak flow rate measured was 273 litres/second upstream of Yebna pond suggesting losses in or near the pond possibly to extractive use on the farm.
- Spring flows add significantly to the water flowing in the reach of the Dawson River downstream of Hutton Creek. It is estimated that the spring flow is approximately $17 \mathrm{ML} /$ day.

The water quality of spring flows is discussed further in Section 5.3.

[^7]Section 4
Existing Environment - Flow Regimes

Figure 4-6 Dawson River spring locations

Existing Environment - Water Quality

5.1 Overview of General Water Quality

Summaries of all available water quality data from sites upstream and downstream of the Fairview operations are provided in Appendix A. These tables are referred to throughout this section without specific reference.

Data were derived from the following sources:

- Monitoring data provided by Santos (from 1998 to 2002);
- River Health Assessments undertaken for Santos (from 2003 to 2007);
- Department of Natural Resources and Water (DNRW); and
- Spring flow and water quality assessment undertaken on behalf of Santos (URS, 2008).

Measurements of various water quality indicators have been collected including physical parameters, cations, anions, nutrients, trace elements and biological samples. In many instance too few samples are available to provide a fully representative set of water quality data.

5.1.1 Waters upstream of associated water discharges

The Upper Baffle Creek, Upper Hutton Creek and Upper Dawson River water quality monitoring sites lie above any influence from associated water discharge. When compared with the relevant MTVs (Table 3-2) these sites are characterised by:

Low Dissolved Oxygen (DO)

Many of the reported DO values are lower than would be reasonably expected and are likely to not be representative of actual conditions. If present the very low dissolved oxygen concentrations would be expected to cause stress to in-stream fauna and possible fish kills.

High pH

Waters in the Upper Dawson catchment are typically neutral to moderately alkaline (pH~8). However, recent field sampling (URS, 2008 unpub. data) shows some of the tributaries of the Dawson River naturally have pH circa 8.5.

High Boron

Concentrations of Boron were predominantly below the relevant MTV upstream of associated discharges with the exception of two slightly elevated concentrations in Dawson waterhole and upper Baffle creek. Boron is a widespread naturally occurring trace element of igneous rocks and is commonly found in sedimentary rocks of marine origin (ANZECC \& ARMCANZ, 2000).

High Zinc

Several concentrations of zinc marginally exceeding the relevant MTV were detected at sites upstream of associated water discharges. Zinc is an essential trace element that adsorbs to suspended material. Toxicity of zinc can increase with low dissolved oxygen (ANZECC \& ARMCANZ, 2000). However, levels of organic matter found in most freshwater streams are generally sufficient to remove zinc toxicity. Given the amount of

Section 5

Existing Environment - Water Quality

suspended sediment and relatively low zinc concentrations found in these streams it is unlikely that zinc would present a significant water quality issue.

High Iron Content

There were a number of very high iron concentrations observed at sites upstream of associated water discharges. Iron does not present a risk to livestock or ecosystem health at the concentrations detected. The main issues associated with high levels of iron are precipitation and biofouling resulting in blockages of irrigation equipment (ANZECC \& ARMCANZ, 2000).

High Suspended Solids (TSS) and High Turbidity

The soils and slopes in the area are susceptible to erosion. This has been exacerbated by the removal of vegetation in agricultural areas, and unrestricted stock access to streams. The nature of flooding in the area is a major factor driving suspended solids transport and erosion processes.

Chlorophyll-a and nutrient enrichment

Nutrient enrichment, high turbidity, high TSS and Chlorophyll a levels at sites upstream and downstream of associated water discharges suggest that these water quality issues are likely to be due to the general erosive nature of soils and existing grazing activities in the catchment.

Other Observations

There was one observation of lead marginally exceeding the MTV. Lead is generally present in very low concentrations in natural waters and is readily adsorbed to suspended matter.

Electrical conductivity readings upstream of associated water discharges are typically in the order of $150 \mu \mathrm{~S} / \mathrm{cm}$, but can range from 70 to $1,800 \mu \mathrm{~S} / \mathrm{cm}$.

5.2 Longitudinal Changes in Dawson River Water Quality

Water quality changes along the Dawson River were examined based upon data from five sites. Table 5-1 provides a summary of water quality data from these sites. Table $5-2$ provides a list of significant differences in median water quality utilising a two-sided Mann-Whitney U Test at 95% confidence level ${ }^{3}$.

The Upper Dawson River (at Arcadia) is a small stream upstream of any associated water discharges. Wide variation in EC is evident at this site and significant deviations from MTV are evident for TSS, iron and phosphorus/phosphate. High TSS and phosphorus readings at this site may indicate the effects of locally erosive soils, land clearing and/or animal grazing.

A statistically significant decrease in median temperature ($p<0.05$) is evident between Upper Dawson River and Dawson River d/s Baffle Creek. The Upper Dawson River is characterised by wide sand beds with shallow pools compared with deeper pools, narrower channel form and dense riparian vegetation downstream of Baffle Creek. The change in median temperature is within the variation that has been observed between open and shaded

[^8]
Existing Environment - Water Quality

Section 5

areas in the Dawson River (URS, 2008 unpub, data). No other significant changes in median temperatures were identified.

A statistically significant and large increase in median EC is evident between the Upper Dawson River (215 $\mu \mathrm{S} / \mathrm{cm}$) and Dawson River d/s Baffle Creek ($876 \mu \mathrm{~S} / \mathrm{cm}$), followed by a statistically significant decrease back to near the Upper Dawson River median EC at Yebna Crossing ($247 \mu \mathrm{~S} / \mathrm{cm}$). Between Yebna Crossing and Utopia ($289 \mu \mathrm{~S} / \mathrm{cm}$) a statistically significant but small increase in median EC is evident. No statistically significant difference in median EC is evident between Utopia and Taroom. These results suggest there is a significant increase in EC due to associated water discharges from Baffle Creek, but sufficient dilution to return salinity to background levels at Yebna Crossing. This is consistent with the discussion of spring flows in Section 4.2.

The increase in salinity between Yebna and Utopia is small and may be the result of more saline spring flows between these two sites.

Downstream sites on the Dawson River are generally more saline than headwater sites. Median salinity (EC) at Utopia is significantly higher than in the Upper Dawson River. Median total dissolved solids at Yebna Crossing are significantly higher than at Upper Dawson River.

Section 5
 Existing Environment - Water Quality

Table 5-1 Longitudinal water quality in the Dawson River

Water Quality Indicator		Units	MTV	Upper Dawson River				Dawson R d/s Baffle Ck				Dawson R at Yebna Xing				Dawson R at Utopia				Dawson R at Taroom				
		Min		Med	Max	n	Min	Med	Max	n														
PhysicoChemical Parameters	Electrical Conductivity		$\mu \mathrm{S} / \mathrm{cm}$ at 25 C	340	50	215	1702	12	182	876	1498	24	110	247	435	46	78	289	551	139	87	260	525	288
	pH	Stand	6.5-8.0	6.6	7	7.1	5		7.1		1	7.2	7.75	8	6	7	7.81	8.5	138	6.5	7.6	8.5	228	
	Temperature	C		15.4	25.5	28	12	13	23	28	23	12	24	28	43	8	22	77	122	9	23.1	31	182	
	Total dissolved solids	mg/L	1000	46	146	194	12	124	596	1019	24	75	168	296	46	58	160	317	130	60	152	306	173	
	TSS	mg / L	10	52	75	125	4		32		1	2	8	142	5	0	14.5	2460	114	2	50	4900	126	
$\begin{aligned} & \text { Inorganic Non- } \\ & \text { Metallic } \\ & \text { Parameters } \end{aligned}$	Bicarbonate Alkalinity	mg/L - CaCO3	-	28	95	151	5		130		1	87	113.5	130	6	24	134	289	130					
	Chloride	mg/L	<175	3	8	12	5		20		1	19	20.5	22	6	3	25	70	130	4	20.6	59.9	140	
	Fluoride	mg/L	1	0.1	0.1	0.24	5		0.31		1	<0.1	0.13	0.23	6	0.06	0.11	0.4	126	0.08	0.13	0.7	132	
	Sulphate	mg / L	400	<1	5	<10	5		<1		1	<1	7.5	<10	6	0	2	13	97	0	2	11	116	
Cations	Calcium	mg / L	1000	1	6	18	5		12		1	7	10.8	17	6	5.2	17	40	130	4.3	18	44	140	
	Magnesium	mg / L		1	5	6.1	5		3.5		1	4	5.5	6.2	6	1.5	6.5	15	130	1.4	5.2	11.8	140	
	Potassium	mg / L		<1	6	10.7	5		7.4		1	3	3.2	6	6	2.2	4	7.7	121	2.4	5.1	7.5	130	
	Sodium	mg/L	<115	3	11	22	5		59		1	27	28	33	6	7.5	32.7	112	130	7.7	28	65.8	140	
Nutrients	Ammonia-Nitrogen	$\mu \mathrm{g} / \mathrm{L}$	20	10		590	3		93		1	<10	10	14	3	0	20.1	150	56	4.3	31.8	163	53	
	Nitrate as ($\mathrm{NO}_{3}{ }^{\text {- }}$	mg / L			128		1		305		1		<44		1	2	192	7724	81	160	1080	10000	102	
	Total Phosphorous	$\mathrm{mg} / \mathrm{L}-\mathrm{P}$	50	<10	125	1900	4		76		1	<10	40	280	5	3	55	550	59	4	157	1387	71	
Trace elements	Boron	$\mu \mathrm{g} / \mathrm{L}$	370	<100	<100	500	5		480		1	16	<100	600	6	0	20	170	73	10	50	1000	73	
	Iron	$\mu \mathrm{g} / \mathrm{L}$	200	4407		5100	2		2300		1	76		390	3	1	165	460	3	10	60	4800	93	
	Lead	$\mu \mathrm{g} / \mathrm{L}$	3.4	<1		3	2		<1		2		<1		2		<1		3					
	Zinc	$\mu \mathrm{g} / \mathrm{L}$	8	<1		14	2		20		1	<1		<10	2	<1		<10	2	10	20	700	60	

Table 5-2 Differences in median water quality along the Dawson River

Water Quality Parameter Name	Units	Upstream			Downstream			Sig	p
		Site	Median	n	Site	Median	n		
Temperature	C	Upper Dawson River	25.5	12	Dawson R d/s Baffle Ck	23	24	V	0.018
		Dawson R d/s Baffle Ck		24	Dawson R at Yebna Xing		43	-	0.558
		Dawson R at Yebna Xing		43	Dawson R at Utopia		122	-	0.278
		Dawson R at Utopia		122	Dawson R at Taroom	23	182	-	0.109
EC	$\mu \mathrm{S} / \mathrm{cm}$ at 25C	Upper Dawson River	215	12	Dawson R d/s Baffle Ck	876	24	\triangle	0.0002
		Dawson R d/s Baffle Ck	876	24	Dawson R at Yebna Xing	247	46	∇	0.0000
		Dawson R at Yebna Xing	247	46	Dawson R at Utopia	289	139	\triangle	0.012
		Dawson R at Utopia		139	Dawson R at Taroom	260	288	-	0.719
Total dissolved solids	Mg/L	Upper Dawson River	146	12	Dawson R d/s Baffle Ck	596	24	A	0.0000
		Dawson R d/s Baffle Ck	596	24	Dawson R at Yebna Xing	168	46	∇	0.0000
		Dawson R at Yebna Xing		46	Dawson R at Utopia		130	-	0.234
		Dawson R at Utopia	160	130	Dawson R at Taroom	152	173	\triangle	0.007
NOTES									
Sig p Δ and ∇	Medians a indicates Mann-Whit indicates indicates an indicates n	only shown where a statisticall stically significant difference in U Test used as tests on var al level of significance e.g. $p=$ ncrease/decrease in median v ignificant change from upstre	ificant diffe dians at the indicate po indicates a from upst downstrea	ence 5\% C sible 5\% ch am to	s been identified. fidence level using a Mann ferences. nce that the medians are the ownstream.	ey U Test. rent.			

Section 5

Existing Environment - Water Quality

5.3 Water Quality circa the Dawson River Springs

Between the outflow of Hutton Creek and Yebna Crossing there are discharges to the Dawson River from freshwater springs. Water quality upstream, in the vicinity of, and downstream of springs is examined for differences. Table 5-3 provides a summary of available water quality data from sites in the vicinity of the Dawson River spring flows. Table 5-4 provides a summary list of statistically significant differences in water quality parameter values between these sites utilising a two-sided Mann-Whitney U Test at 95\% confidence level.

Only limited data is available to explore differences in median water quality parameters at Dawson River d/s Hutton \#1, Dawson River d/s Hutton \#2 and Dawson Bend. These sites are closely spaced downstream of Hutton Creek and lie in the vicinity of the Dawson River spring flows. No statistically significant differences in median water quality parameter values were identified between these sites.

Between Dawson Bend and Yebna Crossing some statistically significant changes in median water quality parameter values are evident.

- Median sodium and chloride concentrations are higher at Yebna although there is no significant difference in median electrical conductivity.
- Median pH is significantly higher at Yebna than at Dawsons Bend.
- Median concentrations of calcium are significantly lower at Yebna based upon the full datasets. However restricting the analysis to data coincident at both sites did not lead to an indication that there is a significant difference in medians. This suggests that the variability of observed data is more limited at Dawson Bend given only six samples are collected. Data at Dawson Bend is from river health sampling and is biased towards conditions at the start and end of wet season when this sampling occurs.
- Additional data is required to clearly understand the implications of these results, however, they appear consistent with the observations of spring inflows in the area.
- A comparison of surface spring water quality with the Dawson River indicates:
- Water from the surface springs has a flow weighted EC $254 \mu \mathrm{~S} / \mathrm{cm}$, temperature $21^{\circ} \mathrm{C}$ and pH 6.8 .
- Surface springs exhibit higher alkalinity, major ion and fluoride concentrations than the Dawson River. Concentrations of iron and zinc are substantially higher in spring flows compared with the Dawson River and lower Hutton Creek, above the MTVs (Table 5-3).

Existing Environment - Water Quality

Section 5
Table 5-3 Dawson River water quality circa spring flows

Water Quality Indicator		Units	MTV	Lower Hutton Creek				Dawson R d/s Hutton \#1				Dawson R d/s Hutton \#2				Dawson Bend				Dawson R at Yebna Crossing				Springs				
		Min		Med	Max	n	Min	Med^ ${ }^{\text {A }}$	Max	n																		
	Electrical Conductivity		$\begin{aligned} & \mu \mathrm{S} / \mathrm{cm} \\ & \text { at } 25 \mathrm{C} \end{aligned}$	340	131	233	1294	16	129	265	266	6	134	249	282	5	136	251	273	6	110	247	435	46	132	301	890	33
	pH	Units	6.5-8.0	6.6	7.85	8.3	16	6.2	6.95	7.4	6	7	7.2	7.6	5	6.4	6.9	7.3	6	7.2	7.8	8	6	5.8	7	7.8	33	
	Temp	C	na	9.7	23.2	31	15	9.3	18.4	22.5	6	13.8	21.8	25.1	5	16.7	20.2	24.6	6	12	24	28	43	12.9	19.5	26.2	33	
	TDS	mg/L	1000	5	28	630	16	88	126	160	6	124	160	922	5	92	129	220	6	75	168	296	46	90	205	605	33	
	TSS	mg/L	10	-	-	-	-	3	12	316	6	3	11	292	5	4	12	366	4	2	8	142	5	-	-	-	-	
	Bicarbonate Alkalinity $\left(\mathrm{CaCO}_{3}\right)$	mg/L	na	65	100	820	16	54	112	150	6	56	111	150	5	55	118	157	6	87	114	130	6	55	125	280	22	
	Chloride	mg/L	175	4	18	355	16	8	12.5	16	6	8	12	14	5	9	13.5	15	6	19	20.5	22	6	13	23	166	22	
	Fluoride	mg/L	1	<0.1	0.1	1.4	12	<0.1	0.2	0.21	6	<0.1	0.17	0.21	5	<0.1	0.2	0.28	6	<0.1	0.13	0.23	6	<0.1	1.2	1.3	22	
	Sulphate	mg/L	400	<1	5	170	12	<1	10	<10	6	<1	10	<10	5	<1	7.5	<10	6	<1	7.5	<10	6	<1	<1	64	22	
	Calcium	mg/L	1000	5	16	85	16	1	15	21	6	1	14	26	5	1	14	19	6	7	10.8	17	6	4	21	91	22	
	Magnesium	mg/L	na	2	5	67	16	2	7.5	9.2	6	2	7	11	5	<1	7.7	9.2	6	4	5.5	6.2	6	1	8	28	22	
	Potassium	mg/L	na	2	5	10	16	3	3	5	6	3	3	6	5	2.3	3	5	6	3	3.2	6	6	2	2	9	22	
	Sodium	mg/L	115	9	21	280	16	15	20.5	23	6	15	20	28	5	15	21	27	6	27	28	33	6	24	28	63	22	
$\begin{aligned} & \frac{n}{c} \\ & .0 .0 \\ & \frac{1}{2} \\ & \hline \end{aligned}$	Ammonia (as $\mathrm{N})$	mg/L	0.02	$\begin{gathered} <0.0 \\ 1 \\ \hline \end{gathered}$	0.16	0.24	3	<0.01	0.02	0.04	4	$\begin{gathered} <0.00 \\ 6 \\ \hline \end{gathered}$		<0.01	3	$\begin{gathered} <0.00 \\ 6 \\ \hline \end{gathered}$		<0.01	3	<0.01	0.01	0.014	3	-	-	-	-	
	$\begin{gathered} \text { Nitrate as } \\ \mathrm{NO}_{3} \\ \hline \end{gathered}$	mg/L	na	0.1	1.2	4	9		<0.04		1		<0.04		1		<0.04		1		<0.04		1	-	-	-	-	
	Total Phosphorous	mg/L	0.05	$\begin{gathered} \hline 0.0 \\ 1 \\ \hline \end{gathered}$	0.095	0.23	5	<0.01	0.05	0.58	6	<0.01	0.05	0.68	5	0.02	0.05	0.75	5	<0.01	0.04	0.28	5	-	-	-	-	
	Boron	$\mu \mathrm{g} / \mathrm{L}$	370	<0.1	0.06	800	12	16	100	400	6	15	100	400	5	<0.1	7	500	6	<0.1	8	600	6	<100	<100	50	22	
	Iron	$\mu \mathrm{g} / \mathrm{L}$	200	62	1700	2358	3	60		1400	3	66		950	3	23		1200	3	76		390	3	140	1090	14900	22	
	Lead	$\mu \mathrm{g} / \mathrm{L}$	3.4	<1		2	2		<1		2		<1		2		<1		2		<1		2	<1	<1	4	22	
	Zinc	$\mu \mathrm{g} / \mathrm{L}$	8	<10		1.5	2	<10		17	2	<1		<10	2	<1		<10	2	<1		<10	2	2.5	5	21	22	

NOTES: BOLD Result greater than relevant MTV
\wedge for the purposes of calculating the median, where results are reported as less than the LOR a value of half the LOR has been adopted

Section 5

Existing Environment - Water Quality

Table 5-4 Differences in median water quality Dawson Bend and Yebna Crossing

wQ parameter	Units	Dawson Bend	Yebna Crossing	\mathbf{p}	Sig
Electrical Conductivity	$\mu \mathrm{S} / \mathrm{cm}$ at 25 C	251	247	0.113	-
pH	Stand.	6.9	7.75	0.010	Δ
Total Dissolved Solids	mg / L	129	168	0.1254	-
Total Suspended Solids	mg / L	12	8	0.462	-
Sodium	mg / L	21	28	0.010	Δ
Potassium	mg / L	3	3	0.472	-
Calcium	mg / L	14.0	11.0	0.423	$\mathbf{\nabla}^{*}$
Magnesium	mg / L	7.5	5.5	0.066	-
Alkalinity as HCO	mg / L	118	114	0.522	-
Chloride	mg / L	13.5	20.5	0.005	Δ
Fluoride	mg / L	0.19	0.13	0.689	-

NOTES:
p indicates level of significance e.g. $\mathrm{p}=0.05$ indicates a 95% chance that the medians are the different.
Sig indicates direction of statistically significant change.

* restricting data sets to coincident time pairs removes the significance of this result; all other results remain the same.

5.4 Existing impacts on water quality from discharge to grade

Sites that currently receive some associated water on Hutton, Baffle and the Dawson River generally exhibit similar characteristics to upstream sites, with the following exceptions:

Fluoride

At sites downstream of current associated water discharges, fluoride was detected marginally above the MTV. Fluoride occurs naturally usually in the form of the mineral fluorspar. The main environmental impacts related to fluoride compounds are in respect of hydrogen fluoride, which immediately converts to hydrofluoric acid on contact with moisture. Under normal ranges of pH in surface waters reaction to hydrofluoric acid is very unlikely to occur. It is unlikely that the concentrations of fluoride detected would cause significant environmental harm.

Sodium

Elevated concentrations of sodium were observed in the River Health Assessments (2004 to 2007) at Baffle Creek outflow predominantly and occasionally at Upper Hutton Creek (i.e. above petroleum operations) and Hutton Creek but not at other sites downstream.

Electrical Conductivity (Salinity)

Electrical conductivity is typically elevated at those sites that receive associated water compared with upstream sites. Readings in Baffle, Hutton and Dawson Rivers ranged from approximately 150 to $1800 \mu \mathrm{~S} / \mathrm{cm}$.

pH

Occasional high pH readings $(\mathrm{pH}=9)$ have been identified during river health sampling in Baffle Creek.

Existing Environment - Water Quality

5.4.1 Minor Streamlines

A number of minor streamlines exist on the escarpment amongst the existing CSG operations. These streams typically only contain water during significant rainfall events and have few refugia. They are significantly degraded due to extensive land clearing, removal of riparian vegetation and stock access. The area is highly erosive, and unlimited stock access has denuded riparian vegetation, created erosion points, and provides direct nutrient inputs (Simmons and Bristow, 2007). Streamlines generally exhibit significant bank erosion and are incised in the landscape down to bedrock with slopes significantly greater than surrounding land contours. Some small depositional areas exist, but in general terms once rock has been reached the erosion toe moves upstream.

Due to the intermittent flows, widespread removal of riparian vegetation and active erosion in these streamlines it is highly probable that the ecosystems are under significant stress. In addition to this degradation, some streamlines have received associated water discharge to grade for the last $10-15$ years. Associated water discharges contribute continuous releases of
low dissolved oxygen, high temperature and moderate salinity water. The status of these streamlines is therefore considered heavily disturbed and this has been supported by a rapid and qualitative ecological survey (URS unpub. data 2008). Further work is planned to assess whether there is a marginal decline in streamline condition between cleared streamlines and cleared streamlines receiving associated water discharges.

A detailed quantitative study into the impacts of associated water discharge on the ecological condition of these streamlines found the addition of associated water changes the streamline environment substantially (URS unpub. data). Streamlines were investigated during the 2008 dry season, where flow was comprised entirely of associated water discharge. Water immediately below the point of discharge was found to exhibit high temperatures and pH , and low dissolved oxygen and turbidity, often dominated by algae. Dissolved oxygen and temperature tended to equilibrate within approximately 500 m . EC remained stable, and pH increased downstream of the discharge point.

Diatoms, sensitive to changes in salinity and temperature, were selected as indicators of ecological health. Diatom diversity was found to be similar between control sites and sites upstream and downstream of associated water discharge. However, a significant difference in species assemblage was observed between upstream sites or control sites, and downstream sites.

5.4.2 Baffle Creek

Two water quality sampling sites have been monitored on Baffle Creek, one upstream and one downstream of associated water discharges. The upstream site exhibits significant variations in water quality between samples possibly suggesting that data may not all come from the same site, or that sporadic contamination of the waters occurs from some upstream activity.

Comparisons of upper and lower Baffle Creek data (Table 5-5) indicate highly significant ($p<0.01$) increases in median salinity, TDS, alkalinity, chloride and sodium downstream. Significant ($p<0.05$) increases in fluoride and boron also occur downstream. Significant ($p<0.05$) decreases in median temperature and magnesium are also observed between upstream and downstream sites.

Section 5

Existing Environment - Water Quality

5.4.3 Hutton Creek

There is insufficient data to allow a valid statistical comparison of upstream and downstream water quality condition along Hutton Creek. However, there is sufficient data to allow a pre (1985 or before) vs post (post 1985) associated water discharge comparison of water quality in Lower Hutton Creek (Table 5-6). MannWhitney U tests at 9% significance level identified a significant decrease in median pH and a significant increase in median potassium concentration post associated water discharge to Hutton Creek. No other significant differences in median concentrations/values were apparent.

Table 5-5 Comparison of upstream and downstream water quality Baffle Creek

Water Quality Parameter Type	Water Quality Parameter Name	Units	MTV	Upper Baffle Creek				Lower Baffle Creek				Comparison UIS to D/S	
				Min	Med	Max	n	Min	Med	Max	n	Sig	p
Physico-Chemical Parameters	Electrical Conductivity	$\mu \mathrm{S} / \mathrm{cm}$ at 25 C	340	67	162	1901	27	188	1260	1864	29	\triangle	0.003
	pH	Stand	6.5-8.0	6.6	7.25	7.8	6	6.9	8.1	8.9	5	-	0.068
	Temperature	C		14	24	32.7	25	12	20	27	23	∇	0.034
	Total dissolved solids	mg/L	1000	43	126	1293	27	128	852	1168	29	\triangle	0.003
	TSS	mg/L	10	6	48	49	5	10	37	76	5	-	0.835
Inorganic Non-Metallic Parameters	Bicarbonate Alkalinity	$\mathrm{mg} / \mathrm{L}\left(\mathrm{CaCO}_{3}\right)$	-	47	72	99	6	570	694	916	6	\triangle	0.005
	Chloride	mg/L	<175	<0.5	7	9	6	36	56	93	6	A	0.005
	Fluoride	mg/L	1	<0.1	0.32	0.43	6	0	1	2	6	\wedge	0.031
	Sulphate	mg/L	400	<1		<10	6	<1	<10	24	6	-	0.522
Cations	Calcium	mg/L	1000	<1	1	15	6	<1	1	7	6	-	0.174
	Magnesium	mg / L		1.9	4	7	6	1	2	3	6	V	0.037
	Potassium	mg/L		4.5	6	12	6	4	6	8	6	-	0.689
	Sodium	mg / L	<115	<1	8	17	6	162	290	437	6	\wedge	0.005
Nutrients	Ammonia-Nitrogen	mg/L	20					0.016	-	0.12	3	NA	-
	Nitrate-Nitrogen	mg / L						<0.01	-	$\begin{gathered} <0.01 \\ 2 \end{gathered}$	1	NA	-
	Phosphorus/Phosphate	mg / L - P	50					66	185	350	5	NA	-
Trace elements	Boron 2	$\mu \mathrm{g} / \mathrm{L}$	370	<0.1		500	6	200	450	700	6	\wedge	0.025
	Iron	$\mu \mathrm{g} / \mathrm{L}$	200	81		1800	3	1300	-	6362	3	-	0.190
	Lead	$\mu \mathrm{g} / \mathrm{L}$	3.4	<1	<1		2	<1	-	8	2	NA	-
	Zinc	$\mu \mathrm{g} / \mathrm{L}$	8	8.3		<10	2	3	-	14	2	NA	-

Table 5-6 Comparison of upstream and downstream water quality Hutton Creek

Water Quality Parameter Type	Water Quality Parameter Name	Units	MTV	Upper Hutton Creek				Lower Hutton Creek				Comparison U/S to DIS		Lower Hutton Creek comparison pre to post								
								Pre (<=1985)	Post (>1985)		Sig			p								
				Min	Med	Max	n					Min	Med		Max	n	Sig	p	Med	n	Med	n
Physico-Chemical Parameters	Electrical Conductivity	$\mu \mathrm{S} / \mathrm{cm}$ at 25 C	340	156		1478	2	131	233	1294		16	NA	-		10		6	-	1.000		
	pH	Stand	6.5-8.0	6.6		7.9	2	6.60	7.85	8.30	16	NA	-	7.95	10	7.2	6	∇	0.045			
	Temperature	C						9.7	23.2	31.0	15	NA	-		9		6	-	0.377			
	Total dissolved solids	mg / L	1000	190		1139	2	5	28	630	16	NA	-		10		6	-	0.704			
	TSS	mg / L	10		570		1	-	-	-	-	NA	-		10		6	-	0.129			
Inorganic Non-Metallic Parameters	Bicarbonate Alkalinity	mg/L - CaCO 3	-		314		1	65	100	820	16	NA	-		10		6	-	0.914			
	Chloride	mg/L	<175	6		267	2	4	18	355	16	NA	-		10		6	-	0.871			
	Fluoride	mg/L	1	0.1		0.31	2	<0.1	0.1	1.4	12	NA	-		8		6	-	0.273			
	Sulphate	mg / L	400	<1		120	2	<1	5.0	170	12	NA	-		9		6	-	1.000			
Cations	Calcium	mg / L	1000	20		91	2	5	16	85	16	NA	-		10		6	-	0.129			
	Magnesium	mg / L			16		1	2	5	67	16	NA	-		10		6	-	0.588			
	Potassium	mg / L			9		1	2	5	10	16	NA	-	4.7	10	7.0	6	\triangle	0.020			
	Sodium	mg/L	<115	14		133	2	9	21	280	16	NA	-		10		6	-	0.481			
Nutrients	Ammonia-Nitrogen	mg / L	20		51		1	<. 01	0.16	0.24	3	NA	-									
	Nitrate (as NO_{3})	mg / L			0.17		1	0.1	1.2	4.0	9	NA	-									
	Phosphorus/Phosphate	mg / L - P	50		170		1	<10	95	230	5	NA	-									
Trace elements	Boron	$\mu \mathrm{g} / \mathrm{L}$	370	32		<100	2	10	50	800	12	NA	-		6		6	-	0.078			
	Iron	$\mu \mathrm{g} / \mathrm{L}$	200		1900		1	62	1700	2358	3	NA	-									
	Lead	$\mu \mathrm{g} / \mathrm{L}$	3.4		4.8		1	<1		2	2	NA	-									
	Zinc	$\mu \mathrm{g} / \mathrm{L}$	8		1.5		1	<10		1.5	2	NA	-									

	FAIRVIEW FIELD - CASE STUDY OF ASSOCIATED WATER DISCHARGES
Section 5	Existing Environment - Water Quality
Notes for Table 5-5 and Table 5-6:	
	indicates observation exceeds MTV
Sig	indicates statistically significant difference in medians at the 95% confidence level using a Mann Whitney U Test. Mann-Whitney U Test used as tests on variance indicate possible differences.
p	indicates actual level of significance e.g. $\mathrm{p}=0.05$ indicates a 95% chance that the medians are the different.
\triangle and ∇	indicates a significant increase/decrease in median value
-	indicates no significant change in medians
U/S to D/S	indicates change is presented as from upstream to downstream
NA	Indicates insufficient data to complete the test

5.4.4 Dawson River at Utopia

The only significant differences in pre to post associated water discharge median spot water quality are as shown in Table 5-7 (Mann-Whitney U test, 95\% significance).

Table 5-7 Significant differences in median water quality - Dawson R at Utopia

WQ Parameter	Units	Median $(\mathbf{1 9 6 4 - 1 9 8 5)}$	Median $(\mathbf{1 9 8 5} \mathbf{- 2 0 0 7)}$	\mathbf{p}	Sig
Electrical Conductivity	$\mu \mathrm{S} / \mathrm{cm}$ at 25 C	311	284	0.0090	$\boldsymbol{\nabla}$
Total Dissolved Solids	mg / L	173	153	0.0019	$\boldsymbol{\nabla}$
Calcium	mg / L	20.5	16.0	0.0000	$\boldsymbol{\nabla}$
Magnesium	mg / L	7.50	6.00	0.0008	$\boldsymbol{\nabla}$
Alkalinity as HCO 3	mg / L	150	127	0.0000	$\boldsymbol{\nabla}$
Chloride	mg / L	29.0	24.0	0.0017	$\boldsymbol{\nabla}$
Sulphate	mg / L	3.30	1.72	0.0001	$\boldsymbol{\nabla}$
Boron	$\mu \mathrm{L} / \mathrm{L}$	20	100	0.0024	Δ

Where:
p indicates level of significance e.g. $p=0.05$ indicates a 95% chance that the medians are different.
Sig indicates direction of statistically significant change

5.4.5 Continuous Salinity Data

Simultaneous continuous streamflow, temperature and EC data have also been collected by DNRW at the Dawson River at Utopia Downs site for 10 years (1997-2007).

Mean EC is $280+/-140 \mu \mathrm{~S} / \mathrm{cm}$ and median EC is $289 \mu \mathrm{~S} / \mathrm{cm}$ suggesting little skew in the data. This is confirmed by Figure 5-1 which shows a reasonably symmetric distribution of hourly EC readings.

The range of observed EC is significant. Minimum recorded EC is $57 \mu \mathrm{~S} / \mathrm{cm}$ and maximum is $800 \mu \mathrm{~S} / \mathrm{cm}$. The 90% confidence interval for the data is $163-396 \mu \mathrm{~S} / \mathrm{cm}$.

Existing Environment - Water Quality

There is evidence of a statistically significant but small reduction in spot EC pre to post associated water discharge (Table 5-7). However, the symmetry of the hourly distribution of continuous EC data and the lack of an obvious step change or trend in hourly EC time series (Figure 5-2) suggests this change may be due to sampling bias rather than the influence of associated water discharges.

Figure 5-1 Distribution of Hourly Electrical Conductivity, Dawson R at Utopia

Figure 5-2 EC Time Series Record Dawson River at Utopia Downs, 2003-2007

Section 5

Existing Environment - Water Quality

Differences in the binomial proportions of MTV exceedances for electrical conductivity and suspended solids pre- and post-establishment of Tipperary in 1985 were examined at Utopia. The analysis showed there was no statistically significant difference in observations before or after the establishment of Tipperary for both parameters and suggests sufficient dilution exists within the river system to maintain downstream water quality at Utopia under existing associated water discharges.

Significant dilution of salinity occurs on the rising limb of hydrographs during the passage of floods and freshes; sometimes reaching as low as $\sim 60 \mu \mathrm{~S} / \mathrm{cm}$. EC returns to pre-event levels over a period of 20 days or so as flows progressively becomes dominated by interflow, spring flow and/or baseflow. These behaviours are demonstrated in Figure 5-3.

Figure 5-3 Dawson River at Utopia Downs EC and Flow Relationships

5.4.6 Continuous Water Temperature Data

There is a strong seasonal and diurnal range of temperature in the Dawson River at Utopia where a range of 7C to 34C has been observed (Figure 5-4).

In the Dawson River at Taroom a water temperature range of 8 C to 26 C has been observed with similar seasonal patterns to those at Utopia Downs.

Existing Environment - Water Quality

Qld NRW WaterShed
Period 10 Year Plot Start 00:00_01/10/1996
Interval 1 Month Plot End 00:00_01/10/2006

- 130324A
- 130324A Dawson R Utopia Dns

Figure 5-4 Water Temperature and Flow at Dawson River at Utopia Downs

5.4.7 Continuous Water Quality Data at Fairview

URS temporarily deployed six Hydrolab ${ }^{\text {TM }}$ data loggers in Baffle and Hutton Creeks, and two locations in the Dawson River, as shown in Figure 5-5 and summarised in Table 5-8 below.

The instruments recorded continuous (1/2-1 hourly) measurements between June through Augsut 2008 (ongoing) of EC, pH, DO, turbidity, temperature and relative depth. Prior to initial deployment the instruments were calibrated using standardised solutions. At approximately six week intervals data sets were downloaded, the instruments cleaned, calibrated and re-deployed. Independent water quality measurements were taken for quality control purposes each time the instruments were redeployed using a TPS90FLT multi-parameter water quality instrument.

Section 5

Existing Environment - Water Quality

NB 1 cumec $=86.4 \mathrm{ML} /$ day
Figure 5-5 Water Temperature and Flow at Dawson River at Utopia Downs
Table 5-8 Data Logger Site Locations

Site Name	Easting	Northing	Upstream/Downstream AW Discharge
Baffle Creek @ Waterview	681640	7168024	Upstream
Lower Baffle Creek	698965	7168306	Downstream
Hutton Creek @ Moonah	691576	7146417	Upstream
Lower Hutton Creek	697890	7155260	Downstream
Dawson's Bend	710193	7152667	Downstream
Yebna Crossing	722336	7156534	Downstream

Hutton Creek

EC concentrations in Hutton Creek downstream of associated water discharges are approximately $300 \mu \mathrm{~S} / \mathrm{cm}$ higher than recorded upstream, and show less variation during floods (Figure 5-6). Conversely pH at both sites is circumneutral, with levels at both sites within 0.5 units.

Figure 5-6 Comparison of EC levels upstream and downstream of associated water discharge in Hutton Creek, July - September 2008

Baffle Creek

Electrical conductivity and pH at a site downstream of associated water discharge (Lower Baffle Creek) are consistently higher than upstream (Baffle Creek at Waterview). Comparison of concentrations of EC and pH between the two sites are shown in Figure 5-7 below.

Figure 5-7 Comparison of Upstream/Downstream Baffle Creek EC and pH

Dawson River at Dawson's Bend and Yebna Crossing

Comparison of EC, pH, DO, temperature, turbidity and Eh measurements collected at Yebna Crossing and Dawsons Bend indicates:

- DO and temperature fluctuate diurnally (Figure 5-8). DO measurements at Dawson's Bend are lower and temperature is higher than at Yebna Crossing. DO generally decreases with increasing temperature,

Section 5

Existing Environment - Water Quality

consistent with these observations. The higher temperatures recorded at Dawsons Bend may be attributed to the influence of springs, as discussed in Section 22 above.

Figure 5-8 Dawson's Bend and Yebna Crossing Temperature and DO Levels

- EC is reasonably consistent at each site Figure 5-8. Although slightly higher at Dawson's Bend than at Yebna Crossing, levels are well within the expected range of variability for EC measurement.
- pH is reasonably consistent at each site, but is consistently higher at Yebna Crossing than at Dawsons Bend.
- Turbidity is variable, largely fluctuating in accordance with varying depth. An increase in turbidity is noted at both sites following a rainfall event.

5.4.8 Water Quality Profiles

Associated water has comparatively high salinity, pH and temperature when compared with the average existing surface water environments. An area of concern therefore is the potential for stratification of the water column in

Existing Environment - Water Quality

deeper ponded waters receiving associated water discharge. To assess for the presence of halocline (a strong vertical salinity gradient) or thermocline (temperature gradient) vertical profiles were taken at sites downstream of associated water discharges on Baffle Creek and Hutton Creek, and at Dawsons Bend on the Dawson River.

In the thalweg of each ponded area quality parameters including EC , temperature, pH , turbidity, EC, DO and redox were measured at roughly 0.1 m vertical intervals using a Hydrolab ${ }^{\text {TM }}$ data logger.

A minimum of two profiles were logged at each location. The deepest profile has been graphed from each site below for comparative purposes. The trends exhibited for each indicator are generally similar for all profiles at a particular site.

Hutton Creek

Profiles collected from Hutton Creek upstream and downstream of associated water discharge are presented in Figure 5-9 below. Distinct differences are evident between the two sites. With the exception of redox potential (Eh) all parameters in the upstream site (Upper Hutton) remain relatively constant with increasing depth. In the Lower Hutton Creek site, however, DO levels decline sharply between 1-2 m depth before stabilising at less than $1 \mathrm{mg} / \mathrm{L}$, a level likely to result in substantial impacts to the aquatic environment. Within the same depth interval EC follows an increasing trend. Eh levels do not mirror the declining DO concentrations as would be expected; the reason for this is not known. pH remains reasonably stable and temperature both show a moderate decline.

The extremely low DO levels suggest that associated water discharge is impacting the aquatic environment during periods of low to no flow. This is only the case during the dry season; periods of high flow will remove any stratification.

FAIRVIEW FIELD - CASE Study OF ASSOCIATED WATER DISCHARGES

Section 5	Existing Environment - Water Quality

Figure 5-9 Hutton Creek vertical profiles upstream/downstream of associated water discharge

Existing Environment - Water Quality

Baffle Creek

Measurement of water quality parameters through a vertical profile was undertaken in a pool located near the outflow of Baffle Creek to Dawson River. Figure 5-10 shows that EC increases with increasing depth, whereas pH and temperature shows a decreasing trend. The temperature gradient is gradual with no indication of a thermocline. More substantial increases in EC are noted from approximately 0.8 m depth. DO shows a sharp decline with depth, reaching levels that would be expected to severely affect the survival of biological communities and result in fish kills. Redox potential (Eh) also decreases with increasing depth, likely as a result of decreasing DO levels.

Figure 5-10 Lower Baffle Creek vertical profile

	FAIRVIEW FIELD - CASE Study of associated water DISCHARGES
Section 5	Existing Environment - Water Quality
Dawsons Bend	
Vertical profiles of with sites on Baffle remain reasonably natural variability (ty parameters taken at Dawsons Bend indicate less variability when compared Creeks downstream of associated water discharges. Levels of EC, pH and DO and temperature show a slight increase/decrease within the range of expected).

Figure 5-11 Dawson River at Dawsons Bend vertical profile

Existing Environment - River Health

6.1 River Health of Major Streams

River health sampling has been undertaken from pool and edgewater habitats at a range of sites across the Fairview area since 2003 (EnviroTest various, Simmonds and Bristow 2007 \& 2008). Sites sampled include control sites upstream of impacts, and sites down the Dawson River in an attempt to assess any longitudinal changes in river health (Figure 6-1).

Figure 6-1 River health sampling sites at Fairview
The AusRivas macroinvertebrate and habitat sampling methodology and models developed under the National River Health Program are used. These models assign samples to various river health "bands" based on the fauna observed at a site compared with fauna predicted to be at that site based on habitat and other physical characteristics. Predictions of fauna are made on the basis of an analysis of fauna observed at "reference condition" sites. Thus predicted fauna represent the fauna that would be expected to be at the sampling site if it were in reference condition. Models are seasonal and sampling habitat based (e.g. pools, edgewaters).

Section 6

Existing Environment - River Health

River health bands are defined in relation to reference condition as shown in Table 6-1. Calculated AusRivas bands are shown in Table 6-2.

Table 6-1 AusRivas river health bands

Band	Condition class	Description
\mathbf{X}	Richer than reference	O/E greater than 90th percentile of reference sites
A	Equivalent to reference site	O/E within range of central 80\% of reference sites
B	Below reference	O/E below 10th percentile of reference sites (same width as Band A)
C	Well below reference	O/E below Band B (same width as Band A)
D	Impoverished	O/E below Band C down to zero

Table 6-2 AusRivas model bands for spring and autumn samples Sep 03-Apr 07

Edge Habitats Site							
	Season Date	$\begin{aligned} & \text { Spring } 03 \\ & \text { Sep-03 } \end{aligned}$	$\begin{gathered} \text { Autumn } 04 \\ \text { Apr-04 } \end{gathered}$	Spring 04 Nov-04	Autumn 05 May-05	Spring 06 May-06	$\begin{gathered} \text { Autumn } 07 \\ \text { Apr-07 } \end{gathered}$
Upstream petroleum activities							
Upper Baffle Creek		-	-	-	C	B	C
Dawson River Waterhole		-	-	-	-	-	-
Dawson River Road Crossing		-	-	-	-	B	B
Upper Hutton Creek		-	-	-	-	-	B
Downstream petroleum activities							
Baffle Creel		-	-	-	-	-	-
Baffle Creek outflow		-	C	C	C	C	B
Hutton Creek 500m upstream Dawson confluence		-	-	-	B	-	-
Hutton Creek		-	-	-	-	-	-
Hutton Creek FV66		-	C	-	C	C	C
Dawson River Hutton Creek outflow		-	-	-	-	-	C
Dawson River downstream Hutton Creek 1		-	C	B	B	C	B
Dawson River downstream Hutton Creek 2		-	-	C	B	C	B
Dawsons Bend		-	-	B	B	B	C
Yebna Crossing		-	C	C	C	B	B
Utopia Downs		-	-	-	C	C	B

Pool habitatsSite	Season Spring 03Date \quad Sep-03		$\begin{gathered} \text { Autumn } 04 \\ \text { Apr-04 } \end{gathered}$	Spring 04 Nov-04	$\begin{gathered} \text { Autumn } 05 \\ \text { May-05 } \end{gathered}$	$\begin{gathered} \text { Spring } 06 \\ \text { May-06 } \end{gathered}$	$\begin{gathered} \text { Autumn } 07 \\ \text { Apr-07 } \end{gathered}$
Upstream petroleum activities							
Upper Baffle Creek		C	D	B	-	C	C
Dawson River Waterhole		C	C	D	-	-	-
Dawson River Road Crossing \#2		-	-	-	-	B	C
Upper Hutton Creek		C	-	-	-	-	B
Downstream petroleum activities							
Baffle Creek		C	-	-	-	-	-
Baffle Creek outflow		C	C	D	C	B	C
Hutton Creek 500m upstream Dawson confluence		-	-	-	-	-	-
Hutton Creek		C	-	-	-	-	-
Hutton Creek FV66		-	C	C	C	C	C
Dawson River Hutton Creek outflow		-	-	B	-	-	C
Dawson River downstream Hutton Creek 1		-	C	C	-	C	C
Dawson River downstream Hutton Creek 2		-	C	-	C		D
Dawsons Bend		C	C	C	C	C	B
Yebna Crossing		C	C	C	C	C	C
Utopia Downs		-	-	-	C	C	A

Existing Environment - River Health

Single season models were used to assign sites to AusRivas bands in Table 6-2.
Band assignment varies significantly from year to year for sites both upstream and downstream of associated water discharges. Macroinvertebrate fauna are sensitive to a range of factors including changes in habitat, baseline and event based water quality, and flow conditions.

Recent advice from DNRW is that the AusRivas models for Central Queensland should not be used at this time since they have been found to be inaccurate. Additional work is being completed to update models over the next few years. Despite this warning, data was analysed using AusRivas models for comparative purposes as discussed below.

Since combined season models are usually considered more robust that individual season models the observed to expected (O/E50) ratios from each site were compared to identify any statistically significant changes in median O/E50 scores using Mann-Whitney U Tests at the 95\% significance level. O/E50 scores were calculated for Spring/Autumn models for both edgewater and pool habitats.

Table 6-3 Significant O/E ratio shifts between sites

Combined Seasonal Model	Upstream Site	Downstream Site	Direction of Change
Edgewater	Baffle Creek Outflow	Dawsons Bend	
Pool	Hutton at FV66	Dawson at Utopia	
Pool	Dawson at Yebna	Dawson at Utopia	
Edgewater	Hutton at FV66 ${ }^{1}$	Dawson u/s Hutton	
Edgewater	Hutton at FV66	Dawson at Yebna	

Note: 1) Hutton at FV66 is not upstream of Dawson u/s Hutton.
These results suggest that Hutton Creek at FV66 has a significantly lower river health than downstream and upstream sites on the Dawson River. There is some evidence to indicate that river health in Baffle Creek is lower than in the Dawson River, at least at Dawsons Bend. Furthermore, there is evidence to support improvement in river health between Dawson River at Yebna Crossing and Dawson River at Utopia.

Despite the limitations of the AusRivas models, and taking into account the characteristics of associated water discharges and the comparison of water quality parameters between sites in Section Error! Reference source not found., it appears that there is some evidence for river health impacts arising from associated water discharges in Baffle Creek and Hutton Creek. These changes are subtle and are not reflected in general AusRivas bands. In general the data sets are minimal and the differences may simply arise from sampling variability.

Changes in O/E50 between Yebna Crossing and Utopia Downs are more likely to be associated with habitat change between the sites, or from sampling variability due to the low sample numbers.

6.2 River Health of Minor Streamlines Receiving Discharge

A number of minor streamlines exist on the escarpment amongst the existing CSG operations. These streams typically only contain water during significant rainfall events and have few refugia. They are significantly degraded due to extensive land clearing, removal of riparian vegetation and stock access. The area is highly erosive, and unlimited stock access has denuded riparian vegetation, created erosion points, and provides

Section 6

Existing Environment - River Health

direct nutrient inputs (Simmons and Bristow, 2007). Streamlines generally exhibit significant bank erosion and are incised in the landscape down to bedrock with slopes significantly greater than surrounding land contours. Some small depositional areas exist, but in general terms once rock has been reached the erosion toe moves upstream.

Due to the intermittent flows, widespread removal of riparian vegetation and active erosion in these streamlines it is highly probable that the ecosystems are under significant stress. In addition to this degradation, some streamlines have received associated water discharge to grade for the last $10-15$ years. Associated water discharges contribute continuous releases of low dissolved oxygen, high temperature and moderate salinity water. The status of these streamlines is therefore considered heavily disturbed and this has been supported by a rapid and qualitative ecological survey (URS unpub. data 2008). Further work is planned to assess whether there is a marginal decline in streamline condition between cleared streamlines and cleared streamlines receiving associated water discharges.

The nature of associated water discharges is preferential to algal or slime growth. A number of streamlines currently receiving associated water discharges contain filamentous algae and slime mats in channel. Limited impacts are evident on riparian vegetation except in some limited cases where some tree roots appear to have been drowned.

There is some evidence to suggest that the ecological impacts of associated water discharges are temporary. Where discharge has been halted, riparian vegetation and streamlines superficially appear no different to surrounding areas. Additional work is required to confirm this.

6.3 River Health of Other Minor Streamlines

General observation of other minor streamlines in agricultural areas supports the view that widespread clearing of vegetation and unrestricted stock access places the streams under significant stress. Together with the intermittent flows experienced in the area the streamlines can be categorised as heavily impacted.

Streams that maintain their riparian vegetation exhibit less erosion and a greater diversity of fauna and flora (URS unpub. qualitative data, 2008) than agricultural streams. Few water refugia are evident.

As part of an investigation into Pony Hills Water Treatment Plant permeate discharges near FV77, Simmonds and Bristow (2007b) completed a rapid ecological assessment of a minor streamline discharging to Hutton Creek. This survey was undertaken shortly after significant rainfall in the area.

The tributary rises approximately 130 m above its confluence with Hutton Creek as shown in the elevation vs distance graph in Figure 6-2.

The tributary is certainly ephemeral and probably intermittent. It flows predominantly northeast and northwest before discharging into Hutton Creek approximately 8 km from the proposed discharge point. Riparian vegetation is relatively intact in the vicinity of the proposed permeate discharge point near FV77, though dominated by weed species. Despite the good vegetation coverage and the presence of boulders local erosion of stream banks is evident.

Existing Environment - River Health

Figure 6-2 Elevation profile unnamed tributary of Hutton Creek near FV77
From the discharge point the tributary follows an incised valley to the mid-stream sections approximately 1.5 km downstream. From this point riparian and catchment vegetation has largely been cleared and the stream is subject to stock access. There is also evidence of channel works with a number of straight sections identified (S. Anderson pers. comm.). The reach extending from the discharge point is generally narrow ($1-3 \mathrm{~m}$), with occasional pools. The substrate ranges from silty clay, sand with cobbles, boulders and bedrock, tending to sandy cobbles and sandstone towards the Hutton Creek outflow. Stream banks are undercut and show evidence of scouring and sand deposition.

Riparian vegetation along the tributary is predominantly comprised of native and exotic grasses and other weed species, which provide some shading of the waterway. The highest density of weed species occurs in the upper reaches of the tributary. Adjacent to Hutton Creek the riparian zone broadens and the tributary feeds into a spring or billabong system dominated by wetland species.

Habitat types along the northern reaches of the tributary are limited to flat water or shallow pools, with refuges provided by fallen trees and trailing vegetation. A diverse macroinvertebrate population was observed along the northern reaches of the tributary. The spring/billabong system near the Hutton Creek outflow provides significant habitat for wetland flora and fauna. A rapid flora and fauna survey of the tributary did not identify any endangered species, though potential supporting habitats were observed (BooBook, 2007).

No rare or threatened fauna or flora were encountered, and no endangered regional ecosystems or ecological communities occur within or in close proximity to the watercourse.

Fifty-eight vertebrate species were recorded including 45 birds, 4 mammals, 4 reptiles, 4 amphibians and one fish. One scheduled threatened species was detected - the squatter pigeon listed as vulnerable under the Nature Conservation Act 1992 and Environment Protection and Biodiversity Conservation Act 1999. A small flock of white squatter pigeons was flushed from the ground in white cypress pine/eucalypt woodland beside a temporary pool at One site. Another pair of squatter pigeons was flushed from the bank of the watercourse.

Section 6

Existing Environment - River Health

Habitats within and adjoining the watercourse are suitable for populations of other rare and threatened fauna including brigalow scaly-foot, golden trailed gecko, little pied bat and large-eared bat. Targeted field surveys would be required to detect these species.

A single Herbert's rock wallaby (a locally significant species) was disturbed on a rocky slope approximately 1 km downstream of the permeate discharge point.

Two hundred and three species of plants were identified along the watercourse, of which about 30 are introduced species.

Frogs, turtles and fish were found in the spring/billabong pond adjacent to Hutton Creek. However, the steepness of the stream, and likelihood of few water refugia under dry conditions suggests the stream provides little habitat for turtles and fish.

Planned Permeate Discharges 2008/2009

Two desalination plants are under consideration for the Fairview Project Area:

- Pony Hills Water Treatment Plant (PHWTP) near FV77 is planned to be constructed in 2008.
- Central Desalination Plant (CDP) is proposed for 2009.

Investigations for the Pony Hills permeate discharge are complete and detailed plans have been developed for its implementation in 2008.

Investigations for Central Desalination Plant are currently being initiated.

7.1 Pony Hills Water Treatment Plant

This Section outlines the proposed discharge of treated (desalinated) associated water to grade in an unnamed tributary of Hutton Creek (Hutton Tributary) adjacent to FV77 and the potential downstream effects of this discharge on Hutton Creek and the Dawson River.

7.1.1 Hutton Tributary

The Hutton Tributary is intermittent/ephemeral, and has a small catchment area extending approximately 3.5 km upstream of the permeate discharge point. Field observations made in December 2007 following significant flooding found a pool and channel system with significant water storage capacity (Simmons \& Bristow, 2007b). Adjacent and well connected to Hutton Creek is a billabong or spring system.

The general environment of the tributary is described in Section 6.3.
Limited water quality data (EC, pH , temperature and DO) was also collected in December 2007 from the unnamed Hutton Tributary both at the proposed discharge point (FV77) and downstream near the confluence with Hutton Creek (Simmonds \& Bristow, 2007b). The data indicates background EC in the range 354 to 533 $\mu \mathrm{S} / \mathrm{cm}$ and pH in the range 6.8 to 7.7. This is similar to median observed levels of these parameters in Hutton Creek. Further measurements of EC in early February 2008 suggest an EC range of $450-510 \mu \mathrm{~S} / \mathrm{cm}$.

Temperatures recorded by Simmonds \& Bristow (2007b) ranged from circa 22 - 31 C , and was generally lower towards the confluence with Hutton Creek. DO concentrations varied substantially ($0.8-8.2 \mathrm{mg} / \mathrm{L}$) along the tributary.

7.1.2 Permeate Discharge

The operation of the PHWTP will involve the use of a number of chemicals including biocides and antiscalants for backwash and cleaning purposes. All water will be captured from these operations and treated. No discharge of this water is planned and it is estimated that any residual amounts of chemicals used in this process will be undetectable in permeate due to dilution and the reverse osmosis process.

Permeate is therefore likely to be clean. The predicted permeate water quality range is shown in Table 7-1 where it is compared with relevant MTV for the area. Only those water quality parameters of relevance to permeate are shown. The temperature of permeate is likely to be less than the temperature of associated water at the wells but above ambient temperatures particularly in the dry season.

Section 7

Planned Permeate Discharges 2008/2009

The salinity, pH and temperature of permeate are likely to be higher than the MTVs. The ecological risks associated with these likely exceedances are considered in the context of the existing catchment and receiving water environments in the following sections.

Table 7-1 Predicted permeate discharge quality PHWTP

Water Quality Parameter Type	Water Quality Parameter Name	Units	Min.	$\begin{gathered} 90^{\text {th }} \\ \text { percentile } \end{gathered}$	MTV	
					Value	Source
Physico-Chemical Parameters	Electrical Conductivity	$\mu \mathrm{S} / \mathrm{cm}$ at 25C	150	500	340	
	pH	Stand	6.5	8.76	6.5-8.0	
	Temperature	C	NA	NA		
	Total dissolved solids	mg/L	100	325	1000	
	TSS	mg/L	0	0	10	
	TOC	mg / L as C	0	0		
	DOC	mg / L as C	0	0		
Inorganic Non-Metallic Parameters	Total Alkalinity	mg / L as CaCO3	40	125	20-400	QWQG
	Bicarbonate Alkalinity	mg / L as CaCO3	40	115		
	Carbonate Alkalinity	mg / L as CaCO3	0	10		
	Chloride	mg/L	30	72	175	
	Fluoride	mg / L	0	0.5	1	
	Sulphate	mg/L	0.2	0.3	400	
	Silica	mg / L as SiO_{2}	0.2	1.0		
Cations	Calcium	mg / L	0	0.5	1000	
	Magnesium	mg / L	0	0		
	Potassium	mg/L	0	0.6		
	Sodium	mg / L	35	107	115	
Nutrients	Ammonia-Nitrogen	mg/L	0	0.05	$20^{\#}$	
	Nitrate-Nitrogen	mg / L	0	0.02	0.4	
	Phosphorus/Phosphate	mg / L as P	ND	0.0004	0.05	
Trace elements	Aluminium	mg / L	0	0.05		
	Barium	mg / L	0	0.03		
	Boron	mg / L	0.1	3	370	
	Iron	$\mu \mathrm{g} / \mathrm{L}$	0.3	0.7	200	
	Lead	$\mu \mathrm{g} / \mathrm{L}$	0.3	1.7	3.4	
	Manganese	ug/L	0.05	0.1	$\begin{gathered} <10 \\ 1900 \end{gathered}$	QWQG* AWQG
	Zinc	$\mu \mathrm{g} / \mathrm{L}$	0.05	0.75	8	
	Strontium	mg/L	0.004	0.037		

NOTES:

* Guideline for aquatic aquaculture
\# WQO is for Ammonia

Planned Permeate Discharges 2008/2009

7.1.3 Potential Impacts on Typical flows

The full flow record from Hutton Creek is compared with permeate discharges in Figure 7-1. The bankfull flood ($6620 \mathrm{ML} / \mathrm{day}$) in Hutton Creek is also shown. The bankfull flood is generally accepted as the flow that maintains channel geometry and has an Average Recurrence Interval of ~ 2.33 years.

Figure 7-1 All Hutton Creek flows compared with PHWTP permeate discharge
The permeate discharge is not visible in Figure 7-1 since it is a very small percentage of the channel forming flood discharge.

To provide an improved view of the relative size of the permeate discharge to natural flows in Hutton Creek, the below figure has been split into two covering the periods $1972-1981$ and $1982-1988$. Furthermore any flows greater than $50 \mathrm{ML} /$ day are removed from Figure 7-2 a) and b).

When flows do occur in Hutton Creek, it is likely that the permeate will be significantly diluted by the large flow volumes that occur. However, there are long periods during which the instream water quality will be significantly affected by permeate discharge. The degree of impact will be dependent upon the level of mixing that occurs instream since Hutton Creek maintains long deep pools.

Section 7

Planned Permeate Discharges 2008/2009

Figure 7-2 Low Hutton Creek flows compared with PHWTP permeate discharge

Planned Permeate Discharges 2008/2009

7.1.4 Potential Impacts on Channel Erosion

At the point of the proposed permeate discharge the unnamed Hutton Tributary has a width of approximately 20 m and a depth of approximately 1.4 m . This is more than sufficient to carry $4.5 \mathrm{ML} /$ day permeate discharge within a small proportion of the stream bed. Local engineering works are planned to minimise erosion at this point.

Downstream of this point the tributary narrows but significant water storage capacity is available in scour pools and the channel system. Heavy rains lead to local flooding prior to the December 2007 field visit (Simmonds and Bristow, 2007b). There was no evidence of overbank flow even in the narrowest sections of the stream. Erosion and scour arising from the planned volumes of permeate water discharge are expected to be minimal.

Rating tables from the Hutton Creek gauging station suggest a rise in water level of approximately 100 150 mm associated with the permeate discharge in Hutton Creek. This will simply maintain flows within the bottom of the channel since the dominant features of Hutton Creek are long wide ponds with short riffle sections between. Increased erosion is therefore considered unlikely during low flows in Hutton Creek.

At Utopia Downs on the Dawson River, DNRW rating tables suggests a rise of water level of circa 20 mm during normal flows. Once again this rise in water level will be well contained within the existing channel and no significant increase in erosion or scouring is likely.

7.1.5 Potential Impacts on Downstream Flooding

Discharges from the desalination plant will result in small rises in Hutton Creek and Dawson River as discussed in the previous section. Frequency analysis of floods in the Hutton Creek, Dawson River at Utopia and Dawson River at Taroom suggest that permeate discharge will be 0.07% and 0.03% of bankfull discharges respectively. Consideration of the cross-sections at these sites (see Figure 7-3 a and b) suggests little if any rise in natural bankfull flood levels.

7.1.6 Potential Salinity Impacts from Permeate Discharge

The predicted EC of the permeate discharge is comparable with existing EC levels in the unnamed Hutton Tributary and significantly lower than the elevated EC levels observed in Hutton Creek under low flow conditions. The proposed permeate discharge will therefore dilute salinity levels in Hutton Creek.

Estimated EC in Dawson River

The impacts of permeate discharges on the Dawson River EC have been estimated using a simple model that assumes complete mixing and conservation of mass. Two conservative flow conditions were considered:

- The "very low flows" condition is the minimum observed discharge during the dry season, and
- The "median November flows" condition was adopted as representative of small to medium flows.

Section 7

Planned Permeate Discharges 2008/2009

a) Hutton Creek

b) Utopia Downs

Figure 7-3 River cross-sections in Hutton Creek and Dawson River
Figure 7-4 shows the results of this modelling using various EC targets for a $4.5 \mathrm{ML} /$ day permeate discharge. Under the very low flow condition, permeate discharges will potentially have a more significant effect on Dawson River EC compared with moderate flow conditions (as represented by median November flows) when little impact on Dawson River EC is likely.

Planned Permeate Discharges 2008/2009

To minimise EC impacts from the permeate it is intended to operate the plant to deliver $4.5 \mathrm{ML} / \mathrm{day}$ at 500 $\mu \mathrm{S} / \mathrm{cm}$ which is within the observed range of EC at the discharge point in the unnamed Hutton Tributary, and below the current range of EC in Hutton Creek. A discharge with $500 \mu \mathrm{~S} / \mathrm{cm}$ will also mean that the relevant WQO ($340 \mu \mathrm{~S} / \mathrm{cm}$) is met within the Dawson River even under very low flows. This represents a very conservative operating scenario and very low risk of impacting on the riverine environment.

Figure 7-4 Modelled Impacts of Pony Hills Permeate Discharges

7.1.7 Potential Impacts from Permeate Discharge on Salt Loads

Annual salt loads from the Dawson River at Utopia Downs were calculated for the period 1997-2006 using the full length of the EC record at that site. In some years, insufficient information was available to provide a reliable estimate of annual load. Since discharge data and EC records are concurrent, a simple sum of hourly flow x salinity was used to calculate annual loads. Time weighted scaling was used to account for missing record where possible. Calculated average annual salt load is $4477+/-1267$ tonne.

Permeate discharge of $4.5 \mathrm{ML} /$ day at $500 \mu \mathrm{~S} / \mathrm{cm}$ from Pony Hills Water Treatment plant is equivalent to an annual salt load of 558.8 tonne. This load is well within the natural variation in the catchment.

The dominant mechanism for natural salt load movement in the Dawson River is via flood events in the wet season. The increase in catchment salt load arising from the desalination plant discharge arises from a constant input in both wet and dry seasons.

During the dry season the dominant issue with permeate discharge is likely to be the concentration rather than the load.

During wet season the relative size of existing storages along the Dawson River (Glebe Weir 17,700 ML, Neville Hewitt Weir $11,300 \mathrm{ML}$) is small compared with even the median flow volume at Taroom ($195,000 \mathrm{ML}$). Regular flushing of water in these storages is expected with no long term aggregation of salt in the weir pools.

Section 7
 Planned Permeate Discharges 2008/2009

Given the predicted increase in salt loads is within the natural annual variability, the low level of concentration of salt discharged, and the high flow rates in the catchment it is unlikely that the increased salt load will cause any significant issues in the Dawson or Fitzroy river systems.

Table 7-2, below provides a comparison of predicted permeate water quality outputs and existing water quality observed instream. Minima, medians and maxima are shown for Hutton Creek, Dawson Bend and Yebna Crossing.

7.1.8 Other Potential Water Quality Impacts

Fluoride

Due to the proposed low concentration of fluoride in the desalination water, the discharge is predicted to dilute existing fluoride levels downstream.

Nutrients

Median ammonia concentrations in the permeate are approximately five times lower than median concentrations in Hutton Creek. The differences between maxima are within the error of measurement. Nitrate concentrations are approximately half that found in Hutton Creek, and the maximum concentration in permeate discharges is a one hundredth of that found in Hutton Creek. Consequently, nutrient concentrations are expected to improve in sites downstream of the discharge point.

Sodium

Median concentrations of Sodium in permeate water discharges will increase median concentrations in Hutton Creek but remain below guideline values. Maximum concentrations of Sodium in the permeate are well below existing observed maxima in Hutton Creek.

pH

Associated water pH is alkaline with a predicted median pH of 8.5 entering the desalination plant. Dosing with acid and other processes within the plant is expected to largely neutralise the pH of the discharge water with the expected range of pH discharged being 6.5 to 8.5 units, similar to background levels in the area. pH is expected to rapidly adjust towards local conditions on contact with soils in the balancing pond, through the proposed cooling tower, and on discharge to the unnamed Hutton Tributary. It is noted the predicted pH of the discharge water is lower than currently recorded in the unnamed Hutton Tributary, and therefore water quality within the tributary could potentially become more neutral.

Planned Permeate Discharges 2008/2009

Table 7-2 Predicted permeate quality versus existing stream water quality.

MTV	Units	Permeate		Hutton Creek				Dawson Bend				Dawson R @Yebna Crossing			
		Min	$\begin{gathered} 90^{\text {th }} \% \mathrm{i} \\ \text { le } \end{gathered}$	Min	Med	Max	n	Min	Med	Max	n	Min	Med	Max	n
Physico-Chemical Parameters															
Electrical Conductivity	$\mu \mathrm{S} / \mathrm{cm}$ at 25C	150	500	131	233	1294	16	136	251	273	6	110	247	435	46
pH	Stand	6.5	8.76	6.60	7.85	8.30	16	6.4	6.9	7.3	6	7.20	7.75	8.00	6
Temperature	C	NA	NA	84	150	1010	16	92	129	220	6	75	168	296	46
Total dissolved solids	mg/L	100	325	5	28	630	16	4	12	366	4	2	8	142	5
TSS	mg/L	0	0	-	-	-	-	-	-	-	-	-	-	-	-
TOC	mg/L - C	0	0	-	-	-	-	-	-	-	-	-	-	-	-
DOC	mg/L-C	0	0	6.60	7.85	8.30	16	6.4	6.9	7.3	6	7.20	7.75	8.00	6
Inorganic Non-Metallic Parameters															
Total Alkalinity	$\begin{aligned} & \mathrm{mg} / \mathrm{L}- \\ & \mathrm{CaCO} \end{aligned}$	40	125	-	-	-	-	-	-	-	-	-	-	-	-
Bicarbonate Alkalinity	$\begin{gathered} \mathrm{mg} / \mathrm{L}- \\ \mathrm{CaCO} \end{gathered}$	40	115	65	100	820	16	55	118	157	6	87	114	130	6
Carbonate Alkalinity	$\begin{aligned} & \mathrm{mg} / \mathrm{L}- \\ & \mathrm{CaCO} \end{aligned}$	0	10	-	-	-	-	-	-	-	-	-	-	-	-
Chloride	mg/L	30	72	4	18	355	16	9	14	15	6	19	21	22	6
Fluoride	mg/L	0	0.5	<0.1	0.1	1.4	12	<0.1	0.2	0.2	6	<0.1	0.2	0.2	6
Sulphate	mg / L	0.2	0.3	<1	5.0	170	12	<1	<10	<5	6	<1	<5	<10	6
Silica	$\begin{gathered} \mathrm{mg} / \mathrm{L} \\ \mathrm{SiO} 2 \end{gathered}$	0.2	1.0	-	-	-	-	-	-	-	-	-	-	-	-
Cations															
Calcium	mg/L	0	0.5	5	16	85	16	1	14	19	6	7	11	17	6
Magnesium	mg/L	0	0	2	5	67	16	<1	8	9	6	4	6	6	6
Potassium	mg / L	0	0.6	2	5	10	16	2	3	5	6	3	3	6	6
Sodium	mg/L	35	107	9	21	280	16	15	21	27	6	27	28	33	6
Nutrients															
Ammonia-Nitrogen	mg/L	0	0.05	<. 01	0.16	0.24	3	<0.006	<0.01	<0.01	3	<0.01	<0.01	0.014	3
Nitrate-Nitrogen	mg/L	0	0.02	1	1	69	9	-	<10	-	1	<10	-	-	1
Phosphorus/ Phosphate	mg/L - P	ND	0.0004	<10	95	230	5	20	53	750	5	<10	40	280	5
Trace elements															
Aluminium	mg/L	0	0.05	-	-	-	-	-	-	-	-	-	-	-	-
Barium 2	mg / L	0	0.03	-	-	-	-	-	-	-	-	-	-	-	-
Boron 2	mg/L	0.1	3	<0.1	0.06	800	12	<0.1	257	500	6	-	-	-	-
Iron	$\mu \mathrm{g} / \mathrm{L}$	0.3	0.7	62	1700	2358	3	66	97	950	3	76	156	390	3
Lead	$\mu \mathrm{g} / \mathrm{L}$	0.3	1.7	<1		2	2	<1	-	<1	2	<1	-	<1	2
Manganese	$\mu \mathrm{g} / \mathrm{L}$	0.05	0.1	-	-	-	-	-	-	-	-	-	-	-	-
Zinc	$\mu \mathrm{g} / \mathrm{L}$	0.05	0.75	<10	-	1.5	2	<1	-	<10	2.00	<1	-	<10	2
Strontium	mg/L	0.004	0.037	-	-	-	-	-	-	-	-	-	-	-	-

Section 7

Planned Permeate Discharges 2008/2009

Aluminium

Aluminium has not been measured in the waterways of the Upper Dawson River catchment. Modelled Aluminium $90^{\text {th }}$ percentile concentrations in permeate may reach as high as $0.05 \mathrm{mg} / \mathrm{L}$ just under the AWQG trigger value for 95% protection of aquatic ecosystems ($0.055 \mathrm{mg} / \mathrm{L}$).

Strontium

Strontium has not been detected in the Upper Dawson River waterways to date.
Strontium will not be discharged in the permeate under normal conditions. However, from time to time Strontium may be sourced from associated water with a maximum predicted concentration in permeate of $0.05 \mathrm{mg} / \mathrm{L}$. No guideline values for Strontium 2+ are available in Australia.

Natural concentrations of Strontium in the worlds groundwaters typically lie in the range $0.0001-0.1 \mathrm{mg} / \mathrm{L}$ (Chapman, 1998); although natural concentrations as high as $15 \mathrm{mg} / \mathrm{L}$ have been identified in drinking water extracted from some German aquifers (Behrens et al, 2001). The world average concentration for unpolluted rivers is $0.1 \mathrm{mg} / \mathrm{L}$. This suggests that occasional Strontium discharges will not cause significant environmental harm. A working group of the German Federal Environmental Agency considered the use of Strontium salts as a tracer in groundwater investigation and recommend an upper limit of $15 \mathrm{mg} / \mathrm{L}$ is not significantly exceeded in drinking water (ibid.).

Temperature

Associated water has a temperature range of circa $30-45 \mathrm{C}$. Without further treatment, permeate temperatures are likely to be close to ambient water temperatures during summer and significantly higher than ambient during winter.

High temperature discharges could pose ecological risk due to the relative constant temperature of associated water in contrast to the seasonal temperature fluctuations in streams in the area. The relative volumes of flow and almost complete mixing expected within stream means that the temperature regime in Hutton Creek may be expected to be significantly affected, while the temperatures in the Dawson River may be expected to have minimal change from current conditions due to the dominance of spring flows (the minimum $90^{\text {th }}$ percentile monthly observed flow at Utopia is 211 ML/day nearly 50 times the permeate discharge).

Due to the uncertainties surrounding the rate of movement of permeate temperature back to ambient stream temperature, Santos will install cooling towers downstream of the RO plant. Cooling towers will ensure the maintenance of diurnal and seasonal temperature variations in the discharge tributary, Hutton Creek and downstream. Cooling towers will normally deliver water within 5C of wet bulb temperature.

Installation and operation of the cooling towers will be monitored. Discharge water temperatures will be monitored and compared with conditions in Hutton Creek (upstream and downstream of the tributary) and Dawson River (upstream and downstream of Hutton Creek).

7.1.9 Potential River Health Impacts from Permeate Discharge

Discharges from the proposed desalination plant may improve habitat for rock wallabies and pigeons. Changes to the billabong adjacent to Hutton Creek are likely to be minimal due to the relative size of the pond compared with flows and existing connection with Hutton Creek,

Planned Permeate Discharges 2008/2009

The main potential ecological change is a shift in macroinvertebrate species evident in the lower reaches of the tributary due to the increased flow regime. This shift is likely to be minor.

Water quality in the tributary post permeate discharge is expected to be significantly better than at present with higher dissolved oxygen, salinity closer to background levels.

Permeate water discharge is likely to lead to a general improvement in water quality through dilution of a range of parameters. The volumes of discharge are significant under low flow conditions, but are mainly expected to lead to an improvement in available habitat as pools will remain full for longer periods and riffles between pools will contain flow. There is unlikely to be a major shift in aquatic species.

The surface waters of the Upper Dawson River are of economic, environmental and social importance. Small, low order streamlines within the Santos Production Licences are often intermittent and certainly ephemeral; and they are subject to significant erosion due to clearing and stock access. These streams do not offer significant refugia during the dry season and are considered of less value that lower order streams such as Hutton Creek, Baffle Creek and Dawson River which maintain large pools even during dry season.

7.2 Central Desalination Plant

Investigations for the potential installation and use of the Central Desalination Plant are currently underway and will be presented in detail in the 2009 EMP for the Fairview Project Area.

Using the same model for salinity as for the PHWTP and taking into account planned discharges from PHWTP and spring flows in the Dawson River it is estimated (Figure 7-5) that the permeate from the Central Desalination Plant must be no higher than $340 \mu \mathrm{~S} / \mathrm{cm}$ in order to maintain the salinity in the Dawson River at Dawson Bend at or below the relevant WQO.

Discharges are assumed to be $15 \mathrm{ML} /$ day from the CDP in this preliminary scenario.

Figure 7-5 Modelled Impacts of Central Desalination Plant Permeate Discharges

Section 8

Limitations

URS Australia Pty Ltd (URS) has prepared this report in accordance with the usual care and thoroughness of the consulting profession for the use of Santos Pty Ltd and only those third parties who have been authorised in writing by URS to rely on the report. It is based on generally accepted practices and standards at the time it was prepared. No other warranty, expressed or implied, is made as to the professional advice included in this report. It is prepared in accordance with the scope of work and for the purpose outlined in the Proposal.

The methodology adopted and sources of information used by URS are outlined in this report. URS has made no independent verification of this information beyond the agreed scope of works and URS assumes no responsibility for any inaccuracies or omissions. No indications were found during our investigations that information contained in this report as provided to URS was false.

This report was prepared between November 2007 and January 2009 and is based on the information reviewed and conditions encountered at the time of preparation. URS disclaims responsibility for any changes that may have occurred after this time.

This report should be read in full. No responsibility is accepted for use of any part of this report in any other context or for any other purpose or by third parties. This report does not purport to give legal advice. Legal advice can only be given by qualified legal practitioners.

ANZECC \& ARMCANZ (1994). National Water Quality Management Strategy, Environment Australia.
ANZECC \& ARMCANZ (2000). Australian and New Zealand Guidelines for Fresh and Marine Water Quality, National Water Quality Management Strategy No. 4, Environment Australia.

Behrens H, Beims U, Dieter H, Dietze G, Eikmann T, Grummt T, Hanisch H, Henseling H, Kan W, Kerndorff H, Leibundgut C, Muller-Wegener U. Ronnefahrt I, Scharenberg B, Schleyer R, Scholz W and Tilkes F (2001), Toxicological and ecotoxicological assessment of water tracers, Hydrogeology Journal 2001 9:321-325

Boobook (2007), Field Survey, Proposed FV77 Discharge Streamline, December 2007
Chapman D. (1998). Water Quality Assessments A guide to the use of biota, sediments and water in environmental monitoring, Second Edition, UNESCO, WHO, UNEP, Published by E \& FN Spon, ISBN 0-419-21590-6

DNRM (2006), Fitzroy Basin Resource Operations Plan, Department of Natural Resources and Mines, April 2006

DNRW (2006), Queensland Groundwater Database
EnviroTest (2003), Biological monitoring of macroinvertebrate communities in the Upper Dawson River September 2003, Consultants report to Tipperary Oil and Gas Australia, November 2003

EnviroTest (2004a), Biological monitoring of macroinvertebrate communities in the Upper Dawson River April 2004, Consultants report to Tipperary Oil and Gas Australia, June 2004

EnviroTest (2005a), River Health Assessment of the Upper Dawson River November 2004, Consultants report to Tipperary Oil and Gas Australia, March 2005

EnviroTest (2005b), River Health Assessment of the Upper Dawson River May 2005, Consultants report to Tipperary Oil and Gas Australia, August 2005

EnviroTest (2006a), River Health Assessment of the Upper Dawson River May 2006, Consultants report to Santos Ltd, June 2006

EnviroTest (2006b), River Health Assessment of the Upper Dawson River October 2006, Consultants report to Santos Ltd, December 2006

Hart BT, Bailey P, Edwards R, Hortle K, James K, McMahon A, Meredith C and Swadling K (1990). Effects of salinity on river, stream and wetland ecosystems in Victoria, Australia. Water Research. Vol. 24, No. 9,pp. 1103 - 1117.

Hart BT, Bailey P, Edwards R, Hortle K, James K, McMahon A, Meredith C and Swadling K (1991). A review of the salt sensitivity of the Australian freshwater biota. Hydrobiologia. 210: pp. 105-144.

Henderson C (2000). State of the Rivers. Comet, Nogoa and Mackenzie Rivers. An Ecological and Physical Assessment of the Condition of Streams in the Comet, Nogoa and Mackenzie River Catchments. Department of Natural Resources, Brisbane, June 2000

Hydro Tasmania Consulting (2008), Dawson's Creek Survey April 2008, Consultants report to URS Australia Pty Ltd, April 2008

Section 9

References

Kefford B, Dunlop J, Nugegoda D and Choy S (2007). Understanding salinity thresholds in freshwater biodiversity: freshwater to saline transition, Chapter 2 in Lovett S, Price P and Edgar B (eds) 2007; Salt, Nutrient, Sediment and Interactions: Findings from the National River Contaminants Program, Land and Water Australia, 2007

Negus P (2007). Water Quality Information Summary for the Fitzroy Region. Department of Natural Resources and Water, Queensland.

Nielsen DL, Brock MA, Rees GN and Baldwin DS (2003). Effects of increasing salinity on freshwater ecosystems in Australia, Aust J Botany, 2003, 51, 655-665

Queensland EPA (2005). Establishing Draft Environmental Values and Water Quality Objectives, Resource Assessment Guideline, Queensland EPA 02/05 Version 1.1

Queensland EPA (2008), Queensland Wetland Map Version 1.2, Maps for Hornet Bank 8746 and Injune 8646 from http://www.epa.qld.gov.au/wetlandinfo/site/MappingFandD.html accessed April 2008

Simmons and Bristow (2007). River Health Assessment of the Upper Dawson River April 2007, Consultancy report to Santos TOGA Pty Ltd, June 2007.

Simmons and Bristow (2007b), Field Survey, Proposed FV77 Discharge Streamline, December 2007
Simmons and Bristow (2008). River Health Assessment of the Upper Dawson River November 2007, Consultancy report to Santos TOGA Pty Ltd, March 2008.

Smith R, Jeffree R, John J and Clayton P (2004), Review of Methods for Water Quality Assessment of Temporary Stream and Lake Systems, Australian Centre for Mining Environmental Research, September 2004

Telfer D. (1995). State of the Rivers. Dawson River and Major Tributaries. An Ecological and Physical Assessment of the Condition of Streams in the Dawson River Catchment. Department of Primary Industries, Resource Management, Brisbane.

Table A10

Upper Dawson River Spring Analytical Results

Location	Sample ID	Date Sampled	Metals (Total)									Major Ions										Alkalinity			
			Arsenic	Boron	Cadmium	Chromium	Copper	Iron	Lead	Nickel	Zinc	Calcium	Chloride	Fluoride	Magnesium	Potassium	Sodium	Sulfate as SO4 2-	Total Anions	Total Cations	$\begin{gathered} \text { lonic } \\ \text { Balance } \end{gathered}$	Hydroxide Alkalinity as CaCO3	Carbonate Alkalinity as CaCO3	Bicarbonate as CaCO 3	Total Alkalinity
		LOR	0.001	0.1	0.0001	0.001	0.001	0.05	0.001	0.001	0.005	1	1	0.1	1	1	1	1	0.01	0.01	0.01	1	1	1	1
		Units	mg/L	meq/I	meq/	\%	mg/L	mg/L	mg/L	mg/L															
		MTV	$\begin{aligned} & \hline 0.024 / \\ & 0.013 \\ & \hline \end{aligned}$	0.37	0.0002	0.05	0.0014	0.2	0.0034	0.011	0.008	1000	175	1	na	na	115	400	na						
SP01	SP01_30/04/08	30/04/2008	0.002	<0.1	0.0003	0.001	0.002	9.39	0.002	0.002	0.01	37	46	1.2	10	4	43	4	4.71	4.67	0.53	<1	<1	167	167
SP01	SP01_30/04/08CHK	30/04/2008	0.002	<0.1	0.0002	<0.001	0.002	9.42	0.002	0.002	0.008	-	51	1.2	-	-	-	-	-	-	-	<1	<1	191	191
SP02	SP02_30/04/08	30/04/2008	0.001	<0.1	0.0002	0.001	0.003	3.68	0.002	0.003	0.015	91	166	1.2	28	9	63	57	10.6	9.82	3.67	<1	<1	235	235
SP02	QC01_30/04/08	30/04/2008	0.001	<0.1	0.0002	<0.001	0.002	1.48	0.001	0.002	0.009	83	52	1.2	24	6	55	64	8.39	8.68	1.67	<1	<1	280	280
SP03	SP03_30/04/08	30/04/2008	0.006	<0.1	0.0002	0.002	0.004	14.9	0.004	0.01	0.017	36	13	1.3	13	4	33	7	4.54	4.38	1.81	<1	<1	201	201
SP04	SP04_01/05/08	1/05/2008	0.002	<0.1	0.0002	<0.001	0.002	4.4	<0.001	0.001	0.01	20	28	<0.1	6	2	28	8	2.91	2.82	-	<1	<1	98	98
SP04	SP04_01/05/08CHK	1/05/2008	-	-	-	-	-	-	-	-	-	19	-	-	6	2	26	8	-	-	-	-	-	-	-
SP05	SP05_01/05/08	1/05/2008	<0.001	<0.1	0.0001	<0.001	<0.001	0.73	<0.001	<0.001	<0.005	4	13	1.2	1	2	25	<1	1.6	1.4	-	<1	<1	62	62
SP06	SP06_01/05/08	1/05/2008	<0.001	<0.1	0.0005	<0.001	0.001	1.15	<0.001	<0.001	0.008	4	19	1.1	2	2	24	<1	1.63	1.45	-	<1	<1	55	55
SP07	SP07_01/05/08	1/05/2008	<0.001	<0.1	0.0004	<0.001	0.011	0.72	<0.001	<0.001	0.021	4	21	1.1	2	2	25	<1	1.71	1.54	-	<1	<1	56	56
SP08	SP08_01/05/08	1/05/2008	<0.001	<0.1	0.0002	<0.001	<0.001	0.82	<0.001	0.006	0.007	28	46	1.3	8	4	45	14	4.1	4.06	0.47	<1	<1	125	125
SP09	SP09_01/05/08	1/05/2008	<0.001	<0.1	0.0006	<0.001	0.001	1.09	<0.001	<0.001	<0.005	7	23	1.1	3	2	28	<1	1.97	1.85	-	<1	<1	66	66
SP10	SP10_01/05/08	1/05/2008	<0.001	<0.1	0.0001	<0.001	0.001	1.25	<0.001	<0.001	<0.005	6	23	1.2	3	2	45	<1	2.73	2.54	-	<1	<1	104	104
SP10	SP10_01/05/08CHK	1/05/2008	<0.001	<0.1	0.0002	<0.001	0.001	1.26	<0.001	<0.001	<0.005	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SP11	SP11_01/05/08	1/05/2008	<0.001	<0.1	0.0002	<0.001	<0.001	0.41	<0.001	<0.001	<0.005	6	24	1.2	3	2	44	<1	2.79	2.59	-	<1	<1	106	106
SP11	SP11_01/05/08CHK	1/05/2008	-	-	-	-	-	-	-	-	-	-	24	1.2	-	-	-	-	-	-	-	<1	<1	102	102
SP12	SP12_01/05/08	1/05/2008	<0.001	<0.1	0.0002	<0.001	<0.001	0.45	<0.001	<0.001	<0.005	8	26	1.2	3	2	39	<1	2.65	2.46	-	<1	<1	96	96
SP13	SP13_02/05/08	2/05/2008	<0.001	<0.1	0.0002	<0.001	<0.001	0.8	<0.001	<0.001	<0.005	22	21	1.2	12	2	27	<1	3.39	3.26	2	<1	<1	140	140
SP14	SP14_02/05/08	2/05/2008	<0.001	<0.1	0.0003	<0.001	<0.001	0.78	<0.001	<0.001	<0.005	22	21	1.2	12	2	27	<1	3.43	3.3	1.9	<1	<1	142	142
SP14	QC02_02/05/08	2/05/2008	<0.001	<0.1	0.0005	<0.001	<0.001	0.78	<0.001	<0.001	<0.005	22	20	1.3	11	2	30	<1	3.42	3.41	0.17	<1	<1	143	143
SP15	SP15_02/05/08	2/05/2008	0.001	<0.1	0.0005	<0.001	0.001	1.08	<0.001	<0.001	0.005	21	19	1.3	11	2	26	1	3.14	3.15	0.16	<1	<1	129	129
SP15	SP15_02/05/08CHK	2/05/2008	-	-	-	-	-	-	-	-	-	21	-	-	11	2	28	1	-	-	-	-	-	-	-

NOTES
MTV - minimum guideline trigger value
"CHK" - lab duplicate sample
"QC" - field duplicate sample
BOLD Greater than relevant MTV

Table A1
URS Water Quality Parameters Upper Dawson Catchment

Site ID		Date/Time	Water Quality Parameters					
Number	Name	Date	Time (EST)	EC ($\mu \mathrm{S} / \mathrm{cm}$)	$\begin{array}{\|c\|} \hline \mathrm{DO} \\ (\mathrm{mg} / \mathrm{L}) \end{array}$	pH	Turbidity (NTU)	Temp (oC)
			MTV	340		6.5-8	50	
D002	Dawson River @ Yebna Crossing	05-Mar-08	12:00	107	6.2	7.1	270	23.9
D002	Dawson River @ Yebna Crossing	02-Feb-08	10:35	264	5.47	6.76	166	25.4
D002	Dawson River @ Yebna Crossing	14-May-08	16:20	265	11.3	7.5	9	17.3
D003	Pine Creek @ Phelps Rd	05-Mar-08	-	-	-	-	-	-
D003	Pine Creek @ Phelps Rd	02-Feb-08	12:20	227.2	4	6.59	266	29.2
D003	Pine Creek @ Phelps Rd	13-May-08	15:45	-	-	-	-	-
D004	Dawson River @ Taroom-Roma Rd	05-Mar-08	16:40	150	6.01	7.73	555	23.3
D004	Dawson River @ Taroom-Roma Rd	02-Feb-08	13:36	270	5.23	6.82	215	27.3
D004	Dawson River @ Taroom-Roma Rd	13-May-08	10:55	368	9.84	7.78	14	14.6
D005	Eurombah @ Hornet Bank Rd	05-Mar-08	17:10	118	6.15	7.5	492	24.4
D005	Eurombah @ Hornet Bank Rd	02-Feb-08	14:15	317	5.95	7.16	191	28.8
D005	Eurombah @ Hornet Bank Rd	13-May-08	10:00	340	6.22	7.3	13	16.1
D006	Bridge/Ram Creek @ Roma Rd	05-Mar-08	16:30	192	7.43	8.41	111	28.1
D006	Bridge/Ram Creek @ Roma Rd	02-Feb-08	14:43	271	6.18	7.51	32	30.9
D006	Bridge/Ram Creek @ Roma Rd	13-May-08	11:30	-	-	-	-	-
D007	Paddys Creek @ Roma Rd	05-Mar-08	16:05	65.3	8.62	8.41	2	31.2
D007	Paddys Creek @ Roma Rd	02-Feb-08	14:56	232	4.57	8.05	408	30.8
D007	Paddys Creek @ Roma Rd	13-May-08	11:45	265	7.9	7.4	240	17.4
D008	Middle Creek @ Roma Rd	05-Mar-08	15:40	186	6.4	8.5	152	28.6
D008	Middle Creek @ Roma Rd	02-Feb-08	15:30	234	8.58	8.34	54	33.7
D008	Middle Creek @ Roma Rd	13-May-08	12:15	488	11.3	8.5	160	20.7
D009	Juandah Creek @ Roma Rd	05-Mar-08	15:20	120.2	2.26	7.14	473	28.5
D009	Juandah Creek @ Roma Rd	02-Feb-08	15:46	244	6.04	8.06	163	30.4
D009	Juandah Creek @ Roma Rd	13-May-08	12:30	218	6.36	6.8	410	20.5
D010	Dawson River @ Old Taroom Bridge	05-Mar-08	14:50	157.2	5.39	7.42	427	24.2
D010	Dawson River @ Old Taroom Bridge	02-Feb-08	16:23	225.1	4.15	6.98	243	27.8
D010	Dawson River @ Old Taroom Bridge	13-May-08	13:35	420	8.22	7.77		18.9
D011	Kinnoul Creek @ Taroom Rd	05-Mar-08	10:50	104	4.3	7.2	30	25.1
D011	Kinnoul Creek @ Taroom Rd	02-Feb-08	17:00	245	6.48	7.49	28	28.8
D011	Kinnoul Creek @ Taroom Rd	13-May-08	14:10	205	9.5	7.43	28	20.2
D012	Hutton Creek @ Carnarvon Hwy	05-Mar-08	-	-	-	-	-	-
D012	Hutton Creek @ Carnarvon Hwy	03-Feb-08	9:00	485	4.5	7.2	5	26.8
D012	Hutton Creek @ Carnarvon Hwy	13-May-08	9:15	260	6.7	6.98	22	14.9
D013	Dawson River @ Arcadia Valley Rd	06-Mar-08	10:00	136	-	7.1	-	-
D013	Dawson River @ Arcadia Valley Rd	03-Feb-08		222.9	6.33	7	31	25.5
D014	Dawson River @ Hornet Bank Rd	02-Feb-08	14:00	-	-	-	-	-
D015	Dawson River @ Baralaba	04-Feb-08	12:45	132	7.88	6.58	180	27.6
D016	Dawson River @ Carnavon Hwy	03-Feb-08		-	-	-	-	-

[^9]CLNo cSS Surace e water

Sample Collection Point	Sample Date	Physical										Cations				Anions				Nutients 8 Biological					Trace Elements										Flow		$\underset{\substack{\text { Physical } \\ \text { Apearance }}}{ }$	Data
		Time			pH	(1,	(mo ${ }_{\text {che }}$		(mst	(mgst	(tubidity	Sodium	$\begin{gathered} \text { Potassium } \\ (m \text { mgLL } \end{gathered}$	$\begin{array}{\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|} \substack{\text { (mol) }} \end{array}$	$\begin{gathered} \text { Magnesium } \\ \text { (ngsLL) } \end{gathered}$	$\begin{array}{\|c\|} \hline \text { Bicarbonate } \\ \text { as HCO3 } \\ \text { (mg/L) } \end{array}$	$\begin{array}{\|c\|c\|c\|c\|c\|c\|c\|crcc\|} \substack{\text { mggLL }} \\ \hline \end{array}$	(Fluride		$\begin{array}{\|c\|c\|c\|c\|c\|c\|c\|} (1) \end{array}$	$\left.\begin{array}{\|c\|c\|} \hline \text { (ugl) } \end{array}\right)$	$\underset{\substack{\text { Ammoniaa } \\ \text { (HgLLL }}}{ }$		$\underset{\substack{\text { chla } \\(\operatorname{cglLL}}}{ }$	$\begin{array}{\|c} \text { Arsenic } \\ \text { (HglL) } \end{array}$	$\left\|\begin{array}{c} \text { Broon } \\ \text { (agg LL } \end{array}\right\|$	$\begin{array}{\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|} \substack{\text { (9gL }} \\ \hline \end{array}$	$\underset{\substack{\text { chromium } \\ \text { (gglL) }}}{\substack{\text { (ghom }}}$		$\begin{array}{\|l\|l\|l\|l\|l\|l\|l\|l\|} (\operatorname{logh} \end{array}$		$\underset{\substack{\text { mercurur } \\ \text { (egulu }}}{ }$	$\left\lvert\, \begin{gathered} \text { Nickelel } \\ (\text { cgaclu } \end{gathered}\right.$	$\left.\begin{array}{l} \left(z_{(0, i n}(2)\right. \end{array}\right)$	Level	velocity		
		MTv	na	$\substack{\text { 20.80 } \\ \text { oile }}$	${ }_{8.0}^{6.5}$	${ }^{340}$	${ }^{\text {na }}$	${ }^{85-110}$	na	10	50	115	${ }^{\text {na }}$	1000	na	${ }^{\text {na }}$	175	1,2	400	500	50	${ }^{20}$	700	5	$24 / 13$	370	0.2	50	1.4	200	3.4	0.6	11	8	${ }^{\text {na }}$	${ }^{\text {na }}$		
Davson River - Acradia valley	${ }_{4}^{40512002}$																																				Noflow	s
Davson River - Acradia valey	(10012002																																				$\frac{\text { No fow }}{\text { Noflow }}$	s
Davson River-Acradia valey	220682001																																				No fow	${ }^{\text {s }}$
	${ }^{2505052001}$																																				$\frac{\text { No fow }}{\text { No fowm }}$	s
Davson River-Acradia valey	88032001			${ }^{26}$		199			${ }^{135}$																												Clear	${ }^{\text {s }}$
Danson River A Acadia valley Dawson River- Arcaid Valley	8022001 5011201	隹迆		${ }^{26}$		${ }^{285}$			194 190 1																												${ }_{\text {Clear }}^{\text {Clear }}$	
Dawson River-A Acradia valey	171/222000	${ }_{1400}$		${ }^{25}$		${ }^{231}$			157																												Clear	s
		15.30		${ }^{25}$		${ }^{231}$			157																												Clear	
Danson River- Acradia Valley	${ }^{50992000}$																																				No water	
Davson River A Acadia valey	30822000 13072000																																				$\xrightarrow{\text { No water }}$	s
Davson River-Acradia valley	150682000																																				No Sample	
Daason River A Acadia valey	${ }^{208022000}$																																					
Dasson River-Acracaia valley	${ }^{104242000}$																																				Not Fowing	
Daason River A Acadia valey	${ }^{20332000}$																																				No fiow	s
	30012200																																					
Dasson River - Acradid V Valey	${ }^{29111 / 1999}$																																					s
Danson nverer Acaialavaley	3009919999																																				Not Fowing	
Dasson River-A Arcaidivaley	${ }^{29081 / 1999}$																																				No Water	s
																																					No Waler No Water	
Davson River-A Arcaid V Valley	705019999																																				No Water	s
Danson River A Acadia Valley Dawson River-Acadia valey	${ }_{\substack{\text { 50041999 } \\ 60311999}}$	15.00		${ }_{28}^{28}$		135 176			${ }_{122}^{92}$																												$\underbrace{\substack{\text { sight tow, murky }}}_{\text {Nof for, mud hole }}$	
Davson River-Acradia vally	260217999																																				No water	
Danson River-Acradia Valley	${ }^{101111999}$																																				No fow	${ }_{5}$
	${ }^{21212111998}$																																				$\xrightarrow{\text { Nof olow }}$ No fow	${ }^{\text {s }}$
Ustream Davson Waietrole	911012003			26.5	7.1	170	6.80	${ }^{86}$	109			${ }^{17}$	11	${ }^{14}$	3	${ }^{98}$	${ }^{8}$	${ }^{0.1}$	${ }^{<}$							100									led			
Usptram Dawson Waienole	${ }^{220404}{ }^{1711104}$			${ }_{2}^{24.9}$	${ }_{6} 7.6$	${ }_{1702}^{273}$	${ }_{\text {l }}^{\text {7.90 }}$	${ }_{69}^{96}$	${ }^{156}$	${ }_{82}^{52}$		$\stackrel{22}{3}$	$\stackrel{6}{<1}$	${ }^{14}$	5	151 70	${ }^{12}$	0.1 0.24	< ${ }_{<10}^{<10}$	7780	${ }_{190}^{190}$	${ }_{380}$				cioo										${ }_{\text {Low }}^{\text {Low }}$		¢
Dawson Road Crossing	${ }^{\text {50992000 }}$			15.4	7	50	${ }^{8.61}$	84	46	${ }^{125}$	101	${ }^{3}$	4	1	1	${ }^{28}$	3	0.1	4	570		10			4	<100	${ }^{0.1}$	16	2	4407	${ }^{3}$	<0.1	4	14				
soon Road Crossing	266042007		19.5	18.9	6.6	159	0.81	9	160	${ }^{68}$		11	10	18	6	95	6	0.24	<1	3300	110	590	${ }^{128^{*}}$	8.8	2.8			<1	<2	100		<0.5	<3					${ }_{\text {RH }}$

Water Quality Data Summary

Sample CollectionPoint	${ }_{\substack{\text { Sample } \\ \text { Date }}}^{\text {ate }}$	Time	Physical									Cations				Anions				Nutrients				Trace Elements													Physical Appearance	
			$\begin{array}{\|c\|} \hline \text { Teir } \\ \text { Aen } \end{array}$		pH		(mgl) ${ }_{\text {po }}$	$\underset{\text { sat }}{\substack{\text { ooot } \\ \text { sat }}}$	${ }_{\substack{\text { ros } \\ \text { (mgl) }}}^{\text {den }}$	${ }_{\substack{\text { rsss }}}^{\text {Tss }}$		(${ }_{\text {Sodium }}^{\substack{\text { (mgl) }}}$	$\underset{\substack{\text { Potassium } \\ \text { (mgL) }}}{\text { ata }}$	(calcium	$\begin{array}{\|c\|c\|c\|c\|c\|c\|c\|c\|} \\ \text { (mgsium } \end{array}$	Bicarbonate as $\mathrm{HCO}^{(\mathrm{mg} / \mathrm{L})}$ (mg	$\left.\begin{array}{c} \text { chhoride } \\ \text { (mg }(L L L) \end{array}\right)$	(matice	$\begin{gathered} \text { Sulphate } \\ \text { (mgLL } \end{gathered}$	$\underset{\text { (1) }}{\substack{\text { (ug) }}}$	(ugl)	Ammond	$\begin{array}{\|c\|} \hline \text { Nitrate as } \\ \mathrm{NO}_{3} \\ (\mu \mathrm{~g} / \mathrm{L}) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Arsenic } \\ \text { (uggl) } \end{array} \\ \hline \end{array}$	(1) $\begin{gathered}\text { Boron } \\ \text { (ugl) }\end{gathered}$	Casmium	$\begin{aligned} & \text { Chromium } \\ & (\mu \mathrm{g} / \mathrm{L}) \end{aligned}$	coper	$\left.\right\|_{\substack{\text { roma } \\(\text { mglu }}}$	$\begin{array}{\|l\|l\|} \hline(\text { Lead } \\ \text { (egal }) \end{array}$	(ersary	$\left\|\begin{array}{c} \text { Nickel } \\ \text { (eglL } \end{array}\right\|$	(zinc		Level	Velocity		(Data source
		MTV	${ }^{\text {na }}$		6.5.8.0	340	na	85-110	${ }^{\text {na }}$	10	${ }^{50}$	115	${ }^{n a}$	1000	${ }^{n 9}$		${ }^{175}$	${ }_{1,2}$	${ }^{400}$	500	${ }^{50}$	${ }^{20}$		${ }^{24173}$	${ }^{370}$	0.2	${ }_{50}$	1.4	200	${ }_{3} .4$	${ }_{0}^{0.6}$	11	${ }^{8}$	${ }^{5}$	${ }^{\text {na }}$	${ }^{\text {na }}$		
Upeer Baffe Creek	40552002	15.40		${ }^{21}$		1585			1078 108 108																												Clear	s
Upper Baffe creek	1017202	10.30		- ${ }_{2}^{24}{ }_{2}$		1570 1570			(10681068 108																												Siligh loudy brown	s
Upper Bafle Creek	10112002	14.35		${ }^{25}$		147			100																												Sot fowing - Yelow Brown	s
Upeer Bafte Criek	10112002	13.35		${ }^{27}$		128			${ }^{87}$																												Slight fow, mudy	s
Upeer Bafte criek	10172022	13:10		29		${ }_{9}^{97}$			${ }_{68}^{66}$																													s
Upper a affec creek	1012002	${ }^{13,10}$		${ }_{27}^{29}$		${ }_{1144}^{115}$			${ }_{98}^{78}$																												Stight $\begin{aligned} & \text { Silow, muddy } \\ & \text { Mod fow mudy }\end{aligned}$	s
Upper Eaffer ireek	220682001								0																												No fow	
Uperer Biffecreek	${ }^{25050520001}$								0																												${ }^{\text {Nofow }}$	${ }_{5}$
Upper Baffec creek	${ }^{2010420001} 8$								\bigcirc																												$\xrightarrow{\text { Nof fow }}$	s
Upper Baffe Creek	511020000								0																													
Uperer Baffe creek	${ }^{5} 5$								0																												${ }^{\text {Nofow }}$	${ }_{5}$
Upper batif Creek	${ }^{303882000} 1$	14.29		${ }^{24}$		142			${ }_{97}$																												$\xrightarrow{\text { Cloudy so somesesediment }}$	s
Upper Baffe creek	150682000	${ }^{14.22}$		${ }_{24}^{24}$		${ }_{1226}$			${ }^{881}$																												Cloud, some sediment	s
Uppere Batif creek	${ }^{20682000}$																																					
Upper bilfe Cieek	10	${ }^{10.30} 10$		${ }_{24}^{24}$		${ }_{1456}$			${ }^{990}$																													
Upper Bafte creek	20332000			${ }^{24}$		${ }_{1467}$			${ }^{998}$																												Slight coudy brown	
Upper Batfe creek	301212000 30121999	10.30		${ }^{24}{ }_{25}^{24}$		1856 200 20			${ }^{1262}$																												Stight loudy bown	s
Upper Bafte creek	291111199	11:17		${ }_{2} 24$		280			190																												Not Fowing	
Upper Batif Creek	301101999 30091999	15.42		${ }_{2}^{25}$		460 211			313 143																												Not Fowing	s
Upere Baffe creek	290711999			${ }^{15}$		185			${ }^{126}$																												No fow	${ }_{5}$
Upper Batif Creek	290771999			$\stackrel{19}{14}$		${ }_{1}^{191}$			130 110 10																												Not Fowing	s
Upper Batfe cieek	7106519999	${ }^{14,00} 18$		${ }^{14} 18$		${ }^{162} 8$			${ }^{10} 58$																												Not Fowing	s
Uperer Baffle creek	50441999			${ }^{27}$		${ }^{98}$			${ }^{67}$																												sight fow, muky	$\stackrel{\text { s }}{ }$
Upper Baffif creek	${ }^{\text {91092003 }}$ 2104204			17.5 2.5 2.5	${ }^{6.8}$	${ }_{152}^{67}$	${ }^{8.90} 120$	${ }^{94}$	${ }_{64}^{43}$	6		${ }_{8}^{6}$	${ }_{6}^{5}$	$\frac{1}{6}$	${ }_{4}^{2}$	${ }_{7}^{54}$	${ }^{20.5} 7$	$\stackrel{0.1}{\text { < } 1}$	< <10	1350	${ }_{60}$				<100											${ }_{\text {Low }}^{\text {Low }}$		
Upper Bafte creek	161112004			${ }^{22.7}$	${ }^{7} .8$	134	8.60	119	${ }^{84}$	49		${ }^{<1}$	7	4	3	cr		0.32	<10		1000	100			<100										Low	Low		RH
Upper Baffle Creek	2005				7.4	108			114	30		5	5	4	4	47	6	0.43	<10	810	50	${ }^{30}$							1800									
Upper Baffec creek	${ }^{501882006}$			${ }^{15.8}$	76	${ }^{212}$	${ }_{7}^{9.87}$	85	${ }^{126}$	${ }^{48}$	105	17	${ }^{6}$	15	7	${ }_{9}^{99}$	9	${ }^{0.4}$	$\stackrel{3}{4}$	${ }^{480} 1100$	<10	${ }_{17}^{10}$		$\stackrel{-1}{4}$	<100	${ }^{<0.1}$	${ }^{<}$	<1	${ }_{81} 81$	<	${ }^{0} 0.1$	<1	10		Mod	Low		
${ }_{\text {Upper bafte creek }}^{\text {Bafle }}$	${ }^{2270420071} 7$		27.5	22.9	7.6	${ }^{1382}$	${ }^{7} 23$	85	$\stackrel{100}{1034}$	49			12	${ }^{15}$		${ }^{93}$	5								${ }^{25}$	4	<1			<1	${ }^{0.5}$	${ }^{<}$	${ }^{8.3}$	${ }^{6.5}$			clear	
${ }_{\text {Batil Creak }}$	${ }_{\text {51712001 }}$			${ }_{2}^{22}$		1384 1484 1			${ }^{941}$																												Brown tige	s
	${ }_{\text {2 }}{ }^{121008202000}$					${ }_{1}^{1484} 1$			109 1009																												Brown tige	
Baffe Creek	10072001			${ }^{22}$		${ }_{1530}^{1750}$			1040																												Sar, sight brown tinge	${ }_{5}$
	${ }^{501041999}$	11.50		${ }^{23}$		${ }^{775}$			${ }_{5}^{527}$																													
Baffle Creek outtow	110112002								0																												Not tested	
Baffle Creak outtow	100112002								0																												Nottested	
Batfe Creek outtow	${ }^{101012002}$	11:30		${ }^{27}$		${ }_{3}^{188}$			${ }^{1228}$																													
Baffe Creak outiow	${ }^{2220652000}$			${ }^{19}$		1280 130 130			${ }^{857}$																												Slighty coudy Brown	s
Baffe Creek outiow	${ }^{2505052001}$			${ }_{25}^{23}$		(1340			${ }_{9}^{911}$																													
Beafe Creek outtow				${ }^{26}$		1459			992																												Cliar, Slight brown tinge	s
	${ }^{5} 5$								\bigcirc																												No Sample Nosample	s
Baffle Creak outtow	${ }^{230772000}$								0																												No Sample	s
Baffe Creak outiow	15150622000								\bigcirc																												No sample Not Fowing	
Baffle Creak outtow	10422000	13.00		${ }^{21}$		${ }^{1150}$			782																												Slight cloudy brown	s
	${ }^{101042000}$	$13: 00$							${ }^{917}$																												Slight doudy boon	s
Baffe Creek outtow	30012000 3012000	$13: 00$		${ }^{24}$		1252			851																												Slight coudy brown	
Batfe Creek outiow	${ }^{301219999}$	14.22		${ }^{22}$		880			${ }_{5}^{585}$																												$\xrightarrow{\text { Not Fowing }}$ Not Fowing	s
Bafte Creek outtow	291011999	${ }^{924}$		${ }^{21}$		${ }^{880}$			${ }^{598}$																												Not Fowing	s
	${ }^{300091999}{ }^{20771999}$			18 16 18		(1281			${ }_{5}^{871}$																												Stiow fow ${ }_{\text {Sow fow -muky }}$	s
Bafte Creak outiow	290711999			${ }^{13}$		${ }^{1233}$			${ }^{838}$																												Stow-Med. Flow	s
Batfe Creek outiow	106651999	${ }^{12,13} 11: 00$		${ }_{19}^{14}$		${ }_{6521}^{553}$			${ }_{422}^{376}$																												Stow fow- mury	${ }^{\text {s }}$
Baffle Creak outiow	50411999			${ }^{26}$		649			441																												Slow-med fow	s
	${ }^{\text {91202003 }}$ 2204204			${ }^{19}$		${ }_{870}^{1444}$	${ }_{5.10}^{7.30}$	79	${ }_{612}^{925}$	${ }^{37}$		(347	${ }_{5}^{4}$	$\frac{1}{5}$	$\frac{1}{3}$	${ }_{916}^{726}$	${ }_{36}^{56}$	0	${ }_{<10}^{<10}$	3970	220				${ }_{700}^{200}$										Low	Low		${ }_{\text {RHH }}^{\text {RH }}$
Batit Creek outiow	$17 / 112004$			${ }^{23}$		1403	0.40	5	${ }_{852}$	76		232	8	<1	2	${ }_{623}$	56	1	<10	1800	${ }^{350}$				400										Mod	Low		${ }_{\text {RH }}$
Batfe Creek outiow	${ }^{21 / 052005} 5$			14 12 12		cince	10.10 7.90	${ }_{73}^{98}$	${ }^{\text {cose }}$	${ }_{39}^{10}$	${ }_{154}$	(349 ${ }_{4}^{34}$	${ }_{6}^{6}$	$\stackrel{<}{1}$	2	${ }_{7}^{684}$	68 93 9	$\stackrel{2}{2}$	${ }_{24}{ }_{20}$	$\xrightarrow{720}$	150 <10	${ }_{\text {c10 }}^{120}$		9	500	${ }^{20.1}$	16	3	${ }_{\substack{6013 \\ 6362}}$	8	${ }^{20.1}$	3	14		Low	${ }_{\text {Low }}^{\text {Low }}$		$\stackrel{\text { RH }}{\text { RH }}$

BoLD | Geater than minimum tigger |
| :---: |
| MTV minimum tiggervalue |

TV. minimutrige vaue

Baffle Creen
s- santos

\begin{tabular}{|c|}
\hline \& \& \& \& \& \& \& ical \& \& \& \& \& \& ions \& \& \& \& \& \& \& \& Nutrients \& \& \& \& \& \& ce Eleme \& \& \& \& \& \& Biologic \& \& \\
\hline Sample Collection Point \& Sample \& Time \& \& \[
\begin{array}{|c|c|c|c|c|c|c|}
\substack{\text { Temp } \\
\text { (ep) } \\
\hline}
\end{array}
\] \& pH \& \({ }_{(\mu \mathrm{Sc} / \mathrm{cm})}^{\text {EC }}\) \& \[
\begin{gathered}
\circ \\
(\mathrm{mglL})
\end{gathered}
\] \& \& \[
\begin{array}{|c|}
\hline \text { Tos } \\
(\mathrm{mglLL})
\end{array}
\] \& \[
\begin{array}{|c|c|}
\hline \text { Tss } \\
(\mathrm{mglL})
\end{array}
\] \& \[
\begin{array}{|l|l}
\substack{\text { sodium } \\
\text { (mglL }}
\end{array}
\] \& \[
\underset{\substack{\text { Potassium } \\(\text { mglL })}}{ }
\] \& \[
\begin{array}{|c|}
\hline \text { Calcium } \\
(\mathrm{mg} \mathrm{~L})
\end{array}
\] \& \[
\underset{(\text { magnesium }}{\substack{\text { Mage }}}
\] \& \[
\begin{array}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \text { as } \text { mglL } \\
\hline
\end{array}
\] \& \[
\begin{gathered}
\text { chloride } \\
(\mathrm{mg} / \mathrm{L})
\end{gathered}
\] \& \[
\begin{gathered}
\text { Fluoride } \\
(\mathrm{mg} \mathrm{~L})
\end{gathered}
\] \& \[
\begin{gathered}
\text { Sulphate } \\
(\mathrm{mg} / \mathrm{L})
\end{gathered}
\] \& \[
\begin{array}{|c|}
\hline \mathrm{TN} \\
(\mathrm{Hg} L \mathrm{~L}) \\
\hline
\end{array}
\] \& \[
\begin{array}{|c|c|}
\substack{\text { (uglL } \\
\hline}
\end{array}
\] \& \[
\underset{\substack{\text { Ammonia } \\(\text { (HgLL) }}}{ }
\] \& Nitrate as NO (\(\mathrm{\mu g} / \mathrm{L}\)) \& \[
\begin{array}{|c}
\text { Arsenic } \\
\text { (4ggLL) }
\end{array}
\] \& \[
\left.\begin{array}{|c}
\text { Boron } \\
(\mu g L L)
\end{array} \right\rvert\,
\] \& \[
\underset{\substack{\text { Cadmium } \\(\mu \mathrm{g} / \mathrm{L})}}{ }
\] \& \[
\begin{aligned}
\& \text { Chromium } \\
\& (\mu \mathrm{g} / \mathrm{L})
\end{aligned}
\] \& \[
\begin{array}{|c}
\substack{\text { copper } \\
(\mu \mathrm{\mu g} / \mathrm{L}} \\
\hline
\end{array}
\] \& \[
\begin{aligned}
\& \text { fron } \\
\& \text { (egl) }
\end{aligned}
\] \& \[
\left.\begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\text { (ed }
\end{array}\right)
\] \& \[
\left.\begin{array}{c}
\text { Mercury } \\
(\text { (galL) }
\end{array}\right)
\] \& \[
\left.\begin{array}{|l|l|}
\text { Nickele } \\
(\mathrm{Lg} / \mathrm{L}
\end{array}\right)
\] \& \[
\underset{(\mathrm{zing} \mathrm{~L})}{(2)}
\] \& \[
\begin{aligned}
\& \text { Chl-a } \\
\& (\mu \mathrm{g} / \mathrm{L})
\end{aligned}
\] \& Physical Appearanc \& (tata \\
\hline \& \& MTV \& \({ }^{\text {na }}\) \& 0.80 \%ill \& (6.5-8.0 \& \({ }^{340}\) \& na \& -110 \& na \& 10 \& \({ }^{115}\) \& na \& 1000 \& na \& na \& 175 \& 1,2 \& 400 \& 500 \& 50 \& 20 \& 700 \& \({ }^{24 / 13}\) \& 370 \& \({ }^{0.2}\) \& 50 \& 1.4 \& 200 \& \({ }^{3.4}\) \& 0.6 \& 11 \& 8 \& 5 \& \& \\
\hline Dawson Dowstream Bafle \& \({ }^{405512002} 10\) \& Not tested
Notested \& s \({ }_{\text {s }}\) \\
\hline Dawson Downstram Baffe \& 110122002 \& Nootested \& s \\
\hline Dawson Downstram Baflie \& \({ }^{220612001}\) \& \& \& \({ }_{19}^{19}\) \& \& \({ }^{1130}\) \& \& \& \({ }^{768}\) \& Silty cloud Prown \& s \\
\hline Dawson Dowsstream Baffe \& \({ }_{2250512001}^{22001}\) \& 11:00 \& \& \({ }^{23}\) \& \& 980
884 \& \& \& 666
574
57 \& \& \\
\hline Dawson Downstram Baffe \& 220682001 \& 12:15 \& \& 26 \& \& 853 \& \& \& 580 \& Sow fow, muddy \& \(\stackrel{5}{5}\) \\
\hline Dawson Dowstream Bafle \& \({ }^{2200612001}\) \& \& \& \& \& 182 \& \& \& 124 \& Slow fow-lt Brown \& s \\
\hline Dawson Dowstream Bafte \& \({ }_{\text {220062001 }}^{22062001}\) \& \({ }^{\frac{11}{11: 05}} 10\) \& \& \({ }_{2}^{26}\) \& \& \& \& \& \({ }_{\substack{532 \\ 240}}^{\substack{\text { 20, }}}\) \& Sth fow, muddy \& s \\
\hline Dawson Dowstream Bate \& \({ }^{22206200012001}\) \& \& \& \({ }^{27}\) \& \& \begin{tabular}{|c}
353 \\
673
\end{tabular} \& \& \& \({ }_{458}^{240}\) \& \& s \\
\hline Dawson Downstream Bafle \& \({ }^{\text {20,042001 }}\) \& \& \& \({ }_{24}^{24}\) \& \& \begin{tabular}{l}
800 \\
208 \\
\hline
\end{tabular} \& \& \& \(\begin{array}{r}544 \\ 196 \\ \hline\end{array}\) \& Silty coudy Brown \& s \\
\hline Dawson Dowstream Batie \& 810322001
51012000 \& 10:30 \& \& \({ }_{2}^{25}\) \& \& \begin{tabular}{l}
288 \\
1367 \\
\hline 1
\end{tabular} \& \& \& \(\stackrel{196}{930}\) \& \& s \\
\hline Dawson Downstram Baffe \& 510922000 \& 10:00 \& \& 24 \& \& 1498 \& \& \& 1019 \& Clear, sts sediment \& s \\
\hline Dawson Downstram Baflie \& \({ }^{30882000}\) \& 10:00 \& \& 20 \& \& 1358 \& \& \& 923 \& Clear, sts sediment \& s \\
\hline Dawson Dowstream Bafle
Dawson Dowstram Bafle \& \({ }_{\text {23072000 }}^{15062000}\) \& \(\frac{\text { No Sample }}{\text { No sample }}\) \& s \\
\hline Dawson Downstream Bafte \& 20682000 \& \\
\hline Dawson Downstream Bafle \& \({ }^{2910412000}\) \& \\
\hline Dawson Dowstream Batie \& 1042000 \& 1.00PM \& \& \({ }_{24}^{24}\) \& \& 1060
1152 \& \& \& \({ }_{783}^{721}\) \& (silty doudy bronn \& s \\
\hline Dawson Downstram Baffle \& 300112000 \& \(\stackrel{5}{5}\) \\
\hline Dawson Downstram Baftle \& 311211999 \& \(2: 30\) \& \& \({ }^{21}\) \& \& 1050 \& \& \& 714 \& Slow flow-Ltyellow \& s \\
\hline Dawson Dowstream Batie \& \({ }_{\text {2911011999 }}\) \& \({ }^{15000} 10\) \& \& \({ }_{21}^{22}\) \& \& 880
910 \& \& \& 598
619 \& Slow fow L-L y ylow \& \\
\hline Dawson Dowstream Batie \& 301091999

20071099 \& \& \& | 18 |
| :--- |
| 15 |
| 15 | \& \& $\begin{array}{r}1402 \\ \hline 82 \\ \hline\end{array}$ \& \& \& ${ }_{953} 95$ \& Slow Flow \& s

\hline Dawson Dowstream Bafle
Dawson Dowstram Bafte \& ${ }_{\text {290771999 }}$ \& \& \& 15
15

15 \& \& (872 \& \& \& | 593 |
| :---: |
| 897 | \& Slow fow - murcky \& s

\hline Dawson Downstram Bafle \& 106/1999 \& 11:30 \& \& 13 \& \& 556 \& \& \& 378 \& Slow fow - murcky \&

\hline Dawson Dowstream Batile \& ${ }^{7} 715519999$ \& 11:15 \& 24.6 \& 19 \& 8.3 \& ${ }_{6}^{664} 1296$ \& 6.05 \& 67.0 \& | 452 |
| :--- |
| 990 | \& 99.0 \& 280.0 \& 10 \& 10 \& 5.5 \& 820 \& 120 \& 1.4 \& <1 \& 1600.0 \& 90.0 \& 82.0 \& 35^{*} \& 3.4 \& 480.0 \& <1 \& ${ }^{8.3}$ \& <2 \& 1700 \& <1 \& <0.5 \& 4.2 \& 1.5 \& 15 \& Slow flow-Ltyellow \& $\stackrel{\text { s }}{\text { RH }}$

\hline
\end{tabular}

Samples collected
s- S.
RHintiver
Healt

$\begin{gathered} \text { Sample Collection } \\ \text { Point } \end{gathered}$	Sample Date	Physical										Cations				Anions				Nutrients				Trace Elements										Biologica	Fow		
		Time		$\begin{array}{\|c} \hline \text { Water } \\ \text { Temp } \\ \left({ }^{\circ} \mathrm{C}\right) \\ \hline \end{array}$	pH	EC ((s/m)	Do (mgl)	D0\% sat	TDS (mgl)		${ }^{\text {a }}$	$\begin{array}{\|c} \begin{array}{c} \text { sodium } \\ \text { (mglL) } \end{array} \\ \hline \end{array}$	$\begin{gathered} \text { Potassium } \\ (\text { mglL }) \\ \hline \end{gathered}$	$\begin{array}{\|l\|l} \hline \begin{array}{c} \text { calcicum } \\ \text { (mad } \end{array} \end{array}$	$\begin{aligned} & \text { Magnesium } \\ & \text { (mg/L) } \end{aligned}$		$\begin{gathered} \substack{\text { chioride } \\ \text { (malL }} \end{gathered}$	$\begin{array}{\|c} \begin{array}{c} \text { Fuboride } \\ \text { (mglu) } \end{array} \end{array}$	$\begin{array}{\|c} \text { Suphate } \\ \text { (masLL) } \end{array}$		$\begin{gathered} \substack{\text { Total } \\ \text { phosphorous } \\ \text { (hglL }} \\ \hline \end{gathered}$	$\begin{gathered} \text { Ammonia } \\ (\text { gelL } \end{gathered}$		$\begin{array}{\|l\|l\|} \hline \text { Arsenic } \\ (\text { egll } \end{array}$	$\begin{array}{\|l\|l} \hline \text { Boron } \\ \text { (uglu) } \end{array}$	$\begin{array}{\|c} \substack{\text { Cadmium } \\ \text { (uglL }} \\ \hline \end{array}$	$\underbrace{}_{\substack{\text { chromium } \\ \text { (egll }}}$	$\begin{gathered} \substack{\text { copper } \\ \text { (egLL }} \\ \hline \end{gathered}$	$\begin{array}{\|l\|l\|} \substack{\text { (egn } \\ \hline} \end{array}$	$\underset{\substack{\text { Lead } \\ \text { (egl) } \\ \hline}}{ }$	$\begin{array}{\|l\|l\|} \hline \text { mercury } \\ \text { (1gLL) } \end{array}$		(ug)	$\underset{\substack{\text { chia } \\ \text { (ugl) }}}{\substack{\text { a }}}$	Level	ty	Dota
Upeer Hutuon Creek	91102003	MTV	na	${ }^{0.880} 0$	$\frac{6.5 .8}{7.9}$	${ }_{\substack{340 \\ 1478}}^{\text {10, }}$	${ }_{\text {n }}^{\text {na }}$	${ }_{85}^{85110} 9$	$\frac{n 9}{1139}$	10	50	${ }_{1}^{135}$	${ }_{9}{ }_{9} 9$	1000 91	${ }^{\text {na }}$	${ }_{31}$	${ }_{275}^{178}$	$\frac{1.2}{0.1}$	400 120 10			20		2413	${ }_{\text {ckion }}^{370}$	0.2	50	1.4	200	3.4	0.6	11	8	5	${ }_{\text {na }}^{\text {Lisaled }}$	na	
Upper tutuon Creek	2504242007		27.7	22.5	${ }^{6.6}$	${ }^{156}$	4.31	49	190	570		${ }^{14}$		${ }^{20}$			${ }^{6}$	0.31	<1	1800	${ }^{170}$	51	${ }^{168^{*}}$	<1	${ }^{32}$	${ }^{4}$	${ }^{4}$	2	1900	4.8	<0.5	${ }^{6.3}$	1.5	13			${ }^{\text {RH }}$
Hutuo Criek Huton Creak	190042004			24.4	7.2	${ }_{358}$	3.60	${ }^{41}$	${ }^{292}$	${ }^{10}$		${ }^{27}$	7.0 100 10	${ }^{27}$	7	${ }_{1}^{171}$	${ }^{28}$	<	<10 <10		70 100				800 8100										Modeate Low Low	${ }_{\text {Low }}^{\text {Low }}$	$\underset{\substack{\text { RH } \\ \text { RH } \\ \hline}}{ }$
${ }_{\substack{\text { Hutto Creek } \\ \text { Huton } \\ \text { creek }}}$				${ }^{23.7}$	$\stackrel{7.6}{7}$	${ }_{195}^{461}$	${ }_{\text {5.60 }}^{5.90}$	- ${ }_{88}^{66}$	${ }_{195}^{284}$	36 170 170		${ }^{39} 18$	10.0 7.0	${ }^{30}$	9	190 87	${ }^{39}$ 12	-	<10	(1300	100 230	${ }^{240}$			${ }_{<100}$				2358						Low	${ }_{\text {Low }}$	${ }_{\text {RH }}^{\text {RH }}$
Hutton Creek	500822006			14.9	${ }^{6.6}$	183	8.00	\%	116	${ }_{123}^{12}$	116	${ }^{24}$	6.0	5	2	${ }_{83}$	${ }^{12}$	0.2	5	680	<10	<10		2	<100	${ }^{0.1}$	5	${ }^{4}$	62	2	<0.1	${ }^{4}$	<10		Mod	Low	${ }_{\text {RH }}$
Hutuon Creek	2110412007		34.3	21.3	7.1	273	3.49	${ }^{39}$	220	${ }_{32}$		59	7.4	12	4	130	20	0.31	${ }^{<1}$	1200	76	${ }^{93}$	101*	1.6	79	$\stackrel{1}{4}$	<	<2	2300	<1	${ }^{0.5}$	<3	${ }^{20}$	${ }^{6.6}$			${ }_{\text {RH }}$
$\pm \begin{aligned} & \text { Hutto Cieek } \\ & \text { Huton } \\ & \text { creek }\end{aligned}$	80881973	${ }^{1350}$		${ }_{31}^{19}$	8.1 7.9	155 300 30			$\begin{array}{r}\text { ¢ } \\ \hline 198 \\ \hline 18\end{array}$	${ }^{116}$		14 30	${ }_{6}^{5.4}$	${ }_{\text {11 }}^{11}$	${ }_{7}$	- 145	10 87	0.14 0.5 0.5	4				1200														${ }_{\text {ONRW }}^{\text {ONRW }}$
	${ }^{\text {cosion }}$	${ }^{1405}$			${ }_{8.2}$	${ }_{2} 215$			${ }^{198}$	10	75		${ }^{6.8}$	${ }^{36}$	4	${ }^{148}$	${ }^{15}$	0.1	${ }_{5}^{4}$				${ }_{4}{ }_{4000}$														${ }_{\text {ONRW }}^{\text {ONT }}$
Hutoon Creek	${ }^{250331982}$	1405		${ }_{2}$	8	160			97	200	100	12	4.2	12	3	77	8		5.4				2100														DNRW
Hutuon Creek	$161 / 21983$	930		24	8.2	${ }^{195}$			${ }_{1} 130$	${ }^{20}$	${ }^{25}$	17	4.6	16	4	${ }_{90}$	${ }^{15}$		${ }^{2.7}$				${ }^{1200}$		20												
Hutto Cieek Huton Creek	200391984	${ }^{1400}$		${ }_{14}^{27}$	${ }_{7}^{7.8}$	250 270			- 150	10 5	12	${ }_{22}^{20}$	4.9 4.8	20 22	5	110 135	25 19	0.1 0.1	6.3 3 1.3						${ }_{20}^{20}$												
Hutton Creek	1910101984	1500		20	7.9	570			${ }^{320}$	5		70	1.6	${ }^{34}$	11	185	${ }_{81}$	0.1	${ }^{12}$				1100		10												${ }_{\text {ONRW }}$
Hutuon Creek	150119895	${ }^{920}$		${ }^{24}$	7.8	${ }^{200}$			${ }^{120}$	445	100	17	5.2	15	4	${ }^{88}$	16	0.1	2				1100		${ }^{20}$												${ }_{\text {ONRW }}$
	${ }^{20010191985}$	1025 1099		20 25	8.2	$\substack{390 \\ 131}$			1010 84	${ }_{630}^{10}$	$\stackrel{1}{100}$	${ }_{9}^{175}$	$\stackrel{4.5}{4.3}$	-85	67	${ }_{6}^{275}$	$\underset{4}{355}$	${ }_{0}^{0.3}$	$\stackrel{170}{12}$				(100 10												

BOLD $\begin{gathered}\text { Greater than minimum trigge value (refer ENviommental Values Table) } \\ \text { MTV mininumm }\end{gathered}$
Samples collecected oownstream of exsising associated waler discharge points

$s-$ Santos
RH -River tea

RNR- Department of Nawural Resources

Tale A7
Uoper Jaws

GLNG CSG Surface WateSample Collection Point	Sample ate	Physical										Cations				Anions				Nutrients				Trace Elements													Physical Appearance	Data
		Time			pH		（mgl）		${ }_{\text {ros }}^{\text {ros }}$（mal）	Tss（mgl）		Sodium	（eotessium		${ }_{\substack{\text { Magnesum } \\ \text { masL）}}}^{\substack{\text { a }}}$		chorde	${ }_{\text {Flor }}^{\substack{\text { Fuorde } \\ \text {（mal）}}}$	$\underbrace{\text { a }}_{\substack{\text { sulpate } \\ \text {（mal）}}}$	N（\％g）	TP（gg）	${ }_{\substack{\text { Ammonia } \\ \text {（9al）}}}^{\text {a }}$	$\left.\begin{array}{c} \text { Nitate as } \\ \text { Nas } \\ \text { (gas } \end{array}\right]$	${ }_{\text {Arsenic }}^{\substack{\text {（ugl）}}}$	（e）Bron （egl）		chomich	${ }_{\substack{\text { copeer } \\ \text {（egl）}}}^{\substack{\text { ata }}}$	${ }_{\text {and }}^{\text {（ron）}}$	$\underbrace{\substack{\text { ceal }}}_{\text {Lead }}$	$\underbrace{\text { mercury }}$（eal）	（ $\begin{gathered}\text { Nickel } \\ \text {（egl）}\end{gathered}$	Zinc（wgl）		Lovel	Velocity		
Dawson dis tutuon－1		MV	${ }^{\text {n }}$	0．8020 21	${ }_{6}^{6.5 .80} 6$	${ }_{264}^{364}$	${ }_{49}^{\text {na }}$	$\frac{855170}{56}$	${ }_{\text {na }}^{\text {ne }}$	${ }^{10} 6$	50	$\frac{115}{20}$	${ }^{\text {na }}$	${ }_{1}^{1000}$	$\frac{n 9}{6}$	${ }_{\text {ci }}^{\text {ne }}$	$\frac{175}{14}$	$\frac{1,2}{\text { ¢ }}$	$\frac{400}{40}$	${ }^{500} 10$	50 190	${ }^{20}$		${ }^{24 / 3}$	370	0.2	50	${ }^{1.4}$	200	${ }^{3.4}$	${ }^{0.6}$	11	8	${ }_{5}$	$\stackrel{\text { na }}{\text { noterate }}$	$\frac{\text { na }}{\text { noterate }}$		
Dawson dis tutum－1	199112004			22.1	1	${ }^{29}$	7.90	${ }_{91}$	${ }_{88}$	${ }^{316}$		15		1	2	${ }_{54}$	8	${ }^{0.1}$	<10	4100	580				<100										Moderate	Moderate		${ }_{\text {RH }}$
Danso dis tutor－1	${ }^{27055202005}$			9.3 124 	${ }_{8}^{74}$	${ }_{226}^{265}$	${ }^{13.40}$	${ }_{75}^{116}$	${ }_{183}^{143}$	${ }^{3}$		${ }^{21}$	${ }_{3}^{3}$	${ }^{15}$	$\stackrel{8}{9}$	111 113	14 16 16	0.21 0.2	＜10	120 170	ciso	${ }_{\substack{40 \\ 40}}$			＜100													$\underset{\text { RH }}{\text { RH }}$
				12.4 14.6 1	7 7.3	265 226 28	${ }^{8.120}$	${ }_{70}^{75}$	${ }_{108}^{108}$	${ }^{3}$	6	${ }^{21}{ }_{18}^{21}$	${ }_{3}$	${ }^{16}$	9	${ }^{\frac{113}{113}}$	16 10	0.2 0.2	＜10	${ }_{60}{ }^{170}$	＜ 40	${ }_{40}^{40}$		${ }^{<}$	＜100	${ }^{0.1}$	${ }^{<1}$	${ }^{<1}$	60	$\stackrel{1}{4}$	${ }^{0} 0.1$	$\stackrel{1}{4}$	＜10		${ }_{\text {Mod }}$	${ }_{\text {Low }}^{\text {Lod }}$		${ }_{\text {RH }}^{\text {RH }}$
Daasond ds tutuon－1	230424007		3.9	22.5	6.9	265	4.16	49	160	9		${ }^{23}$	${ }^{3}$		9		11	0.21	1	550	＜20	30	$44{ }^{\text {c }}$	${ }^{1}$	16	${ }^{4}$	${ }^{4}$	<2		${ }^{4}$	${ }^{0.5}$	$<^{4}$	17	${ }^{4}$				
Dawsond dis tutur－2	23042004			25.	7.6	260	5.40	${ }^{6}$	132	${ }^{20}$		${ }^{20}$	3	${ }^{14}$	6	${ }^{138}$	${ }^{14}$	＜ 1	<10	${ }^{280}$	110				400										Low	Modeate		RH
Dawson dis suto－2				${ }_{13,8}^{22.7}$	${ }_{7}^{7}$	${ }_{29}^{134}$	${ }_{\text {8．}}^{\text {8．00 }}$	${ }_{93}^{93}$	${ }^{922}$	$\frac{292}{3}$		${ }^{15}$	${ }_{3}^{6}$	$\stackrel{1}{16}$	$\stackrel{2}{9}$	${ }_{\substack{56 \\ 111}}$	$\stackrel{8}{14}$	－0．08	＜10	3100 190 1	cici	＜10			＜100											Moderate		${ }_{\text {RH }}^{\text {RH }}$
Dawson dls thutor－2	51020006			15.4	7.6	228	7.20	71	124	11	4	19	3	14	7	106	12	0.2	${ }^{4}$	${ }_{60}$	＜10	＜10		${ }^{4}$	<100	${ }^{0.1}$	$\stackrel{1}{4}$	${ }_{4}$	${ }_{97}$	4	${ }^{2} 0.1$	4	＜10		Mod	Mod		${ }_{\text {RH }}$
$\frac{\text { Dawsond ds Stutoon－2 }}{\text { Davsons send }}$	${ }^{2394042007}$		31.5	21.8 19.2	${ }_{6} 7$	${ }_{2}^{288}$	${ }_{5.93}^{5.0}$	${ }_{58}^{68}$	${ }^{160}$			$\stackrel{28}{27}$	$\stackrel{4}{2}$	${ }^{26}$	$\frac{11}{7}$	${ }_{\substack{150 \\ 157}}^{10}$	$\stackrel{12}{12}$	${ }_{\text {coin }}^{0.21}$	$\stackrel{<1}{<5}$				${ }^{544}$		$\stackrel{\text { c15 }}{\substack{100}}$									4	Low	Low		
Dawsons Bend	20042004			24.6	6	270	4.50	${ }_{54}$	92			${ }^{21}$	3	14	7	${ }_{131}$	15	$\stackrel{¢}{¢}$	<10	270	60				500										Low	Low		
Davosons enend				21.2	${ }^{6} 9$	${ }^{136}$	7.40	${ }^{84}$	${ }^{136}$	${ }^{366}$		${ }^{15}$	${ }^{5}$	1	$\stackrel{<}{4}$	${ }_{55}^{55}$	$\stackrel{9}{15}$	${ }^{0.17}$	${ }_{<10}$	3400															Moderate	Moderate		${ }_{\text {R }}^{\text {RH }}$
Doamons end	${ }_{\text {24052005 }}$			${ }^{17.9}$	7.1	${ }_{228}^{248}$	${ }^{8.90}$	${ }^{89}$	${ }^{148}$	$\stackrel{4}{10}$	2	${ }^{21}$	${ }_{3}$	${ }_{14}^{14}$	${ }_{8}^{9}$	－ 106	15 ${ }_{13}^{13}$	－0．21	＜10	40 90 9	${ }^{\text {c }}$	${ }_{c}^{<10}$			＜100				${ }_{23}^{62}$	${ }^{-1}$		${ }^{\circ}$			${ }_{\text {cow }}^{\text {Low }}$			
${ }^{\text {dancons }}$	${ }^{\text {23040200 }}$		23.1	${ }_{24.1}^{10.1}$	${ }_{6} 6.9$	${ }_{273}^{22}$	5.03	${ }_{60}$	${ }^{220}$	${ }_{14}$		${ }_{22}$	3	${ }_{19}$	9	${ }_{130}$	14	${ }_{0}^{0.28}$	${ }_{<1}$	${ }_{540}$	${ }_{46}^{20}$	${ }_{6} 6$	${ }^{44}{ }^{\text {a }}$	<1	14	${ }_{<} 1$	${ }^{4}$	$\stackrel{2}{ }$		<1	${ }_{0} 0.5$	${ }^{<}$	${ }^{<1}$	4				
${ }_{\substack{\text { rebua Cossing } \\ \text { Venana cossing }}}$	$\xrightarrow{3109091999}$ 104202	15.00		${ }_{22}^{19}$		${ }_{4}^{438}$			${ }_{\substack{292 \\ 124 \\ \hline}}$																													s
Yena Cocossing	71012002					${ }^{244}$			${ }^{166}$																												Stubuty	
Yeona crossing	（1017202	${ }^{15.50}{ }^{1500}$		${ }^{25}$					${ }^{216}$																												Vers silit oloudy bown	
Yenna Cossing	91112001			21		${ }_{\text {234 }}^{234}$			159 159																												${ }_{\text {Clar }}$	${ }_{5}$
Yenna Cososing	290882001			${ }^{22}$		${ }_{241}$			${ }_{164}$																												${ }_{\text {clear }}$	
¢	${ }^{\text {a }}$			${ }_{18}^{21}$		${ }_{2}^{250}$																																
Yeban Cossing	250552001			${ }^{24}$		165			${ }^{112}$																												Silghy mury	
Y Yenac Cossing	$\xrightarrow{20042001}$ 8032001			${ }^{24}$		${ }_{\substack{160 \\ 176}}$			109 120 1																												Sighty Mury	
Yena Cososing	4022001	${ }^{1500}$		${ }^{26}$		${ }^{186}$			${ }^{126}$																												Slighly cluyy	
Yeona cosossing	191222000	${ }^{14600}$		${ }_{25}^{25}$		${ }^{249}$			${ }_{169} 1$																													
${ }^{\text {Y Vena Cososing }}$	${ }^{211112000}$	13.00 $\substack{1130}$ 10		${ }^{26}$		${ }^{266}$			${ }^{181}{ }^{197}$																												Clear	
Yebea Cosssing	${ }^{10210232000}$	年1：30		25 25 25					192 02																												${ }_{\text {coar }}$	
Yeena cossing		${ }_{\text {l }}^{14.37}$		25 25 25		${ }_{226}^{257}$			175 ${ }_{181}^{181}$																												${ }_{\text {ctear }}^{\text {Clear }}$	
Yebac cososing	2118822000	${ }^{1424}$		${ }^{25}$		${ }^{275}$			187																												Clear	
${ }_{\text {Yeona Cosssing }}^{\text {Vema }}$	${ }^{14140425000}$	${ }^{\frac{1500}{}} 12$		${ }_{2}^{25}$		${ }_{305}^{241}$			164 207 1																												Vers sight oudy bown	
Yeena Cosssing		${ }^{12: 30}$		${ }_{2}^{21}$		279 234 18			＋190																												Fainct Coudy brown	
Yenota Corossising	${ }^{\text {a }}$ 30301200000	${ }^{12: 30}$		${ }_{25}^{24}$		${ }_{282}$			${ }_{192}{ }^{29}$																													
	${ }^{301212999}$	${ }_{\text {cose }}^{10.45}$		－${ }_{20}^{20}$		（			${ }^{177}$																												${ }_{\text {Fow }}^{\text {Fow }}$	
Yenna Cossisig	${ }^{2910} 171999$	$18: 00$		${ }_{15}^{23}$		${ }_{4}^{430}$			${ }_{\text {222 }}^{223}$																												Flow	
Yeona crossing	${ }^{2930717999}$ 2971999			${ }^{15}$					${ }^{238}$																													
Yeena Cossisig	${ }^{10861999}$	${ }_{\text {8，}}^{8.0}$		12 18 18		245 194 1	400		${ }^{168}{ }^{132}$																												Sown fow－munky	
${ }_{\text {Vebua Cosssig }}$	${ }^{\text {82050299999 }}$	${ }^{9.50}$		${ }_{25}^{18}$		${ }^{194} 10$																																
Yeona Cossing	${ }^{23321999}$	10：00		${ }^{28}$		${ }^{187}$			${ }^{127}$																												Mod fow，mudy	
Yoona Cosossing	288111998	11：30		${ }_{17}^{26}$		${ }_{286} 28$			${ }_{194}^{194}$																												Med fow－Biomm	
${ }_{\text {Veban Cossing }}$	${ }^{281711998}{ }^{281119988}$	${ }^{14330}$1500 10		${ }^{28}$		${ }_{\substack{200 \\ 176 \\ \hline}}$			${ }_{1}^{136}$																												Mod form muky	
${ }^{\text {Yobona Cossing }}$	${ }^{\text {9088203 }}$			19.1	${ }_{7}^{78}$	214	${ }^{9.50}$	${ }^{103}$	${ }_{9}^{89}$			${ }^{31}$	${ }^{3}$	${ }_{11}^{11}$	${ }_{5}^{5}$	${ }_{127}^{127}$	${ }^{19}$	${ }_{0} 0.1$	${ }^{<} 5$						${ }^{100}$										Moderate	Moderate		
Vrona	${ }_{\text {20，}}^{200420004} 1$			${ }_{24.6}^{20.6}$	${ }_{7}^{7.3}$	${ }^{2273}$	t．20 5.00	${ }_{80}^{81}$	${ }^{92}$	${ }_{142}^{4}$		${ }^{27}$	${ }_{6}$	${ }^{14}$	5	${ }^{124}{ }_{103}^{124}$	${ }^{22}$	${ }_{0.23}^{\text {¢，}}$	${ }_{<10}$	寺100	${ }_{20}^{280}$				夈 600										${ }_{\text {M Mooate }}^{\text {Modiligh }}$	${ }_{\text {cow }}^{\text {Lod }}$		
	25052005 51112006			${ }_{13}^{13}$	${ }_{78}^{77}$	${ }_{228}^{228}$	1300 1430 143	${ }_{124}^{124}$	${ }^{127}$	${ }_{8}^{2}$			3 3		${ }_{4}^{6}$	${ }^{88}{ }_{8}^{88}$	${ }_{21}^{22}$	${ }^{0.16}$	${ }_{4}^{10}$		c50 40 40	${ }_{4}^{40}$			${ }_{400}$				${ }_{76}^{156}$							$\underset{\substack{\text { mod } \\ \text { Nod }}}{ }$		
Yeona corossing	${ }^{\text {240420007 }}$		27.4	${ }_{21,5}^{12.6}$	$\stackrel{7}{8}$	${ }_{242}^{228}$	－ 19.30	${ }^{135} 107$	${ }^{188}$	$\stackrel{8}{11}$		${ }_{33}^{27}$	${ }_{4}$	$\stackrel{9}{17}$	${ }_{6}$	${ }_{1}^{130}$	${ }_{20}^{21}$	0.12 0.22	$\stackrel{4}{4}$	300 50	${ }_{22}$	$\stackrel{10}{14}$	${ }^{444^{\circ}}$	$\stackrel{1}{<1}$	－100	$\stackrel{\square}{¢ 1}$	$\stackrel{4}{<1}$	$\stackrel{1}{<2}$	330	＜1	${ }_{60.5}$	${ }_{4}$	${ }^{10}$	＜				${ }_{\text {RH }}^{\text {RH }}$

Exceeds sadopeded adideline value（efere Envirommental values Talee）

NR－Oenatmento oN Natural Resource

Water Quality Data Summar

Some	Socte						(ect					(ros ${ }^{\text {mos }}$				Potas	${ }^{\substack{\text { caicum } \\ \text { cmal) }}}$	Manesum		${ }_{\text {chen }}^{\substack{\text { chorate } \\ \text { max }}}$		$\underbrace{\substack{\text { sumate } \\ \text { motu }}}_{\text {sumpate }}$	$\xrightarrow{\text { Toank }}$	(oatp					coicce	${ }_{\text {cosen }}^{\substack{\text { Roon } \\ \text { uelt }}}$	${ }_{\text {coin }}^{\substack{\text { coper } \\ \text { (a) }}}$	${ }^{\substack{\text { mon } \\ \text { mon) }}}$		(e)			(tatares		(enter	(tan		${ }_{\substack{\text { Oata }}}^{\text {suace }}$
					urv	${ }^{\text {na }}$	20.8080	${ }_{\text {c }}^{80}$	${ }_{3}^{30}$	${ }^{\text {na }}$	88510	${ }^{\text {na }}$	${ }^{10}$	${ }_{50}$	${ }_{175}$	${ }^{\text {na }}$	1000	${ }^{\text {na }}$	${ }^{\text {na }}$	${ }^{175}$	${ }_{1}, 2$	${ }_{40}$	50	${ }_{50}$		${ }^{20}$	${ }^{200}$	${ }^{5}$		${ }^{371}$	${ }_{1}$	200			\bigcirc							
Onemer		140					${ }^{19}$		${ }_{4}^{45}$			${ }^{\frac{33}{63}}$																														s
demosor Taom	vatanoz	${ }^{1245}$					19		${ }^{257}$			175																														s
Damenon Taomm	Nata202	1800					${ }^{28}$		${ }_{30}$			${ }^{204}$																													Mod toun mouter	
Oamenotaom	$1{ }^{1042}$	1700							${ }^{193}$			${ }^{131}$																														s
Damanomamem	1042020	1:10					${ }^{25}$		${ }^{117}$			${ }^{80}$																													Mod fory, muatey	
Oamontraom	varano	1130					${ }^{27}$		${ }_{140}$			${ }^{95}$																													Mod tomomuxy	s
Damono Troom	varane2						${ }^{27}$		${ }^{258}$			${ }^{175}$																													Wod foum muxy	
Oemen	,	(1800					${ }_{24}^{24}$		$\underbrace{}_{\substack{216 \\ 27 \\ 27}}$																																	
Oeamer foiom		1600					${ }_{2}^{24}$		${ }_{\substack{24 \\ 24 \\ 24}}$																																	
	,						${ }^{22}$					$\underbrace{\substack{16}}_{\substack{165 \\ 140}}$																													come	
							($\underset{\substack { 190 \\ \begin{subarray}{c}{105{ 1 9 0 \\ \begin{subarray} { c } { 1 0 5 } } \\{105}\end{subarray}}{\text { 10, }}$																														
							- ${ }_{\text {24 }}^{24}$																																		come	
		130					28		${ }^{364}$																																	
	${ }^{2020}$						${ }_{\substack{26 \\ 26}}^{\substack{26}}$		${ }_{\substack{231 \\ 208}}$			(in																													coil	
							$c2424$	-	${ }^{\frac{204}{324}}$			$\underbrace{\substack{20}}_{\substack{20 \\ 20}}$																													emar	
Oemen frowe	3020200	20.					24		${ }^{39}$			${ }^{205}$																													Comat	
${ }^{\text {omamonomamm }}$	${ }^{220727200}$	${ }^{1438}$					${ }^{24}$		${ }^{297}$			${ }^{202}$																														
Doamo froum	20068200	${ }_{\substack{14,60}}^{14,0}$					${ }^{24}$		${ }^{294}$																																	s
Somen		${ }^{11.4}$					$\stackrel{22}{21}$		${ }_{4}^{410}$			${ }^{219}$																													$\substack{\text { coer } \\ \text { coer }}$	
Onem		11.4					${ }^{\frac{23}{24}}$					${ }^{256}$																														
Oemen Tosem	${ }_{\text {and }}^{\text {and }}$						${ }^{22}$		${ }^{300}$																																${ }_{\substack{\text { four } \\ \text { fow }}}^{\text {for }}$	
Oameno Traom	23071999						${ }_{16}$		${ }_{36} 3$			${ }_{20}$																														
Ommon Tasom	20871989						17		450			${ }_{30}{ }^{6}$																														
Oamson Tasom	10661998	9.10					${ }^{14}$		${ }^{319}$			${ }^{27}$																													Nomer	s
Doamon Tasom	avelige	${ }^{1100}$					19		${ }^{20}$			${ }_{12}$																														
(1anseat	${ }^{11272763}$	${ }_{\text {l }}^{1285}$	${ }^{0.87}$	O.60	${ }_{0}^{0.10}$			${ }_{\substack{8,0 \\ 8.0}}$	${ }_{\substack{200 \\ 24}}$			${ }_{\substack{200 \\ 148}}^{\substack{18}}$			${ }_{\text {c }}^{\substack{36 \\ 36}}$		${ }^{\frac{2}{210}}$	${ }_{\text {110 }}^{110}$		${ }_{\substack{36 \\ 32}}$	O20	${ }_{20}^{20}$															000			${ }_{\substack{2462 \\ 246.6}}$		
			${ }^{0.65}$	(ent	(0.00				${ }^{\substack{287 \\ 30 \\ 30}}$			${ }_{\substack{188 \\ 184}}^{\substack{19 \\ \hline}}$					(i80	($\underbrace{}_{\substack { 188 \\ \begin{subarray}{c}{195{ 1 8 8 \\ \begin{subarray} { c } { 1 9 5 } } \\{\hline 195}\end{subarray}}$	${ }_{\substack{32 \\ 32}}^{\substack{32}}$	¢0.00 0.00 0.0	${ }^{10}$														(iseo	${ }_{0}^{000}$		${ }_{\substack{68 \\ 10}}^{18}$			(inco
		${ }^{80}$	0.71	020	0.10		${ }^{20}$	820												${ }^{32}$																						
		cosise	${ }_{0}^{088}$	$0_{0.18}^{0.18}$	0.10		${ }^{24}$	${ }_{780}^{280}$	${ }^{1812}$						${ }^{22}$		${ }_{190}^{190}$	${ }_{50}^{50}$	${ }^{93}$	${ }^{12}$	${ }_{0}^{0.15}$	${ }_{40}^{10}$														${ }^{2600}$			${ }_{68}{ }_{68}$			(ind
(10024		${ }^{1065}$	0.88	${ }_{0}^{0.18}$	0.10		17	${ }_{720}{ }^{180}$	${ }_{\text {136 }}^{138}$						${ }^{22}$		${ }^{190}$	${ }^{50}$	${ }^{120}$	${ }^{14}$	${ }_{0}^{0.10}$	4.														8200			${ }_{158}$			(inden
		${ }_{\substack{380}}^{\substack{380}}$	${ }^{\text {0,74 }}$		0.00		${ }^{18}$	${ }_{720}^{20}$	${ }^{35}$						${ }^{35}$		${ }_{3}^{420}$	${ }_{100}^{100}$	${ }^{20} 189$	${ }_{\text {30 }}^{30}$	${ }_{0}^{0.15}$															15550	000		${ }^{121}$			(incon
coser	${ }^{20808989}$	${ }_{\substack{180 \\ \hline 85}}^{185}$			0.0		${ }^{17}$		30						${ }^{5}$		${ }^{32}$	100	${ }^{189}$	${ }^{30}$	0.5																					
			${ }^{0.65}$	${ }^{002}$	0.10			270	${ }^{212}$						${ }^{30}$		${ }^{230}$	60	${ }^{122}$	${ }^{24}$	020															1160	000		${ }^{82}$	${ }^{262}$		(inco
		${ }_{\text {a }}^{885}$	0.68	0.14	0.10		析	720	${ }^{165}$			${ }^{113}$	${ }^{197}$		${ }^{15}$	${ }^{67}$	${ }^{145}$	${ }^{35}$	${ }^{93}$	10	0.9						1000			∞		${ }^{200}$		200		7600			51	${ }_{1332}^{132}$		(incm
		${ }_{\substack{1880}}^{1200}$	${ }^{086}$	${ }^{136}$	0.10		,	${ }^{280}$	${ }^{180}$			${ }^{115}$	2		${ }^{18}$	${ }^{52}$	${ }^{137}$	${ }^{35}$	${ }^{13}$	${ }^{18}$		${ }^{20}$										2200		${ }^{1330}$		800		02	49	${ }^{141.1}$		(incon
		${ }_{\substack{180 \\ 180}}^{\substack{180}}$	0.0	022	0.10		${ }^{29}$	${ }^{7} 8.8$	${ }^{230}$			${ }^{134}$	70		${ }^{18}$	${ }^{6} 1$	220	${ }^{4 .}$	${ }^{116}$	${ }^{16}$	0.17											${ }^{300}$		1000		5000	0.00	04	14	${ }^{188}$		
			0.70	024	0.10		${ }^{25}$	270	30			${ }^{204}$	20		${ }^{36}$	${ }^{68}$	220	${ }^{8.5}$	110	${ }^{28}$	0.3													${ }_{1}^{1400}$		${ }^{12000}$	0.00	0.5	${ }^{102}$	276		
-		${ }_{170}^{170}$	0.78	0.52	0.10		${ }_{15}$	720	${ }^{265}$			${ }^{152}$	${ }^{85}$		${ }^{28}$	${ }^{65}$	200	${ }^{63}$	${ }^{122}$	${ }^{24}$	0.15													${ }^{900}$		1000	000	。	12	${ }^{265}$		
		${ }^{1720} 170$	0.6	021	0.10		${ }^{19}$	780	${ }^{315}$			${ }^{175}$			${ }^{37}$	${ }^{37}$	${ }^{180}$	70	${ }^{146}$	${ }^{34}$	${ }^{027}$													300		${ }^{12000}$	000	\bigcirc				
		${ }^{1088}$	${ }_{\substack{0.89 \\ 0.69}}^{\substack{\text { 0. }}}$	${ }_{0}^{025}$	0.10		2	${ }^{270}$	${ }^{200}$			${ }^{188}$			3	${ }^{33}$	170	6	${ }^{129}$	${ }^{30}$	0.17													200			000	\bigcirc				
		${ }_{\text {a }}^{\substack{1065 \\ 1065}}$	${ }^{0.58}$		0.10		${ }^{30}$	${ }^{230}$	${ }^{310}$			${ }^{192}$	3		32	${ }^{63}$	${ }^{195}$	${ }^{68}$	${ }^{196}$	${ }^{30}$	0^{022}													${ }^{3000}$		11200	${ }^{000}$	-		2208		,
	${ }^{2077495}$	${ }^{1065}$	${ }^{\text {O. }}$		010		${ }_{18}$		20			40	14																													
(10032A		${ }^{1245}$	0.59	${ }^{003}$	0.0		${ }^{16}$	${ }_{720}$	${ }^{261}$			${ }^{100}$	${ }^{20}$		${ }_{31}$	${ }^{36}$	${ }^{120}$	${ }_{5}^{57}$	${ }^{115}$	${ }^{26}$	0.10													${ }^{200}$		\%	000	-	${ }^{69}$	3, ${ }^{3 / 1}$		
		1880	0.58	${ }^{003}$			${ }^{\frac{23}{24}}$																																			owew
		${ }_{\text {cex }}^{1060}$	${ }^{0.85}$	${ }_{\substack{185 \\ 1.85}}$	020		${ }^{27}$	8.15	${ }^{268}$			${ }^{188}$	n		${ }^{23}$	64	${ }^{210}$	${ }^{6}$	${ }^{115}$	${ }^{22}$	${ }^{020}$	30					${ }^{2200}$									\%6000		${ }^{08}$	${ }^{78}$			Sonem
	$\underbrace{13097976}$	$\underbrace{\substack{182}}_{\substack{182 \\ 1820}}$	${ }_{0}^{064}$	${ }_{\text {c, }}^{0.16}$	${ }^{0.10} 0$			${ }^{8.50}$	${ }^{\frac{30}{20}}$			${ }^{\frac{201}{188}}$	130		${ }^{48}$	${ }^{34}{ }^{34}$	${ }^{240}$	${ }^{78}$	${ }^{165}$	${ }^{38}$	0.70	${ }^{20}$					${ }_{\substack{200 \\ 1700}}$							${ }^{120}$			(000	${ }^{\frac{32}{0.1}}$	${ }^{\frac{92}{60}}$			
			0.98	0.40	0.0		${ }^{24}$	800	310			${ }^{12}$	27		${ }^{28}$	${ }^{57}$	${ }^{240}$	${ }^{12}$	${ }^{120}$	${ }^{26}$	0.10	${ }^{60}$					${ }^{200}$							1860		10000		0.	\bigcirc	2714		
		${ }_{\text {2120 }}^{12120}$	0.80	0.12	0.10		${ }^{24}$	820	${ }^{335}$			${ }^{174}$			${ }^{4}$	${ }^{34}$	${ }^{130}$	${ }^{78}$	112	${ }^{33}$	020						${ }^{20}$							${ }_{4.00}$		${ }^{18300}$		${ }^{1.1}$	${ }_{6}$	24.7		Nomen
	${ }^{122049898}$	${ }_{\text {cose }}^{1248}$	0.2	0^{021}	0.10			${ }^{200}$	${ }^{20}$			${ }^{199}$	${ }^{19}$		${ }^{21}$	${ }^{50}$	210	${ }^{58}$	${ }^{128}$	${ }^{18}$	020	25					${ }^{20}$							${ }^{1100}$		1060		0.6	${ }^{76}$	${ }^{203}$		
		${ }_{\text {ces }}^{1205}$	${ }^{0.89}$	$\underbrace{0.48}_{0} 0$			- ${ }^{14}$																																			
	Sill	${ }_{\substack{104 \\ 104 \\ 104}}^{104}$	${ }^{128}$	273	0.10		${ }^{25}$	${ }^{750}$	${ }^{200}$			${ }^{122}$	${ }^{1270}$		${ }^{16}$	74	17.0	4.5	${ }^{95}$	7	0.10	50					500							${ }^{1330}$		${ }^{7800}$		02	${ }^{6}$	1688		(in
		120	${ }^{\text {O.7 }}$	${ }_{0}^{0.4}$	0.0			7.70	30			${ }^{189}$	10	${ }^{13}$	${ }^{34}$	${ }_{42}$	250	${ }^{26}$	${ }^{160}$	${ }^{30}$	0.10	1.0					200							${ }_{60}$		${ }^{13200}$		0.5	${ }^{4}$	${ }^{294}$		Now
		${ }^{1940}$	${ }^{1.19}$	147	0.10		17	${ }^{290}$	${ }^{160}$			101	${ }^{50}$	${ }^{100}$	${ }^{13}$	${ }^{53}$	${ }^{120}$	${ }^{31}$	${ }^{65}$	11	0.10	80					${ }^{4000}$							${ }^{1200}$		4400		$0^{0.3}$	${ }^{43}$	${ }^{121.8}$		
		${ }_{\substack{140 \\ 800}}^{\text {en }}$	${ }^{0.57}$	${ }^{0.25}$	${ }_{0}^{0.0} 0$			200	${ }_{\substack{40 \\ 300}}$			${ }^{\frac{212}{207}}$	${ }^{10} 10$	${ }_{5}^{5}$	${ }_{4}^{41}$	${ }^{\frac{37}{36}}$	${ }_{2}^{230}$	${ }^{\frac{88}{82}}$	${ }^{\frac{188}{17}}$	${ }^{\frac{34}{34}}$	${ }^{0.10} 0$	500					100							- $\begin{aligned} & \text { 300 } \\ & \text { 300 }\end{aligned}$		$\underbrace{\text { cen }}_{\substack{18200 \\ 18600}}$		${ }^{11} 0$	${ }^{108}$	${ }_{\substack{3225 \\ 235}}$		
	${ }^{2}$		${ }^{0.81}$	${ }^{0.22}$			${ }_{23}^{23}$																																			
		${ }^{1285}$	0.78	0.4	0.10		${ }^{15}$	8.50	${ }^{320}$			${ }_{10}$	-	$\stackrel{2}{2}$	${ }^{36}$	${ }^{37}$	${ }^{21.0}$	${ }^{6}$	${ }^{100}$	${ }^{2}$	0.10	30					${ }_{40}$			${ }^{20}$		${ }^{20}$		100								
		${ }^{105}$	${ }^{0}$	0.2	0.10		${ }^{25}$	8.0	30			10	10	${ }^{8}$	39	${ }^{38}$	${ }^{155}$	${ }_{6}^{66}$	${ }^{100}$	${ }^{34}$	${ }_{0}^{020}$	1.0					${ }_{0}$									${ }^{10000}$			${ }^{6}$			
			${ }^{0.98}$	080	0.10		${ }^{26}$	${ }^{270}$				${ }^{200}$	${ }^{20}$		${ }_{5}^{38}$	49	${ }^{220}$	${ }_{9}{ }^{78}$	10	${ }^{25}$	0.10	${ }^{83}$					${ }^{50}$			${ }^{20}$		${ }^{100}$		14.0		${ }^{10000}$						
			${ }_{656}$	${ }_{97688}$	0.10		${ }^{15}$	720	${ }^{485}$			${ }^{180}$	${ }^{1000}$	${ }^{100}$		\%	${ }^{3} 5$.	6	,	0.0	3								10		460		\%00		7800		${ }^{\text {a }}$	12			
			${ }_{652}$	1505099	0.10		${ }^{13}$	600	${ }^{175}$			${ }^{120}$			${ }^{21}$	${ }^{64}$	100	${ }^{23}$	${ }_{85}$	\bigcirc		,					2200						${ }_{100}$	${ }_{1900}$		now			${ }^{34}$	${ }^{14}$		$\xrightarrow{\text { OnNeN }}$
			${ }^{\frac{6,43}{6.3}}$		${ }^{\frac{0.10}{0.0}}$			¢50,	${ }^{120}$					(100		¢00	${ }^{\frac{8.7}{17}}$	-	¢	$\stackrel{6}{6}$													${ }_{\text {O }}^{0.02}$	${ }^{2000}$		cise			${ }^{30}$	(1026		
,					0.10		${ }^{24}$								${ }^{5}$	${ }^{24}$	260	${ }^{89}$	${ }^{188}$		0.0	${ }^{20}$								${ }_{10}$		20		600				${ }^{12}$	${ }^{102}$			(in
		,	${ }^{08}$	0.15	0.0		23					${ }^{180}$	${ }^{10}$,	${ }^{5}$	${ }_{38}$	${ }_{20}^{20}$.	,	${ }_{3}{ }^{23}$	${ }_{0}$,			\ldots		${ }^{20}$,		12700			${ }^{6}$	3201		

Water Quality Data Summax

												${ }_{\text {ras }}^{\text {mos }}$ Tss						Mamasim		choreme		sumpe	（tan）	Tomal									Is／Trace Eleme $\begin{array}{c}\text { Manganese as } \\ \text { Mn soluble }\end{array}$	Silica as SiO2 sol								${ }_{\substack{\text { Oatab }}}^{\text {sumeco }}$
					NV	${ }^{\text {na }}$	22080 \％ut																																			
			1.07	${ }^{107}$	mv			䧶	${ }^{30}$	na	${ }^{85170}$	${ }^{\text {n90 }}$	${ }_{20}^{10}$	${ }^{50}$	${ }_{36}{ }^{175}$	${ }_{36}$	${ }_{1900}^{190}$	${ }_{\substack{n 9 \\ 64}}$	${ }^{145}$	${ }_{35}^{775}$	${ }_{0}^{1,2}$	${ }^{40}$	50	${ }^{50}$			2700 500			${ }^{37}$		${ }^{20}$	${ }_{0}^{001}$	${ }^{100}$				${ }_{0}^{0.7}$	${ }^{74}$	${ }^{264} 4$		
18002a	Hille		0.92	${ }^{0.38}$			${ }^{\frac{23}{23}}$		${ }_{315}$																																	
，103029		${ }^{1100}$	082	0.12	0.10		${ }^{29}$	120	$\underbrace{}_{\substack{235 \\ 134}}$			${ }^{140}$	8	${ }^{2}$	${ }^{22}$	${ }^{57}$	170	50	10	${ }^{18}$	020	20					${ }_{500}$			30		so	00	1500		9100		${ }_{0} .5$	${ }^{63}$	${ }^{181 / 4}$		（onew
，103029at		${ }^{1227}$	${ }^{0.78}$	${ }^{005}$	0.10		${ }^{23}$	820	${ }^{2275}$			${ }^{150}$	${ }^{105}$	2	${ }^{24}$	50	${ }^{230}$	60	${ }^{130}$	${ }^{17}$	020	${ }^{21}$								30		${ }^{\circ}$		800		10900		${ }^{12}$	${ }^{82}$	${ }^{2086}$		
			081	0.11	0.0		15	8.10	${ }^{315}$			${ }^{180}$	${ }^{20}$	$\stackrel{8}{-}$	${ }^{36}$	50	${ }^{240}$	20	${ }^{185}$	${ }^{30}$	0.10									${ }^{20}$		${ }^{30}$		${ }^{100}$		${ }^{12300}$		${ }^{13}$	${ }^{8}$			
${ }^{103022}$			0.95	007	0.10		${ }^{25}$	8	${ }^{300}$			${ }_{160}$	5	7	${ }^{33}$	${ }^{37}$	${ }^{205}$	${ }^{64}$	${ }^{160}$	${ }^{27}$	0.10									10		${ }^{30}$				${ }^{12600}$		0.	${ }^{18}$			
Sosa	为	${ }^{1349}$	${ }^{080}$	${ }^{003}$	0.10		25	\％	${ }_{\substack{20 \\ 206}}^{\substack{26 \\ 206}}$			${ }^{100}$	${ }^{28}$		${ }^{22}$	${ }^{64}$	220	${ }^{50}$	${ }^{125}$	$\stackrel{16}{17}$	020									${ }^{20}$		3		${ }^{1200}$		${ }^{10350}$		${ }^{04}$	${ }^{13}$	${ }^{108}$		
			${ }^{085}$	${ }^{0.088}$	0.10		${ }^{13}$	200	${ }^{3}$			${ }^{100}$	$\stackrel{5}{142}^{1}$	${ }^{3}$	${ }^{33}$	${ }^{46}$	200 150	${ }^{60}$	${ }^{100}$	${ }^{27}$	0.10 0.10						${ }^{100}$			10		${ }^{20}{ }^{30}$		${ }^{100}$		${ }_{\text {ckeo }}$		0.	${ }_{5}$	${ }_{\substack{2129}}^{209}$		
边	\％		${ }^{329}$	${ }^{0.23}$	010		${ }^{26}$	20				${ }^{120}$	${ }^{13}$	${ }_{100}^{100}$	${ }^{26}$	${ }^{68}$	${ }^{200}$	${ }^{33}$	${ }^{105}$	${ }_{5}^{6}$	${ }_{0} 020$	${ }^{26}$					${ }^{300}$			${ }^{20}$		${ }^{30}$		${ }_{1200}^{100}$		$8{ }^{860}$		0.1	${ }^{64}$	${ }^{1671}$		，
，	Sozerse		${ }^{0.85}$	${ }^{\text {3，20 }}$	0.10		${ }^{23}$	${ }_{7}^{10}$	${ }^{\frac{188}{180}}$			${ }_{10}^{10}$	302	100	${ }^{21}$	${ }^{36}$	${ }^{200}$	${ }_{30}$	10	${ }_{14}$	0.10	${ }^{22}$					${ }_{1000}$					${ }_{30}$		${ }_{141400}^{1200}$		\％700		02	${ }_{4}$	${ }_{1632}$		（iven
2024	2as		\％	${ }^{0.3}$			${ }^{18}$																																			
			${ }^{0.80}$	008	0.10		${ }^{21}$	720	${ }_{\substack{200 \\ 295}}$			${ }^{150}$	\bigcirc	${ }^{36}$	${ }^{29}$	32	200	52	${ }^{125}$	${ }^{23}$	0.10											${ }^{40}$		${ }_{300}$		10400		${ }^{06}$	\cdots	${ }^{2061}$		（inco
			${ }^{146}$	${ }^{443}$	0.10		${ }^{26}$	700	${ }_{\substack{125 \\ 185}}^{\text {185 }}$			${ }^{83}$	${ }^{200}$	100	10	${ }_{5}^{53}$	${ }^{89}$	${ }^{24}$	${ }^{56}$	10	0.10						80					${ }^{1300}$		1900		1860			${ }^{32}$	${ }^{342}$		$\underset{\substack{\text { ONSN } \\ \text { DNRW }}}{\text { and }}$
			${ }^{195}$	${ }^{1178}$	0.10			780				${ }^{180}$	${ }^{124}$	${ }^{100}$	${ }^{19}$	${ }^{74}$	${ }^{155}$	${ }^{4.1}$	${ }^{87}$	19		22					4700					190		${ }^{120}$		${ }^{1200}$			${ }^{56}$			
			097	0.88	0.10			7.70				180	${ }^{100}$	100	${ }^{36}$	${ }^{35}$	${ }^{230}$	${ }^{73}$	${ }_{10}{ }^{0}$	${ }^{36}$	0.10	${ }_{4} 4$					50			${ }^{6}$		${ }^{6}$		${ }^{800}$		11500		${ }^{0.4}$	${ }^{8}$	${ }^{232}$		
${ }^{\text {cosema }}$			${ }^{109}$	${ }_{0}^{1045}$	0.0		${ }^{23}$	780	${ }^{\frac{20}{210}}$			${ }^{124}$	14	200	2	${ }^{65}$	${ }^{143}$	4.5	${ }_{87}$	17	0.14	36					1200			${ }^{20}$		${ }^{\circ}$		1220		${ }^{1200}$	001	${ }_{0} 0$	${ }^{54}$	1365		（in
	边		${ }^{103}$	0,83	0.10		${ }^{10}$	${ }_{\substack{820 \\ 80}}$				${ }^{23}$	${ }^{6}$	${ }^{88}$	4	${ }_{4}^{4 .}$	${ }^{28.1}$	${ }^{92}$	160	${ }^{38}$	0.13	60					${ }^{100}$			10		330		${ }^{17,70}$		${ }^{14140}$	${ }_{0}^{003}$	${ }^{15}$	${ }^{107}$	3012		Nown
			${ }^{084}$	0.3	0.10		${ }^{25}$	\％iso	${ }^{525}$			${ }^{205}$	11	${ }^{8}$	6	${ }^{52}$	${ }^{330}$	${ }^{11,8}$	${ }^{21}$	${ }^{6}$	0.19	${ }^{33}$							${ }^{0.05}$	30	40			${ }^{650}$		18200	0.0	1	${ }^{131}$	${ }^{40}$		
		${ }^{12}$	${ }^{0.08}$	$\stackrel{107}{107}$	0.10		${ }^{2}$		${ }^{\frac{204}{20}}$			${ }^{180}$	$\underbrace{}_{\substack{103 \\ 5}}$	${ }^{100}$	${ }^{32}$	${ }_{64}^{46}$	${ }^{240}$	${ }_{5}^{58}$	${ }^{130}$	${ }_{\substack{27 \\ 16}}$	－0．00	${ }_{4}^{4.8}$					$\underbrace{}_{\substack{\text { Inoo } \\ \text { sob }}}$		0.15 0.04 0.	${ }_{10}^{10}$	${ }_{\substack{20 \\ 40}}$	${ }^{20}$	0.1	${ }_{\substack{1800 \\ 1320}}$	${ }^{10} 10$	$\xrightarrow{\text { lumo }}$	00	${ }^{0.5}$	${ }^{\frac{88}{66}}$	${ }_{\text {cke }}^{\substack{200 \\ 1885}}$		
			0.8	0.13	0.0		${ }^{24}$	（ise	${ }_{\substack { \text { as } \\ \begin{subarray}{c}{20 \\ 305{ \text { as } \\ \begin{subarray} { c } { 2 0 \\ 3 0 5 } }\end{subarray}}$			19	10	5	${ }^{12}$	${ }^{6}$	219	${ }^{75}$	${ }_{185}$	${ }_{37}$	0.15								0.9	10				${ }_{130}$		${ }_{12800}$	${ }^{002}$	08	${ }^{85}$	${ }^{2691}$		（incon
			${ }_{\substack{0.45 \\ 088}}^{\substack{\text { a }}}$	${ }_{0}^{0.47}$	0.0			（im0	${ }_{\substack{404 \\ 404}}^{\text {304 }}$			${ }^{251}$		${ }^{\frac{5}{20}}$	${ }_{\substack{52 \\ 19}}$	${ }^{6.8}$	${ }^{301}$	${ }^{10.4} 4$	${ }^{206}$	$\stackrel{44}{9}$	${ }^{0.18} 0$	19							${ }_{\text {O．}}^{0.08}$		${ }_{\substack{20 \\ 10}}$	${ }_{\substack{20 \\ 190}}^{\substack{\text { a }}}$		${ }_{\text {270 }}^{2740}$	10	$\xrightarrow[\substack{\text { IT000 } \\ 8400}]{ }$	${ }_{\text {or }}^{0.000}$	${ }_{0}^{0.5}$	${ }^{\frac{117}{60}}$	（3358		
${ }^{\text {ligasen }}$			0,78	0.09	0.0		19	8.10	${ }_{30}^{204}$			${ }^{139}$	\％		${ }_{34}$	30	195	${ }^{65}$	${ }^{135}$	${ }^{26}$	0.13	${ }^{0} 4$					100		00					0.50		${ }^{\text {п1300 }}$	${ }^{003}$	${ }^{1.1}$	${ }_{75}$	${ }^{2276}$		（iven
${ }^{\text {120302 }}$			1,18	${ }_{588}$			${ }^{\frac{19}{27}}$	${ }_{7,2}$	${ }^{310}$																																	（inew
			${ }_{0}$	${ }_{0}^{0.13}$	0.10			${ }_{7}^{1760}$	${ }^{\frac{385}{35}}$			${ }^{183}$	12	3	${ }^{37}$	56	215	${ }^{82}$	${ }^{184}$	${ }^{28}$	0.14	${ }^{18}$					${ }^{20}$				10	${ }^{10}$		490	10	12800	0.0	${ }_{0} 4$	8	${ }^{2367}$		
${ }^{\text {cosema }}$	${ }^{23}$		${ }^{148}$	${ }^{588}$	0.0		${ }^{5}$	7	${ }^{289}$			${ }^{156}$	${ }^{1}$	${ }_{36}$	${ }^{22}$	${ }_{6}^{67}$	${ }^{210}$	${ }_{5}^{53}$	${ }^{126}$	${ }^{19}$	0.14	${ }^{15}$					${ }^{3200}$				${ }^{20}$	6		${ }^{1100}$		${ }^{12300}$	0.1	${ }^{02}$	${ }^{74}$	${ }^{204}$		
${ }^{\text {cosema }}$	隹		${ }^{1.088}$	${ }_{\substack{\text { 0．90 } \\ 0.9}}$	0．0．0			${ }_{7}^{70}$	${ }^{268}$			${ }_{\substack{100 \\ 100}}^{\text {¢ }}$	${ }_{4}^{46}$	${ }_{\substack{20 \\ 43}}$	${ }^{\frac{14}{27}}$	${ }^{\frac{8}{64}}$	${ }^{122}$	（ ${ }_{\text {32 }}^{54}$	${ }_{\substack{18 \\ 13}}$	${ }_{19}$	${ }_{0}^{0.11}$	${ }^{23}$							${ }_{0} 0.17$		${ }_{\substack{40 \\ 30}}$	${ }^{130}$		${ }_{\substack{1150 \\ 1500}}$		${ }^{\frac{8}{8300} 0}$	${ }^{\frac{001}{0.00}}$		${ }^{\frac{44}{13}}$			，
	30atiom		07	003	0.0		${ }^{20}$	8.0	${ }^{\frac{314}{314}}$			${ }^{194}$		＋	${ }^{37}$	44	${ }^{195}$	${ }^{63}$		${ }^{27}$	${ }^{011}$	04					${ }^{30}$				10			${ }^{030}$		ก530	001	${ }_{0}$	${ }^{14}$	${ }^{234}$		
	为		，																					${ }^{220}$	000																	
${ }^{\text {12002as }}$			120		0.10			${ }^{720}$	${ }^{268}$			${ }^{138}$	${ }^{120}$	${ }^{200}$	${ }^{35}$	${ }^{48}$	${ }^{150}$	${ }^{4 .}$	${ }^{113}$	${ }^{31}$	${ }_{0} 0.4$	1.		3300			${ }^{1000}$		${ }^{0.37}$		40	${ }^{20}$	${ }^{0.01}$	590	10	${ }^{3300}$		0.1	${ }^{6}$	${ }^{2662}$		$\xrightarrow{\text { Onven }}$
																									0.18	${ }_{50}$		${ }^{200}$														（insen
			${ }^{0.89}$	${ }_{\substack{\text { O．0．} \\ \text { O．90 }}}$	（020	${ }^{25}$	${ }^{20}$	${ }_{\text {l }}^{729}$	${ }^{220}$	${ }^{321}$		${ }_{179}$	7	2	${ }^{38}$	${ }_{60}$	${ }^{202}$	${ }_{6}{ }^{5}$	${ }_{151}$	${ }^{29}$	0.15	0		${ }^{657}$			${ }_{50}$		${ }_{0} 000$			10	${ }^{0.00}$	4.30		${ }^{12480}$	0.0	0.38	n， 13	${ }^{25188}$		（in
${ }^{\text {cosema }}$			${ }_{\substack{083 \\ 800}}^{\substack{\text { a }}}$		（0．00		${ }^{27}$	$\xrightarrow{7,74}$	${ }^{\frac{342}{148}}$			${ }^{8}$	$4{ }^{41}$	${ }^{20}$	14	${ }^{55}$	10.1	${ }^{21}$	${ }^{62}$	8	0.11	${ }^{21}$					400		${ }^{027}$			${ }^{10}$	000	${ }^{1140}$		5150	000	${ }_{0}^{0.05}$	उ383	1085		
																								504	0.16	${ }^{67}$																$\xrightarrow{\text { OnNeN }}$
${ }^{\text {cosem }}$			${ }^{600}$	5000	${ }^{0.20}$		${ }^{23}$	\％	${ }^{136}$					18														${ }^{200}$														
（1anora												${ }^{133}$	${ }_{6}$	${ }^{18}$	${ }^{2}$	${ }^{6} 1$	${ }^{174}$	${ }^{60}$	10	${ }^{14}$	0.13	${ }^{13}$		1134	0.2	${ }^{350}$	1010		0.3		${ }^{50}$	${ }^{8}$	0.02	${ }_{1220}$		9，00	0.02	0.67	${ }^{339}$			（in
${ }^{\text {cosen }}$	$\underbrace{20808989}$		${ }^{0.78}$	028	${ }^{0.30}$		${ }^{27}$	${ }_{\substack{688 \\ 888}}$	${ }^{228}$	${ }^{\frac{378}{3,8}}$																																
			${ }_{0}^{0.44}$		0，30			${ }_{7}^{\text {PTin }}$	${ }^{37}$			${ }^{189}$	15	${ }^{12}$	${ }^{35}$	${ }_{56}$	${ }^{24} 3$	72	${ }^{186}$	${ }^{28}$	0.13	15		${ }^{245}$			${ }^{180}$		0.0		10		0	920	10	${ }^{12900}$	0.0	0.51	${ }^{0023}$	2992		（in
隹			${ }^{0.74}$	${ }^{0.06}$	020		${ }^{21}$	780	$3{ }^{32}$	440				${ }^{15}$											0.	\％																
，	$\underbrace{20}$		${ }_{0}^{0.6}$	${ }_{0}^{0.1}$	（020			${ }_{178}^{178}$	${ }^{\frac{31}{303}}$			$1{ }^{168}$	＂	${ }_{6}^{6}$	${ }^{3}$	${ }^{37}$	${ }_{188}$	59	${ }^{138}$	${ }^{29}$	0.14	0.5		40					${ }_{0} 001$		30		000	${ }^{120}$	10	${ }^{11360}$	001	0.46	n， 17	${ }^{2443}$		（incoum
		${ }_{\text {130 }} 1$	0.73	0.46	020			${ }^{7,7}$	${ }^{288}$			${ }_{18}{ }^{18}$	${ }^{17}$	1	${ }^{37}$	${ }^{37}$	${ }^{203}$	${ }^{64}$	${ }^{141}$	${ }^{29}$	0.12	0		${ }^{4}$	000	${ }^{27.4}$	${ }^{20}$		${ }^{000}$		${ }^{30}$	${ }^{120}$	${ }^{001}$	000		11650	0.0	0.42	${ }_{8680}$	${ }^{2891}$		
																								${ }^{126}$	000	${ }^{303}$																（inco
	${ }_{\text {and }}^{\text {3ntinaes }}$	${ }^{1200}$	${ }^{0.13}$		20， 0.0	${ }^{25}$	${ }^{20}$	${ }_{7}^{780}$	${ }^{\frac{317}{180}}$	${ }^{620}$		${ }^{92}$	${ }^{30}$	${ }_{40}^{11}$	14	${ }^{50}$	${ }^{120}$	${ }_{3} 1$	10	。	0.11	${ }^{11}$					$9{ }^{20}$		0.00		${ }^{40}$		${ }_{0} 00$	${ }^{1220}$		${ }_{5} 520$	${ }_{0} 00$	0.11	${ }_{4269}$	${ }^{11537}$		
	（19965																							3229	0.05	${ }^{6,1}$																
			${ }^{10.2}$	${ }^{50.1}$	${ }_{0}^{0.10}$		2	${ }_{18,}^{180}$	${ }_{\substack{136 \\ 306}}$	，		${ }^{24}$	17	${ }^{39}$	${ }^{42}$	${ }^{62}$	${ }^{268}$	${ }^{83}$	${ }_{180}$	${ }^{32}$	0.15	1.0		${ }^{46}$					${ }_{0} 0.0$		10	40	001	${ }_{1240}$		${ }_{182} 8$	${ }_{0} 001$	${ }_{0} 0$	10.58	3×6		
	${ }^{20}$			0.11			${ }^{24}$			4.11															001	${ }^{63}$																
			0.72		${ }^{020}$			${ }^{294}$	${ }^{24}$			${ }^{128}$	5	${ }^{205}$	${ }^{28}$	${ }^{47}$	${ }^{128}$	${ }^{35}$	${ }^{104}$	${ }^{14}$	0.16	${ }^{18}$		${ }_{138}$			${ }^{130}$		0.00		${ }^{20}$		000	${ }_{1090}$	${ }^{10}$	8550	000	${ }^{0.14}$	${ }_{4}^{63}$	1788		
	$\underbrace{20458969}$	：	0.8	0.31	020	21	${ }^{15}$	${ }^{730}$	${ }^{217}$	${ }^{680}$				${ }^{216}$											0.04	${ }^{422}$										8000						
			${ }^{0.76}$	${ }^{0.14} 0$	0.10			＋${ }^{780}$	${ }^{317}$			${ }_{187}$	${ }^{14}$	．	${ }^{37}$	40	${ }^{196}$	${ }^{63}$	${ }^{141}$	${ }^{28}$	0.11	0.5							0.00			10	．000	${ }_{170}$	${ }^{10}$	11680	001	0.68	${ }^{7} 4,81$	${ }_{26889}$		
							14		，	821														${ }_{166}$	000	${ }^{102}$																
			${ }_{406}$	${ }^{\text {9，100 }}$	0．0．0			${ }^{201}$	${ }^{\frac{16}{12}}$			${ }^{11}$	${ }^{197}$	${ }^{127}$	19	${ }^{2}$	${ }^{10,7}$	25	${ }^{4}$	10	0.08	${ }^{25}$		${ }^{2084}$			${ }^{1100}$		000		10	10	000	1830	s	${ }^{\text {6889 }}$	000	${ }^{0.005}$	${ }^{3689}$	${ }_{137.19}$		
${ }^{13032024}$	为						${ }^{24}$																		0.30	1830																
			${ }^{\text {a06 }}$	${ }^{1380}$	0．00			${ }_{7}{ }_{75}{ }^{\text {a }}$	${ }^{39}$			${ }^{183}$	5	${ }_{6}$	30	${ }^{6} 6$	${ }^{249}$	${ }^{65}$	134	${ }^{20}$	0.13	${ }^{20}$		${ }_{186} 1$			${ }^{132}$		0．00		10		0.00	${ }^{1530}$		${ }^{12850}$	000	${ }^{029}$	${ }^{\text {®8\％}}$	${ }^{2559}$		
	$\underbrace{2083}$	，	0.95	${ }^{198}$	020		${ }^{24}$	780	309	${ }^{500}$				\because											0.04	${ }^{61.8}$																
	${ }^{1200898989}$		${ }^{0.74}$	${ }_{0}^{0.11}$	2020			${ }^{708}$	${ }^{319}$			${ }_{188}$	${ }^{13}$	－	${ }^{37}$	${ }^{42}$	${ }^{20,1}$	${ }_{60}$	${ }^{146}$	${ }^{28}$	${ }_{0} 0.8$	0							0.00		10		0.00	0.80		${ }^{12030}$	000	0,9	${ }_{7}^{7482}$	22153		
																								${ }^{92}$	0.0	${ }^{318}$																
			${ }^{222}$	${ }^{\frac{14149}{14,9}}$	${ }^{0.20} 0$	${ }^{19}$	${ }^{23}$	${ }_{\text {\％}}^{\text {\％}}$	${ }_{\substack{187 \\ 184}}$	${ }^{500}$		${ }_{12}$	${ }^{1944}$	${ }^{2000}$	${ }^{23}$	${ }_{46}$	${ }^{78}$	${ }^{1,7}$	${ }^{6}$	14	0.11	${ }_{48}$					3270		－00		10		000	1270	\cdots	50.10	0.00	0.05	286	${ }^{2023}$		
			074					${ }_{720}$					${ }^{100}$	${ }_{40}$	11	${ }^{75}$	${ }_{195}$		100	10					0.19	${ }^{667}$	${ }^{200}$									8800	000	0.1		\％80		
					0.10			730							11	15		${ }^{4 .}$	100		020	20		3300	${ }^{009}$	${ }^{840}$																
			${ }^{0.74}$	${ }_{0}^{0.07}$	${ }_{0}^{0.00} 0$	${ }^{23}$	${ }^{24}$	${ }_{\substack{128 \\ 8.0}}^{\substack{\text { a }}}$	${ }_{\substack{126 \\ 206}}$	215		140	10	${ }_{\substack{48 \\ 10}}$	${ }^{29}$	${ }_{4}^{4.1}$	${ }_{165}$	${ }_{61}$	${ }^{120}$	${ }^{22}$	0.10	${ }^{20}$					50		${ }_{0}^{005}$	${ }_{10} 0$	${ }^{50}$	${ }^{20}$	${ }_{0} 02$	100	${ }^{20}$	10000	000	0.9	${ }^{62}$	${ }^{20}$		（oven
																								${ }^{20}$	000	${ }_{6} 6$																Onew
${ }^{\text {Pamane }}$		，	0.78	0.14	${ }_{0} 0.30$	．	－	${ }_{72}$	${ }^{265}$	${ }^{2}$		${ }^{141}$	${ }^{14}$	${ }^{20}$	30	${ }^{42}$	164	5.	${ }^{122}$	${ }^{23}$	0.13	0.4	249	${ }^{428}$			210		0.02		10	${ }^{20}$	0.00	1.50		10060	0.0	0^{02}	6139	20.186		（incon
		，	${ }^{0.77}$		O． 0.30	${ }^{28}$	${ }^{18}$	${ }^{7} 7.85$	${ }^{268}$	${ }^{158}$		${ }_{12}^{12}$	${ }^{93}$	${ }_{\substack{24 \\ 100}}^{\substack{\text { a }}}$	${ }^{25}$	${ }^{63}$	184	${ }^{37}$	${ }^{103}$	${ }^{20}$	0.10	${ }^{28}$					100		${ }^{0.00}$		${ }^{20}$		0.0	18.50			000	0.14	$6_{6,13}$	${ }^{178 .}$		
	Soleme							－															1086	${ }^{2565}$	0.10	${ }^{104}$																

Water Quality Oata Summary

	Somp		coin									ros mos	$\begin{array}{\|c\|} \hline \text { rss mosu } \\ \hline 10 \\ \hline \end{array}$				$\begin{array}{\|c\|c\|c\|c\|c\|c\|c\|c\|c\|} \substack{\text { anten }} \\ \hline 1000 \\ \hline \end{array}$			$\frac{\substack{\text { chnorase } \\ \text { mole }}}{\substack{175 \\ \hline 30 \\ \hline 30}}$	$\frac{\substack{\text { Finarae } \\ \text { most }}}{1,2}$										$\underset{\substack{\text { copeat } \\ \text { quat }}}{ }$ 14	（100）								\pm		${ }_{\substack{\text { Oafa }}}^{\substack{\text { saure }}}$		
	源		0.76	0.16	020				330															120.0							0.05					1100		${ }^{13500}$		$0^{\circ 8}$	${ }^{85}$	${ }^{20}$		
	，		${ }^{0.76}$	${ }^{0.16}$	${ }^{020}$		${ }^{25}$	\％	${ }_{40}^{40}$	${ }^{330}$				${ }_{35}^{35}$											004	${ }^{110}$																		
${ }^{120022} 4$			${ }^{208}$	${ }^{18,30}$	0.10			${ }^{758}$	${ }^{145}$			$\%$	${ }^{30}$	${ }^{315}$	${ }^{14}$	${ }^{62}$	100	${ }^{26}$	8	${ }^{6}$	0.10	${ }^{20}$		420.0			${ }^{1500}$		021	100	so	${ }^{20}$	002	1500	${ }^{20}$	6600	000	0.1	${ }^{355}$	${ }^{120}$		（onem		
隹		${ }^{200}$	${ }^{208}$		${ }^{0.10}$	${ }^{24}$	${ }^{26}$	${ }^{265}$	${ }_{\substack{189}}^{200}$	${ }_{547}$		${ }^{120}$	\％	${ }_{\text {col }}^{\substack{\text { s77 } \\ 10}}$			${ }^{140}$			${ }^{13}$					0.12	${ }_{320}$						${ }^{20}$								${ }^{100}$				
隹												${ }^{120}$	8		21	${ }^{69}$	${ }^{140}$	${ }^{39}$	${ }_{6}$	${ }^{13}$	0.10	20		2000			${ }^{1200}$		0.05	100	${ }^{50}$	10	002	${ }^{1400}$	${ }^{20}$	${ }^{8200}$	000	${ }^{0.6}$		${ }^{160}$		$\xrightarrow{\text { OnNeN }}$		
		${ }^{\frac{1720}{120}}$	${ }_{\substack{0.97 \\ 0.78}}$	${ }_{0}^{098}$	${ }^{020}$	${ }_{32}$	${ }^{\frac{28}{13}}$	${ }^{730}$	${ }_{\substack{2313}}^{23}$	${ }^{400}$				${ }^{181}$																												－		
		，	${ }_{4 \times 8}$	${ }^{12214}$	${ }^{0.10}$			${ }^{1745}$	${ }^{\text {che }}$			9	180	${ }^{\frac{12}{25}}$	18	6	${ }^{19}$	${ }^{22}$	${ }_{6}$	7	0.10	20		4500			${ }^{1500}$		${ }^{023}$	${ }^{100}$	50	${ }^{20}$	${ }_{0} 02$	${ }^{1700}$	${ }^{20}$	5300	000	${ }^{0.1}$	${ }^{29}$	${ }^{10}$				
	9034	${ }^{50}$	${ }^{4.36}$	${ }^{13214}$	0.10	${ }^{24}$	${ }^{25}$	${ }^{205}$	${ }_{181}$	${ }^{380}$															${ }^{0.18}$	${ }^{260}$																（inew		
				0.08				${ }^{305}$	${ }^{320}$			${ }^{20}$	10	${ }^{12}$	${ }^{12}$	5.	${ }^{230}$	72	${ }^{165}$	3	0.10	${ }^{20}$		${ }^{480}$			50		${ }^{0.0}$	100	${ }_{50}$	${ }^{20}$	0.0	60	${ }^{20}$	${ }^{13500}$	0.00	${ }^{11}$	${ }^{87}$	${ }^{20}$				
	7804199		${ }^{0.75}$	008	${ }^{\text {0．30 }} 0$	${ }^{25}$	${ }^{17}$	720	${ }^{345}$	670				${ }^{13}$									${ }_{364}$	${ }^{335}$																				
	Some	${ }^{175}$	${ }_{\text {O，78 }}^{0.74}$	${ }_{\text {O，}}^{0.22}$	${ }^{0.10} 0$		14	${ }_{7}^{788}$	${ }^{325}$	${ }^{820}$		${ }^{161}$	11	${ }^{32}$	${ }^{3}$	${ }^{4,1}$	${ }^{188}$		112	${ }^{25}$	0.12	04				\ldots	${ }_{30}$		${ }^{0.00}$					${ }_{10}^{1,0}$	10	${ }^{11765}$	${ }^{001}$	${ }^{063}$	${ }^{74404}$	${ }^{22213}$		（en		
						2	${ }^{19}$			${ }^{780}$					${ }^{34}$	4.	${ }_{188}$	${ }_{68}$	${ }^{102}$	${ }^{25}$	0.12	04	${ }^{2667}$	${ }^{420}$			${ }^{360}$		0.00				${ }_{0} 00$	${ }^{1.10}$								（in		
	${ }^{8}$	${ }^{1560}$	0.7	003	${ }_{0} 000$		，	${ }^{2 \times 9}$	${ }^{231}$	－		190	\bigcirc	$\stackrel{\square}{9}$	41	${ }_{5} 5$	2.0	${ }^{78}$	162	3	0.16	0	3288	394			550		0.0				0.0	3.0	30		0．0	0.58	${ }^{84} 4$	${ }^{2609}$		（in		
	${ }_{\text {dind }}^{81212999}$	${ }_{\text {cose }}^{\substack{150 \\ 180}}$					${ }^{27}$	${ }^{760}$		${ }_{692}$															001	${ }^{334}$																（owen		
		${ }^{927}$	${ }^{368}$	${ }^{6838}$	${ }^{020}$			202	${ }^{145}$			${ }^{9}$	${ }^{19}$	${ }^{197}$	12	${ }^{75}$	${ }^{105}$	${ }^{26}$	${ }^{6}$	12	0.11	${ }^{26}$	${ }^{12210}$	520			${ }^{1600}$		000				0.00	${ }^{1310}$		${ }^{\text {80，16 }}$	000	${ }^{108}$	\％69	${ }^{10,0.4}$				
		${ }^{29}$	${ }^{3,66}$	${ }^{6653}$	${ }^{020}$		22			4.10															${ }^{034}$	${ }^{14,1}$																（owen		
${ }^{\text {cosen }}$			0.89	0.84	020			${ }_{8} .6$	40			${ }^{22}$	38	${ }^{37}$	${ }^{5}$	${ }^{67}$	${ }^{181}$	${ }^{62}$	${ }^{185}$	${ }^{30}$	0.21	${ }^{10}$	479	${ }^{109} 1$			${ }^{1000}$		000			${ }^{20}$	0.00	${ }^{30}$	${ }^{30}$	15000	${ }_{0}^{0.0}$	${ }^{1,52}$	${ }^{2065}$	33473				
	${ }^{22032}$		${ }^{0.89}$	0.84	${ }^{020}$		${ }^{26}$	${ }^{760}$	${ }^{376}$	440				${ }^{2}$											${ }_{0} 004$	${ }^{21.7}$																${ }_{\text {ONPN }}^{\text {OneN }}$		
隹		， 102	${ }_{0}^{0.6}$		${ }_{\text {coso }}^{0.30}$			${ }^{304}$				${ }^{151}$	${ }^{13}$		${ }^{36}$	${ }^{42}$	${ }^{154}$	${ }^{53}$	${ }^{134}$	${ }^{23}$	0.14	0	${ }^{1891}$	${ }^{250}$			${ }^{190}$		0.0				${ }_{0} 00$	0.00		${ }^{11120}$	002	0.85	6022	21856				
边		${ }^{120}$	${ }^{0.76}$	${ }^{0.16}$	${ }^{0.30}$		15	${ }^{7} 8$	${ }^{\frac{29}{85}}$	${ }^{820}$				${ }^{3}$											or	${ }^{45}$																		
Somat	H12000		${ }_{200}^{200}$		${ }^{0.0}$			${ }^{608}$	${ }^{135}$			${ }^{88}$	${ }^{1350}$	${ }^{1320}$	${ }^{15}$	${ }^{63}$	${ }^{16}$	${ }^{20}$	${ }^{65}$	$\stackrel{8}{8}$	0.0	${ }^{28}$	33200	${ }^{640} 0$			som		${ }^{123}$			${ }^{50}$	000	1520		850	000	003	28.9	N0058		cown		
		${ }^{885}$	${ }_{\substack { 200 \\ \begin{subarray}{c}{\text { 200 }{ 2 0 0 \\ \begin{subarray} { c } { \text { 200 } } }\end{subarray}}$	${ }^{269}$			${ }^{19}$	${ }_{\text {\％}}^{6}$	${ }^{128}$	660															0.16	${ }_{326}$																Sown		
			${ }^{1,09}$		（oso							\because	${ }^{20}$	${ }^{35}$	${ }^{13}$	${ }^{43}$	${ }^{93}$	${ }^{27}$	12	\bigcirc	0.0	${ }^{20}$	13000	3200			${ }^{1400}$		${ }^{0.05}$	100	${ }^{50}$	${ }^{40}$	0.0	${ }^{1800}$	700	5900	000	1	${ }^{36}$	${ }^{110}$		（in		
${ }^{\text {cosemen }}$		185	${ }_{\substack{109 \\ 0.4}}^{\substack{10}}$	$0_{\substack{2.5 \\ 0.0}}^{\text {a }}$	${ }_{\text {coion }}^{0.00}$		${ }^{23}$	${ }_{\substack{700 \\ \hline 600}}^{\text {cos }}$	${ }_{1}^{140}$	${ }^{\frac{5}{350}} \mathbf{3}$				${ }_{\substack{365 \\ 120}}$																												（onew		
${ }^{\text {ligenen }}$		${ }^{17175}$	${ }^{0.14}$	0.09	${ }_{\text {－}}^{0.20}$			${ }^{200}$	100			${ }^{9}$	30	$1{ }^{15}$	${ }^{13}$	${ }^{51}$	${ }^{120}$	${ }^{35}$	${ }^{86}$	T	0.10	${ }^{20}$	${ }^{2000}$	1900			80		${ }^{0.17}$	100	50	${ }^{30}$	0.02	${ }^{1400}$	${ }^{20}$	7100	0.00	，	4	${ }^{130}$		（incm		
${ }^{1302032 a t}$		${ }^{17175}$			${ }^{0.20}$		${ }^{20}$			${ }^{330}$				${ }^{120}$											${ }^{0.07}$	${ }^{370}$																Sown		
		${ }_{\substack{130 \\ 120}}^{\substack{\text { a }}}$	0.8	0.0	${ }^{0.30}$			${ }^{7} 9$	220			${ }^{120}$	10		${ }^{18}$	${ }^{63}$	170	${ }^{5.1}$	${ }^{115}$	11	0.10	20	s10．	50.0			50		0.05	${ }^{100}$	50	2	0.02	900	20	9400	000	0.5	${ }^{6}$	10				
		${ }_{\substack{1385 \\ 1855}}^{1 .}$	${ }_{\substack{089 \\ 0.7}}^{0 .}$	$\stackrel{\text { OO2 }}{\substack{\text { O．}}}$	${ }^{\text {0．30 }} 0$	${ }^{29}$	${ }^{18}$	${ }^{7}$	${ }_{\substack{20 \\ 20}}$	830		${ }_{10}$	10	${ }_{6}^{12}$	${ }^{28}$	${ }^{68}$	${ }_{185}$	${ }^{63}$	${ }^{135}$	${ }^{23}$	0.10	${ }^{20}$					${ }_{500}$		${ }_{0}^{0.05}$	${ }^{100}$	50	20	${ }_{0} 0.2$	300	${ }^{20}$	$\xrightarrow{\substack{\text { gato } \\ 1000}}$	000	0.5	12	${ }^{20}$		（in		
																							${ }^{300}$	${ }^{300}$	001	${ }^{100}$		，														（in		
		${ }_{\substack { 1555 \\ \begin{subarray}{c}{135{ 1 5 5 5 \\ \begin{subarray} { c } { 1 3 5 } }\end{subarray}}^{\substack{\text { a }}}$	${ }^{0.7}$	O．04	－		14	${ }^{\frac{7270}{7.76}}$	${ }_{\substack{288 \\ 30}}$	${ }_{730}$		181	${ }^{11}$	${ }^{84}$	${ }^{34}$	${ }^{43}$	${ }^{189}$	${ }^{62}$	${ }^{140}$	${ }^{27}$	0.14	0							0.00	${ }_{30}$			000	${ }_{150}$	${ }^{10}$	${ }^{11570}$	${ }^{001}$	046	${ }^{1265}$	${ }^{20084}$				
		1335	0.6	030	0，30		${ }^{19}$	${ }^{7} 78$	${ }^{31}$	8.10				7									${ }^{3396}$	${ }^{31.1}$												${ }^{11240}$						（onew		
			${ }_{\substack{086 \\ 0.88}}$	${ }_{0}^{0.49}$	020			${ }^{1785}$	${ }_{\substack{193 \\ 198}}$			${ }^{120}$	${ }_{60}$	88	${ }^{24}$	${ }^{49}$	${ }^{110}$	${ }^{28}$	${ }^{85}$	11	0.10	40					${ }^{200}$		${ }^{0.24}$	${ }^{20}$	${ }^{30}$	170	${ }_{0}^{0.3}$	${ }_{1500}$	${ }^{30}$	1000	000	${ }_{0}^{0.1}$	${ }^{9}$	${ }_{100}$				
	边						20			${ }_{4}{ }^{10}$													17000	30.0	0.15	${ }^{3} 90$																$\xrightarrow{\text { OnNe }}$		
	colez	${ }^{\text {dis0 }}$	${ }^{27}$	${ }_{4737}^{47}$	${ }^{\text {O．20 }}$			${ }^{210}$	${ }_{135}^{135}$			${ }^{84}$	1100	${ }^{1560}$	12	${ }^{44}$	${ }^{39}$	${ }^{25}$	${ }^{68}$	5	0.10	30	2100.	8000			3000		${ }_{0}^{0.05}$	100	${ }^{30}$	10	${ }^{0.03}$	${ }^{1000}$	${ }^{40}$	5600	000	${ }^{0.1}$	${ }^{35}$	10		（in		
		${ }^{155}$	${ }^{27}$	${ }^{4737}$	${ }^{0.30}$		${ }^{27}$	${ }^{120}$	${ }^{188}$	${ }^{350}$				${ }^{1170}$											0.05	${ }^{290}$																		
	19022	120	${ }^{3.5}$	${ }^{47733^{4}}$	${ }^{0.00}$			${ }_{\text {\％}}^{1,08}$	${ }^{10} 10$			${ }^{16}$	50	${ }^{8.80}$	11	${ }_{47}$	70	${ }^{21}$	${ }^{6}$	${ }^{5}$	0.10	40					${ }^{200}$		${ }_{0}^{0.05}$	80	30	10	${ }_{0}^{003}$	${ }_{1300}$	${ }^{40}$	4500	0.00	\bigcirc	${ }^{26}$	${ }^{92}$				
	边																						17000	1000	O．11	${ }^{240}$																		
隹	退2022		292	${ }^{2943}$	0，30			${ }^{655}$	${ }^{87}$			${ }^{\circ}$	${ }^{30}$	s00	$\stackrel{8}{8}$	${ }_{4}^{4.1}$	${ }^{53}$	${ }^{17}$	${ }^{45}$	4	0.10	${ }^{20}$	12000	4200			${ }_{150}$		0.05	${ }^{20}$	${ }^{30}$	10	${ }_{0}^{0.3}$	110	${ }^{\circ}$	3700	000	－	${ }^{20}$			cown		
	－		${ }^{202}$	${ }_{\text {20，}}^{2.88}$	${ }^{0.0} 0$		${ }^{26}$	${ }_{7}^{7.05}$	${ }^{\frac{90}{10} 0}$	${ }^{360}$		${ }^{10}$	\because	${ }^{513}$	${ }^{19}$	${ }^{43}$	${ }^{125}$	${ }^{37}$	${ }^{2}$	\bigcirc	0.10	${ }^{20}$					1800		${ }^{0.13}$	100	${ }^{30}$	${ }^{140}$	${ }^{0.03}$	${ }_{1200}$	10	${ }^{7400}$	000	02	${ }^{46}$	${ }^{120}$				
${ }^{\text {Inema }}$	${ }_{\text {a }}^{12032}$																						7000	${ }^{1400}$	00.0	${ }^{330}$																		
		${ }^{1255}$	${ }_{\substack{095 \\ 0.95}}$	${ }_{\substack{166 \\ 1.65}}^{\text {ien }}$	${ }^{\frac{0}{020}} \mathbf{0}$		${ }^{26}$	${ }^{7} 7$	${ }_{\substack{185 \\ 185}}$	${ }^{800}$				${ }^{214}$																														
		145	068	091	0.0			${ }^{273}$	${ }^{268}$			${ }_{12}$	${ }^{35}$	${ }^{114}$	${ }^{36}$	46	${ }_{152}$	${ }^{4.3}$	${ }^{137}$	${ }^{13}$	0.16	1.	${ }^{1418}$	${ }^{122}$			${ }^{100}$		${ }_{0}^{0.0}$	50		${ }^{40}$	0.0	${ }^{930}$		11220	0.0	${ }^{0.4}$	¢6\％	${ }^{21169}$				
		${ }_{\text {coitico }}^{\substack{160}}$	${ }_{0}^{0.75}$	${ }_{0}^{0.12}$	${ }_{0}^{0.10}$	${ }^{26}$	2	${ }_{7}^{7,85}$	${ }^{205}$	300		${ }^{130}$	10	${ }^{113}$	${ }^{28}$	${ }^{41}$	${ }^{145}$	${ }_{4}{ }^{5}$	110	${ }^{21}$	0.10	${ }^{20}$	300				50		${ }^{0.05}$	100	${ }_{30}$	10	${ }_{0}^{0.3}$	${ }_{500}$	10	${ }^{0100}$	0.00	0.	${ }^{55}$	180				
			0.75				11			${ }^{930}$													\％ow	．	0.0	${ }^{110}$																		
（1asersa		${ }_{\substack{745 \\ 745}}$	0.8		0.0			${ }^{200}$	${ }^{245}$			${ }^{130}$	so	${ }_{10}^{10}$	${ }^{28}$	${ }^{53}$	${ }^{145}$	${ }^{39}$	${ }^{10}$	${ }^{17}$	020	20	8300	${ }^{2000}$			${ }^{20}$		007	100	${ }^{30}$	10	${ }_{0}^{0.03}$	200	4	${ }^{8200}$	0.00	02	${ }^{62}$	${ }^{180}$				
${ }^{\text {che }}$		${ }_{\text {lis }}^{185}$	0.74	0.56	${ }^{020}$			780	${ }^{34}$			190	${ }^{20}$	${ }^{20}$	${ }^{63}$	${ }^{64}$	${ }^{140}$	40	${ }^{165}$	${ }^{24}$	020	${ }^{20}$	2200	${ }^{12000}$			${ }_{1600}$		${ }^{005}$	${ }^{200}$	30	110	${ }^{0.3}$	200	10	${ }^{3350}$	0.0	04	${ }^{52}$	${ }^{220}$		$\xrightarrow{\text { ONWN }}$		
		${ }^{1859}$	${ }^{0.84}$	0.56	${ }^{0.20}$	${ }^{33}$	${ }^{25}$	200	${ }^{322}$	220				${ }^{373}$											0.0	${ }^{60}$																		
			0.7					${ }^{200}$				${ }^{120}$	150	${ }^{200}$	${ }^{23}$	${ }^{52}$	${ }^{120}$	${ }^{36}$	${ }^{105}$	，	${ }^{020}$	${ }^{20}$	000	2000			${ }_{1500}$		${ }^{0.05}$	100	${ }^{30}$	10	0.03	${ }^{11100}$	10	8870	0.00	02	${ }_{455}$	${ }^{160}$				
隹		${ }^{100}$	${ }_{0}^{0.78}$		${ }^{0.020}$		${ }^{30}$	${ }^{1720}$	${ }_{20}^{170}$	${ }^{360}$			${ }^{78}$	${ }_{\substack{245 \\ 235}}$	24	42	${ }^{130}$	${ }^{36}$	${ }^{104}$	1						${ }^{0}$			${ }^{0.05}$		10		00			${ }^{\text {B67 }}$	00	${ }^{021}$	（123	， 24				
${ }^{\text {cosezan }}$		${ }^{150}$	${ }_{0} 078$		${ }^{020}$	${ }^{24}$	${ }^{20}$	${ }_{7}^{700}$		480					4			${ }^{6}$					7295	${ }^{1390}$																				
${ }^{\text {ciene }}$			${ }^{0.75}$					${ }^{185}$	${ }^{248}$			14	${ }^{20}$	${ }^{45}$	${ }^{29}$	${ }^{45}$	${ }^{16,5}$	${ }^{48}$	${ }^{122}$	${ }^{18}$	0.12	1.0	${ }^{3116}$	447			${ }^{200}$		${ }^{0.04}$	${ }^{100}$	10	${ }^{\circ}$	${ }^{0.3}$	939	10	${ }_{\text {1017 }}$	001	047	${ }^{\text {sose }}$	1867		SNeN		
		${ }^{12}$	${ }^{0.75}$				14		${ }^{235}$	${ }_{650}$				${ }_{45}^{45}$											．0．	102																		
	coseme	${ }_{\text {cose }}^{12}$	${ }^{0.75}$	0.2	0．0 0.0 0.0 0			${ }^{*}$					10		3	${ }^{3}$	（100	${ }^{3}$	15	2	0.10	20	2000	200	001	80	${ }^{50}$		Ous	20	${ }^{\circ}$	10	ous	100	10		000	0.	\cdots	20				
	$\underbrace{\text { amata }}$	${ }^{185}$	${ }^{0.75}$	0.12	－		19	${ }_{7}^{8,10} 7$	${ }_{\substack{279 \\ 305}}^{\substack{\text { 20，}}}$	${ }^{750}$		160	20	${ }_{\substack{16 \\ 12}}^{12}$	${ }^{34}$	4.	190	6	${ }^{160}$	${ }^{24}$	020	20				\cdots	50		0.05	100	${ }^{30}$	10	0.08	100	10	${ }^{12500}$	0.0	0.3	${ }^{12}$	${ }^{20}$				
		${ }^{810}$	${ }^{0.70}$		－	${ }^{27}$	${ }^{23}$	${ }^{2} .10$	${ }^{313}$	${ }^{3.0}$													3300	${ }^{420}$																				
	隹		${ }^{\text {O23 }}$		（0，00			${ }^{220}$	135			${ }^{8}$	${ }^{1300}$	${ }^{200}$	17	${ }^{6}$	${ }^{100}$	${ }^{20}$	${ }^{18}$	${ }^{\circ}$	020	40	2300	8300			200		${ }^{0.05}$	${ }^{100}$	30	${ }^{20}$	${ }^{0.03}$	${ }^{1400}$	${ }^{\circ}$	${ }^{6400}$	0.00	${ }^{0.1}$	${ }^{33}$	${ }^{120}$				
					－0．10		${ }^{27}$	600	${ }_{1}^{184}$	${ }^{220}$				${ }^{2000}$											023	${ }^{33}$																		
	${ }_{\text {cosem }}$	${ }_{\substack{1255 \\ 185}}^{150}$	${ }_{\text {coid }}^{0.0}$	${ }_{0} .9$	${ }_{0}^{0.10}$			${ }^{200}$	${ }^{136}$			210	10	${ }^{20}$	${ }^{49}$	${ }^{66}$	215	${ }^{67}$	${ }^{185}$	${ }^{30}$	020	20	350	${ }_{410}$			500		${ }^{0.05}$	100	30	${ }^{20}$	${ }^{0.03}$	${ }^{1000}$	10	15000	000	${ }^{0.7}$	8	${ }^{30}$				
	，	${ }_{\text {，}}^{185}$	${ }_{\substack{0,76 \\ 0.76}}^{0 .}$		${ }^{0.10} 0$		${ }^{19}$	${ }_{1} 10$		56															00	${ }^{90}$																		
	（0isam	${ }^{1.5050}$	${ }_{\substack{\text { geges } \\ \text { geso }}}^{\substack{\text { ges }}}$		${ }^{0.020}{ }_{0}^{020}$			${ }^{2} 8$	${ }^{30}$			210	${ }^{20}$	${ }^{13}$	${ }^{46}$	${ }_{50}$	210	${ }^{2}$	${ }^{180}$	${ }^{31}$	020	20	200	${ }^{290}$			500		0.05	100	30	10	${ }_{0} 03$	600	10	17600	000	0.8	${ }^{82}$	${ }^{20}$		$\xrightarrow{\text { Onsen }}$		
	253		${ }_{\text {cose }}^{\substack{\text { ge9 } \\ 0.7}}$		（oid	${ }^{24}$	${ }^{16}$	${ }^{1788}$	${ }_{3}^{388}$	${ }^{720}$		${ }^{180}$	${ }^{19}$	${ }_{\substack{16 \\ 14}}^{1}$	，	${ }^{60}$	190	${ }^{6.5}$	${ }^{157}$	${ }^{28}$	0.10	1.0					50		${ }_{0}^{0.05}$	30	30	10	0.03	200	10	${ }_{\substack{18,500 \\ 18000}}$	000	${ }^{0.7}$	${ }^{14}$	${ }^{268}$				
																							3300	400	0.0	${ }_{4}^{47}$																		
							2	${ }_{718}$	${ }^{36}$	500																																		

come	Somp		coicce				(eict ${ }_{\text {comp }}$	${ }^{\text {pH }}$	$\underbrace{\substack{\text { ccm }}}_{\text {Ecm }}$				$\underset{\substack{\text { mos } \\ \text { mos }}}{\text { rsis }}$		(uxbuly	Some	${ }_{\substack{\text { Patassum } \\ \text { (mat) }}}^{\substack{\text { a }}}$	${ }_{\text {and }}^{\substack{\text { ancum } \\ \text { (mat) }}}$	Menememe				Sump	\pm	(omp		Ammota		chind				(on						$\begin{array}{\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|} \substack{\text { acoso } \\ \text { cmatu }} \\ \hline \end{array}$	(tan	(eat		${ }_{\substack{\text { Sata }}}^{\text {gouce }}$
					Mv	${ }^{\text {na }}$	20.00% \%10	${ }_{\substack{6,5 \\ 80}}^{\substack{\text { c, }}}$	${ }_{30}$		${ }^{\text {n® }}$	${ }^{85,10}$	${ }^{\text {na }}$	10	${ }_{50}$	${ }_{15}$	${ }^{\text {na }}$	1000	${ }^{\text {na }}$	${ }^{\text {na }}$	${ }^{175}$	${ }^{1,2}$	${ }_{400}$	${ }^{500}$	${ }_{\text {co }}^{50}$		${ }^{20}$	${ }^{200}$	5		${ }^{371}$	${ }^{1.4}$	${ }^{20}$			8							
	${ }^{2080}$	(730	${ }_{1,8}$		(0.30																			${ }^{30075}$	${ }^{1887} 1$	0.16	${ }^{4.4}$																Nomen
, 10,		${ }^{1200}$	${ }^{1,188}$		(0.30		${ }^{20}$	${ }^{\frac{720}{720}}$	${ }_{2}^{215}$		330		${ }^{123}$	${ }^{766}$	2000	${ }^{20}$	${ }^{57}$	150	${ }^{36}$	$\stackrel{\square}{9}$	12	0.10	17					3300		0.10	${ }^{40}$	${ }^{30}$	${ }^{\circ}$	0.03	${ }^{1200}$	${ }^{20}$	${ }^{820}$	0.00	$0^{0.2}$	${ }^{53}$	${ }^{161}$		
${ }^{\text {Premen }}$			${ }^{\frac{1}{102}}$			${ }^{33}$	${ }^{26}$	76			400				${ }^{80}$									15964	478												8800						
12002A	cose	${ }_{\text {a }}^{\text {820 }}$	0.9					${ }^{7} 7$	${ }^{36}$				${ }^{227}$	${ }^{0}$	${ }_{5}$	59	${ }^{68}$	${ }^{180}$	${ }^{51}$	${ }^{213}$	${ }^{22}$	020	10	639	157.0			100		0.05	${ }^{80}$	${ }^{30}$	10	${ }_{0}^{0.3}$	${ }^{900}$	10	${ }^{17600}$	000	0.	${ }^{6}$	${ }_{36}$		Onsw
			${ }^{\text {a,70 }}$		(o.00		${ }^{25}$	${ }_{70}{ }_{7}$	${ }_{\substack{36 \\ 204}}$		2.0		${ }^{120}$	310	${ }_{\substack{62 \\ 30}}$	${ }^{26}$	${ }^{43}$	${ }^{93}$	${ }^{30}$	${ }_{92}$	${ }^{15}$	0.10	${ }^{23}$				${ }_{350}$	${ }^{2000}$		${ }_{0}^{0.05}$	${ }_{50}$	${ }_{30}$	10	${ }^{003}$	${ }_{1200}$	${ }^{\circ}$	7600	000	${ }^{02}$	${ }^{36}$	${ }_{134}$		
		${ }_{\substack{1730}}^{1780}$	${ }^{0.90}$		(0,00																			10370	${ }^{1970}$	000	${ }^{400}$																
(10)			${ }^{320}$		0.10		15	${ }^{750}$	${ }^{\text {c }}$		8.10		π	${ }^{1330}$	${ }_{\substack{380 \\ 180}}$	17	${ }_{42}$	${ }_{4}{ }^{3}$	14	${ }_{88}$	6	020	${ }^{15}$					${ }^{330}$		0.05	${ }^{2}$	30	10	0.03	1000	80	${ }^{8800}$	000	-	17	9		(incone
		隹 1700					${ }^{24}$	${ }^{200}$	${ }^{92}$		200				${ }^{29}$									2020	811.0																		(inco
(1302A	,		${ }^{\text {oso }}$		(on			${ }^{7} 78$					${ }^{115}$	${ }^{198}$	${ }^{232}$	${ }^{19}$	${ }^{50}$	${ }^{130}$	${ }^{39}$	97	12	0.10	12	8000	${ }_{1880}$	${ }^{018}$	2	${ }^{1200}$		0.05	${ }^{30}$	30	10	${ }^{0.03}$	${ }^{1200}$	10	8000	0.00	0.1	${ }^{49}$	${ }^{132}$		
					${ }_{0} 0.30$		${ }^{27}$	${ }_{720}$	${ }^{189}$		530		9	${ }^{76}$	${ }^{799}$	14	${ }^{60}$	${ }^{120}$	${ }^{27}$	${ }_{8} 8$	-	0.10	19					${ }^{230}$		${ }_{0}^{0.05}$	${ }_{50}$	${ }_{30}$	${ }_{50}$	${ }^{0.08}$	${ }^{1400}$	8	8800	000	${ }^{0.1}$	${ }^{41}$	${ }^{127}$		
${ }^{\text {Brasera }}$					-	${ }^{3}$	${ }_{30}$		${ }^{126}$		${ }_{640}$													13322	${ }_{4095}$																		
,	7022006	${ }_{\substack{1855 \\ \hline 105}}^{180}$	${ }^{0.00}$		0			${ }^{700}$	${ }^{24}$				${ }^{186}$	4	${ }_{8}$	22	${ }^{69}$	${ }^{170}$	${ }^{4.1}$	${ }^{120}$	10	0.10	10	${ }^{2757}$	${ }^{23,6}$			1000		${ }^{0.05}$	${ }^{0}$	30	140	${ }_{0}^{0.03}$	${ }^{17200}$	10	\%800	000	02	${ }^{8}$	${ }^{180}$		
${ }^{\text {Brasona }}$			0.72				${ }^{29}$	720	${ }^{26}$		200															0.10	${ }^{209}$																
			0.68					${ }^{137}$	\%				${ }^{18}$	${ }^{32}$	${ }^{3}$	${ }^{18}$	${ }^{56}$	${ }^{150}$	${ }^{39}$	110	${ }^{8}$	020	${ }^{10}$	3500	${ }^{1300}$			${ }^{500}$		${ }^{0.05}$	${ }^{30}$	${ }^{30}$	${ }^{6}$	${ }^{0.03}$	${ }^{1200}$	${ }^{20}$	2000	${ }^{0.00}$	0.1	${ }^{54}$	162		
(10aseat					0.10		16	${ }^{730}$	${ }_{182}^{182}$		2.0															${ }_{0}^{0.3}$	4.7																
	${ }^{\frac{20}{20382000}}$	${ }^{205}$	${ }_{\text {O, }}^{0.68}$		${ }_{\text {O20 }}^{0.00}$		15	${ }_{\substack{7,700}}^{\substack{7,0}}$	${ }_{\text {cor }}^{\substack{292 \\ 292}}$				184	,	${ }^{\circ}$	${ }^{33}$	${ }^{67}$	${ }^{180}$	${ }^{62}$	${ }^{134}$	${ }^{25}$	0.10	10					50		${ }^{0.05}$	\cdots	30	10	${ }^{003}$	100	20	11700	000	0.4	${ }^{6}$	${ }^{22}$		
		${ }_{\substack{1800}}^{1800}$			${ }^{0.10} 0$			${ }^{737}$	${ }^{19}$				${ }^{105}$	916	1480	${ }^{17}$	${ }^{56}$	${ }^{130}$	${ }^{28}$	${ }^{85}$	10	${ }^{0.13}$	30	${ }^{2300}$	5190			300		${ }^{0.05}$	70	${ }^{30}$	${ }^{\circ}$	${ }^{0.03}$	${ }^{200}$	${ }^{\circ}$	2000	${ }^{000}$	${ }^{0.1}$	${ }^{4}$	${ }^{139}$		
(1asase			1,2		${ }_{0}^{0.10} 0$	${ }^{\frac{26}{22}}$	${ }^{\frac{25}{26}}$	${ }_{\text {coise }}^{\substack{730}}$	20		${ }_{\text {coiz }}^{\substack{8,20 \\ 750}}$				${ }_{\substack{205 \\ 205}}$																												
-		${ }_{\text {945 }}^{985}$						${ }^{752}$	${ }^{388}$				${ }^{200}$	${ }^{18}$	${ }^{106}$	40	${ }^{63}$	${ }^{230}$	${ }^{62}$	112	${ }^{23}$	020	${ }^{23}$	${ }^{331 .}$	${ }^{10,3}$			${ }^{1300}$		${ }^{0.05}$	40	30	10	${ }^{001}$	${ }^{1200}$	10	1200	00	0.3	${ }^{82}$	${ }^{275}$		$\frac{\text { Onew }}{\text { ONRW }}$
		${ }_{\text {a }}^{295}$	0.72		0.10		${ }^{26}$	${ }^{7} 5$	361																	${ }_{0}^{0.01}$	${ }^{226}$																
	2032307				0.10			${ }^{73}$					${ }^{89}$	70	1000	17	48	${ }_{0} 9$	${ }^{20}$	10	5	0.12	${ }^{32}$	18800	6050			${ }^{1000}$		0.11	110	30	100	00	110	100	\%800	000	0.1	${ }^{32}$	${ }_{14}$		${ }_{\text {onem }}^{\text {Onew }}$
,			0.9		${ }^{0.10} 0$	3	${ }^{26}$	${ }^{730}$	\%		960		${ }_{86}$	${ }^{\text {as8 }}$	${ }_{\text {cos }}^{\substack{109}}$	${ }^{13}$	${ }^{57}$	${ }^{87}$	${ }^{21}$	${ }^{10}$	5	0.12	${ }^{24}$					${ }^{2700}$		${ }_{0}^{0.08}$	50	30	${ }^{0}$	${ }_{0} 0$	11.00	30	8800	0.00	${ }_{0}^{0.1}$	${ }^{33}$	${ }^{111}$		
(insior																								12451	${ }^{36,3}$	${ }_{0}^{0.13}$	${ }^{3.7}$																Solen
(indion		${ }_{\substack{120 \\ 880}}^{\substack{120}}$	0.95	0.00	${ }_{\text {O }}^{0.00}$		${ }^{26}$	${ }_{700}^{700}$	${ }^{127}$		450		${ }^{127}$	${ }^{6}$	¢00	${ }^{17}$	${ }^{6} 7$	${ }_{180}$	${ }^{42}$	${ }^{17}$	7	0.15	14					${ }^{20}$		0.05	${ }_{30}$	30	${ }^{40}$	${ }_{0} 00$	${ }^{1330}$	10	5000	000	0.	${ }^{6}$	${ }^{1 / 3}$		
					0.10			${ }_{746}$	${ }^{195}$				${ }^{120}$	119	${ }^{255}$	${ }^{16}$	${ }^{63}$	${ }^{180}$	${ }^{37}$	${ }^{108}$	${ }^{8}$	0.14	24	${ }_{\text {m7.7 }}$	${ }_{1876}^{1876}$			${ }^{200}$		0.0	${ }^{50}$	30	110	001	${ }^{1300}$	3	${ }^{8900}$	0.00	02	5	16		Onen
(10)							${ }^{20}$	${ }^{63}$	${ }^{18}{ }^{182}$		800		${ }^{121}$	${ }^{131}$	${ }^{275}$	${ }^{21}$	${ }_{4.8}$	130	${ }^{43}$	102	${ }^{15}$	0.12	14					${ }_{100}^{140}$		0.06	30	30	∞	001	${ }_{800}$	${ }^{20}$	${ }^{840}$	\cdots	02	${ }^{64}$	${ }^{164}$		
2024			O2						215		1020				${ }^{20}$									\ldots	\%	000	${ }^{34,7}$																
limeser					\%		2				-												10								40	30	10	001		10		0.00					(inco

 \qquad

	Sample	Physical										Cations				Anions				Nutrients \& Biological					Trace Elements										Flow		${ }_{\text {Data }}^{\substack{\text { Daurce }}}$
		Time		$\begin{array}{\|c\|c\|c\|c\|c\|c\|c\|} \hline \text { Tomp } \\ \text { Tepo } \\ \hline \end{array}$	pH	$\begin{array}{\|c\|} \hline \mathrm{EC} \\ \begin{array}{c} (\mu \mathrm{Slcm} \\ \hline \end{array} \\ \hline \end{array}$	$\begin{gathered} \text { Do } \\ \text { (mglL) } \end{gathered}$	$\begin{array}{\|c\|c\|c\|c\|} \hline \text { sat } \\ \text { sat } \end{array}$	$\begin{gathered} \text { Tos } \\ (\mathrm{mglL}) \end{gathered}$	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Tss } \\ (\mathrm{mg}(L) \end{array} \\ \hline \end{array}$	$\begin{array}{c\|} \hline \text { Turbidity } \\ \text { (NTU) } \end{array}$	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Sodium } \\ \text { (mg/L) } \end{array} \\ \hline \end{array}$	$\begin{aligned} & \text { Potassium } \\ & (\mathrm{mg} / \mathrm{L}) \end{aligned}$	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { calcicium } \\ (\text { mglLL } \end{array} \\ \hline \end{array}$	$\begin{gathered} \text { Magnesium } \\ (\mathrm{mg} / \mathrm{L}) \end{gathered}$	$\begin{array}{\|c} \hline \begin{array}{c} \text { Bicarbonate } \\ \text { as HCO3 } \\ (\mathrm{mg} / \mathrm{L}) \end{array} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { chloride } \\ (\text { mg/L }) \end{array}$	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Fluoride } \\ (\mathrm{mg} L \mathrm{~L} \end{array} \\ \hline \end{array}$	$\underset{\substack{\text { Sulphate } \\(\mathrm{mg} L \mathrm{~L}}}{ }$	$\begin{array}{\|l\|l\|} (\text { Heg } \end{array}$	$\begin{array}{\|c\|c\|} \hline(\operatorname{Trg}) \\ (1) \end{array}$	$\underset{(\mu \mathrm{g} / \mathrm{L})}{ }$	$\begin{array}{\|c\|c\|} \substack{\text { Nitrate } \\ \text { as } \\ \left(\mathrm{sig} \mathrm{O}_{3}\right.} \end{array}$	$\begin{array}{\|l\|l\|c\|c\|c\|c\|c\|} \text { (1g(L) } \end{array}$	$\begin{array}{\|l\|l} \text { Arsenic } \\ (\mu g l L) \end{array}$	$\left\lvert\, \begin{aligned} & \text { Boron } \\ & (\text { (ugLL) } \end{aligned}\right.$	$\begin{array}{\|c\|} \hline \text { Cadmium } \\ (\mu \mathrm{g} / \mathrm{L}) \end{array}$	$\underset{(\mu \mathrm{g} / \mathrm{L})}{\text { Chromium }}$		$\left.\begin{array}{\|l\|l\|} \hline \text { Iron } \\ (\text { (gLL) } \end{array}\right)$	$\left.\left\lvert\, \begin{array}{c} \text { Lead } \\ \text { (egLL } \end{array}\right.\right)$	$\begin{gathered} \text { Mercury } \\ (\text { gagLL } \end{gathered}$	$\left.\begin{array}{\|c\|c\|} \hline \text { Nickel } \\ (\mu g L L) \end{array} \right\rvert\,$	$\begin{array}{\|l\|l\|} \substack{\text { ginc } \\ \text { gal }} \end{array}$	Level	Velocity	
		MTV	${ }^{\text {na }}$	0.80 \%il	6.5.8.0	${ }^{320}$	112	${ }^{85-110}$	${ }_{\text {na }}$	10	50	${ }^{115}$	na	1000	na	na	175	1,2	400	500	50	${ }^{20}$	700	5	113	${ }^{370}$	0.2	50	1.4	200	3.4	0.6	11	8	na	$n \mathrm{na}$	
Utopia	250512005			${ }^{12}$	7.2	${ }^{233}$	${ }^{11.30}$	${ }_{103}^{103}$	154 136	$\stackrel{9}{10}$		${ }^{28}$	4	12 11	${ }_{4}^{6}$	91 91	${ }_{2}^{22}$	0.15 0.1	<10	70 100	<50	<10			<1	<100	${ }^{0.1}$	<1	<	165 1	<	<0.1	<1	<10	${ }_{\text {Low-mod }}^{\text {Mod }}$	Mod	$\stackrel{\text { RH }}{\text { RH }}$
Uutopia	${ }^{5411042000} 7$		29.8	${ }_{19.8}^{12}$	${ }_{7}^{7.9}$	${ }_{228}^{223}$	${ }^{8.08}$	${ }_{8}^{132}$	${ }^{136}$	${ }_{12}^{10}$		${ }_{37}^{29}$	${ }_{6}$	${ }_{22}$	${ }_{7}$	${ }^{9150}$	${ }_{23}^{21}$	$\stackrel{0.12}{0 .}$	$\stackrel{1}{<1}$	680	${ }^{34}$	18	${ }^{4} 44^{*}$	<1	<1	20	$\stackrel{\sim}{<1}$	-	<2	460	<1	${ }^{<0.5}$	${ }^{2}$	<1			$\stackrel{\text { RH }}{\text { RH }}$
Utopia	201111964	2359			7.7	310			174			${ }^{47}$		19	9	156	40	0.2	2				55														
Utopia	20221966	2359			7.4	288			161			${ }^{35}$		${ }^{20}$	7	140	30	0.1																			DNRW
Utopia	61101966 110881988 1	${ }^{2359} 1510$			$\stackrel{8}{76}$	${ }^{270}$			162 170 17			39 40 40		14 20 20	$\stackrel{9}{6}$	136 137	32 ${ }_{28}$	0.15	1																		DNRW DNRW
Utopia	80661970	1307			7.7	290			173			${ }^{38}$		${ }^{24}$	5	154	30	0.15																			DNRW
Utopia	240411971	1310		19	8	390			212			32		40	9	195	${ }^{35}$	0.1																			DNRW
Utopia	$25081 / 971$	1445		17	7.8	320			180			32		20	15	159	${ }^{35}$	0.1																			
Utopia	25111/1971	1000		${ }^{24}$	8	360			102			44		34	4	178	36	0.2																			DNRW
Utopia	${ }_{\text {10, }}^{101051972}$	800 130		18	8	270			167			40		17	8	146	30	0.25																			DNRW
Utopopia	141041973	${ }_{1730}$		${ }_{23}^{18}$	8.2	310			187	13		32	5	27	8	163	70	0.2								20											${ }_{\text {DNRW }}$
Utopia	111081973	1200		17	8.1	200			122			21	5	15	5	87	20																				DNRW
Utopia	5121973	1100		27	${ }^{8.3}$	270			161	20		24	5	${ }^{23}$	7	131	26	0.16																			DNRW
Utopia	270311974	1030		27	7.8	355			203			40		25	8	164	32	0.13																			DNRW
Utopia	${ }_{\text {26061974 }}^{26091974}$	${ }_{1}^{1215}$		15 17 17	7.7	300 335			178 199	42 54		34 36 3	4	21 21	7	139 149	31 34	0.13 0.27																			DNRW DNRW
Utopia	161121974	1730		${ }^{27}$	7.5	330			171	9		${ }^{35}$	5	20	8	158	14	$\stackrel{0.16}{0.1}$																			${ }^{\text {DNRW }}$
Utopia	81041975	1000		21.5																																	DNRW
Utopia	${ }_{\text {L }}^{51771975}$	1055 1300		${ }_{26}^{16}$	${ }^{8} 8$	262 311			145 165	33 11		27 32	$\stackrel{3}{4}$	16 16	${ }_{7}$	145 140	${ }_{22}^{22}$	0.1 0.2																			DNRW DNRW
Utopia	31061976	1350		16	8.1	430			239			${ }^{42}$	4	35	9	186	40	0.2	5				${ }_{5}$														DNRW
Utopia	141091976	${ }^{1231}$		16	8.3	375			211	5		43	4	28	8	167	37	0.2					55														DNRW
Utopia	${ }^{1411219976}$	1632		${ }^{29}$	8.2	360			198	11		${ }^{28}$	6	${ }^{34}$	8	165	${ }^{26}$	0.4	2				${ }^{331}$														DNRW
$\begin{aligned} & \text { Utopia } \\ & \hline \text { Utopia } \end{aligned}$	${ }_{2}^{20104197977}$	${ }_{937}^{1347}$		22 24 24	${ }_{8.2}^{8.2}$	${ }^{385}$ 325			${ }_{181}^{212}$	7		39 35	4	28 21	${ }_{8}^{8}$	153 150	36 28	0.1	5				193 168														DNRW DNRW
Utopia	111041978	1305		77	8	280			164	15		30	4	19	7	142	26	0.1	2				${ }_{8} 8$														DNRW
Utopia	2411019978	1154		${ }^{21}$																																	
Utopia	1111119880 18121980	${ }^{1505} 1200$		29 29	${ }_{7}^{7.8}$	${ }^{330}$			172 170 1			${ }_{3}^{34}$	4	18 19	8	145 148 1	-24	0.1 0.1 0.1	1				138 55 5														DNRW DNRW
Utopia	41021981	1440		18	7.6	78			77	500		8	4	5	2	24	3	0.1	6				7724														
Utopia	40221981	1440			7.4	90			62	500		8	4	6	2	38	4	0.1	4				1379														DNRW
Utopia Utopia	5021981 802021981	945 725 7		18	7.5 7.3	${ }^{117}$			75 83 8	500 100		${ }_{9}^{10}$	5 4	${ }_{8}^{8}$	${ }_{2}^{2}$	${ }_{4}^{47}$	6	0.1 0.1 0.1	4 13 1				1931 1931														SNRW
Utopia	24033/1981	1755			8.1	285			144	10	16	${ }^{24}$	5	21	7	${ }_{133}$	20	0.1	1																		DNRW
Utopia	24033/1981	1755		27																																	DNRW
Utopia	${ }^{40661981}$	1010		16	${ }_{8}^{7.3}$	${ }^{86}$			${ }_{1}^{58}$	200 10	680 10	${ }^{8}$	4	${ }_{5}^{5}$	${ }_{8}$	26 155 1	31	${ }_{0}^{0.1}$	2				1103														${ }_{\text {DNRW }}$
Utopia	10111/1981	915		${ }^{24}$	${ }_{8}^{8.5}$	${ }_{360}$			${ }_{200}$	10		${ }_{33}$	4	${ }_{24}^{25}$	8	${ }_{150}$	${ }_{27}$	0.2	${ }_{13}$				276														${ }^{\text {ONRWW }}$
Utopia	251031/1982	850		22	8	290			160	50	100	24	4	20	6	135	20	0.1	4				276														DNRW
Utopia	12081982 31111982	1130 1545		14	${ }^{8.1}$	${ }^{300}$			170	9	${ }^{2}$	${ }^{35}$	${ }^{5}$	19	7	140	${ }^{27}$	${ }^{0.1}$	3				110														DNRW
Utopia	161021983	1730		28																																	${ }^{\text {DNRW }}$
Utopia	151/219983	800		24	8.1	320			190	25	72	${ }^{31}$	4	24	7	145	28	0.1	${ }^{3} .3$				138														DNRW
Utopia	${ }^{2403031984}$	1045		${ }_{2}^{26}$	7.3	290			${ }_{220}^{220}$	5	3	${ }^{37}$	4	${ }^{28}$	9	175 150	${ }_{36}^{33}$	0.1	7							30											
Utopia	231061984 $18 / 1 / 1984$	1210 1140 1		${ }_{20}^{12}$	7.8 8.3	330 480			${ }_{200}^{200}$	5 5 5		41 56	3 5	25 31 31	8 10	150 200	36 55	0.1 0.1 0	2.5 4.5				${ }^{138}$			10											DNRW DNRW
Utopia	131041985	1345		${ }^{23}$	7.5	350			200	10	3	41		${ }^{23}$	7	165	${ }^{36}$	0.1								20											DNRW
Utopia	${ }^{50771985}$	${ }^{1425}$			8.1	340			180	${ }^{5}$	${ }^{6}$	37	3	20	7	150	${ }^{33}$	0.1																			DNRW
Utupia	${ }^{181701985}$	${ }^{1330} 1714$		22 30	7	${ }^{90}$			177	330 5	100 5	${ }^{93}$	5	8 19	$\stackrel{2}{7}$	50 140	$\stackrel{8}{26}$	0.1 0.2	2				${ }_{331}^{138}$			${ }_{20}^{10}$											ONRN
Utopia	$18071 / 1986$	1440		16	8.4	${ }^{238}$			160	25	9	32	3	19	7	130	26	0.1																			DNRW
Utopia	1717019986	1643		${ }_{28}^{25}$	8	${ }^{301}$			160	10 2080	${ }^{13}$	${ }^{32}$	3	19	7	140	${ }^{27}$	0.1					${ }_{1690}^{692}$														DNRW
Utopia	${ }^{990119887}$	${ }^{1830}{ }_{930}$		${ }_{28}^{28}$	7.7	${ }^{152} \times 18$			95 160	2460 10	100 7	${ }_{32}^{11}$	5	$\begin{array}{r}13 \\ \hline 20 \\ \hline\end{array}$	${ }_{6}$	72 140	$\stackrel{7}{26}$	0.1 0.1	2.6				1324			20											
Utopia	17107/1987	1530		11	8.1	314			150	19	9	31	3	17	6	125	22	0.1																			DNRW
Utopia	6/111987 12021088	1720 1645		${ }_{21}^{21}$	7.3	${ }_{142}^{273}$			150 97	${ }_{730}^{44}$	$\begin{array}{r}34 \\ \hline 100 \\ \hline\end{array}$	$\stackrel{29}{12}$	5	17	${ }_{4}$	120 69	$\stackrel{22}{9}$	0.2 0.1					52			10											DNRW ONRW
Utopia	1710519988	1452		18	7.5	250			130	48	${ }_{38}$	26	3	16	5	115	21	0.1					${ }_{5} 24$														${ }^{\text {DNRWW }}$
Utopia	261091988	1430		${ }^{24}$	8.1	274			150	12	6	29	4	18	7	125	${ }^{25}$	0.1																			DNRW
Utopia	(120119899	${ }_{852}^{1437}$		27	${ }_{7}^{7.1}$	${ }_{3}^{175}$			89 150	125 81	100 80 8	10 24	6	13 19	${ }_{6}$	73 105	${ }^{9}$	0.1																			DNRW
Utopia	20911989	1613			7.9	${ }^{434}$			250	10	11	${ }_{46}^{24}$	3	31	10	180	${ }_{54}^{24}$	0.1	${ }_{5}$							50											DNRW
Utopia	311211989	1440		30	8.5	405			${ }^{230}$	76	59	${ }^{43}$	4	${ }^{28}$	8	155	${ }^{48}$	0.2	4				331			100			0.02								DNRW
Utopia	${ }_{\text {2 }}^{240319990}$	${ }^{1115}$		${ }_{11}^{22}$	8.1 8. 8	${ }^{320} 4$			$\begin{array}{r}179 \\ \hline 250\end{array}$	47	45	33 51	4	$\stackrel{20}{31}$		$\begin{array}{r}133 \\ 182 \\ \hline 1\end{array}$							166 386			30 30 20											
Utopia	131071990 151111990	1145 1380		${ }_{26}^{11}$	${ }^{8.2}$	${ }_{498}^{498}$			260 270	2	32	51 58 58	4	31 31 31	11 11	182 200	46	0.16 0.16	${ }^{7}{ }^{7}$				386			20 40			0.03								DNRW DNRW
Utopia	230319991	915		22	7.8	380			217	4	5	47	5	24	8	167	44	0.19								30			0.03								DNRW
Utopia	308819991	1405		8	8	303			176	16	4	${ }^{37}$	3	19	7	141	33	0.13	2.8							20			0.04								DNRW
Uutopia	${ }_{129119991}^{29192}$	1340 1003		27 17	${ }_{7}^{7.5}$	${ }_{302}^{294}$			182 158	${ }_{11}^{4}$	${ }_{3}^{3}$	${ }_{33}^{41}$	${ }_{3}^{4}$	17 19	8	143 135	32 26	0.16 0.14	0.6										0.03								DNRW ONRW
Utopia	12081992	1120		12	8.3	${ }^{240}$			151	11	1	${ }_{3}$	2	16	7	124	25	$\stackrel{0.13}{0.13}$	0.7				55														DNRW
Utopia	212121992	1405		26	8.1	310			167	9	5	${ }^{34}$	4	17	7	${ }^{136}$	${ }^{25}$	0.12	0.3				${ }^{221}$						0.01								DNRW
Utopia	${ }_{\text {210 }}^{2410319993}$	1015 915		21.1 14.2	7.7	${ }_{284}^{249}$			153	${ }_{23}^{11}$	7	37 30	${ }_{3}^{4}$	14 15 15	7	121 115	26 20	0.14 0.12	0.6				55 ${ }_{28} 8$						0.02								DNRW ONRW
Utopia	$24111 / 1993$	1455			7.6	190			110	230	100	15	4	13	4	79	19	0.1	2				938			100			0.05								DNRW
Utopia	${ }^{2411111993}$	1455		24.6	${ }^{7} 7.75$	163																															DNRW
Utopia	161121993	1300			${ }^{7.65}$	165			${ }^{99}$	290	100	${ }^{15}$	4	11	4	76	${ }^{12}$	0.1	2				1048 110 10			100			${ }_{0}^{0.05}$								
Utopia	${ }^{1310019994} 3$	${ }^{943} 130$		${ }^{15,7}$	${ }^{7.9}$	${ }_{278}^{294}$			168 147 1	8	${ }_{3}^{4}$	33 33	4	19 15	6	134 126	${ }^{28}$	$\stackrel{0.11}{0.11}$	${ }_{0}^{0.6}$		${ }^{20}$	17	110						0.01								DNRW DNRW
Utopia	231091994	1420		16.2	7.8	294			155	${ }^{3}$		${ }^{34}$	4	16	7	134	26	0.12			27	20							0.02								DNRW
Utopia	$30111 / 1994$ 111011995	${ }_{1220}^{920}$		24.3 27.4	${ }_{7}^{7.79}$	${ }^{312}$			170 110	19 400	9.8 100	31 18 18	${ }_{5}^{4}$	20 12	9	150 76	22 14 14	0.14 0.2	${ }_{2}$		73 260 20	150	149 1434			$\stackrel{0}{100}$			0								DNRW DNRW
Utopia	1010211995	919		25.1	7.18	95	6.21		65	1220	200	,	4	7	2	42	7	0.11	1.29		487	30	1131			0			0								DNRW
Utopia	90311995	1539			7.58	185			114	124	200	18	4	13	4	85	17	0.1	1.8		191	49	414			0			0.01								DNRW

Water Quality Data Summary

BOLD MTV-
MTV- - minimum trigaer value
Sample
RHR R Rver Heath Report
DNR

Table A2
Upper Dawson Catchment - URS Surat Water Analytical Results

Location	Sample ID	$\begin{gathered} \text { Date } \\ \text { Sampled } \end{gathered}$	Analyte	Physico-Chemical Parameters				Metals (Total)									Nutrients				Major lons										Alkalinity			
			$\begin{gathered} \text { Sample } \\ \text { Type } \end{gathered}$	$\begin{gathered} \text { Biochemical } \\ \text { Oxygen } \\ \text { Demand } \end{gathered}$	$\left\|\begin{array}{c}\text { Chemical } \\ \text { Oxxyen } \\ \text { Demand }\end{array}\right\|$	$\begin{aligned} & \text { otatal } \begin{array}{c} \text { Togan } \\ \text { Caroron } \end{array} \end{aligned}$	Suspended Solids (SS)	Arsenic	Bron	cadmur	Chromium	Copper	Iron	Lead	Nickel	Zinc	($\begin{gathered}\text { Nitrate and } \\ \text { Nitite } \\ \text { as }\end{gathered}$	$\begin{array}{c\|c} \hline \text { Total } \\ \text { His } & \text { Kitlatal } \\ \text { Nitrogen as } \\ \mathrm{N} \end{array}$	$\begin{array}{\|c} \text { Total } \\ \text { Phosphorus } \\ \text { as } \mathrm{P} \end{array}$	s	Cal	Chloride	Fluoride	Magnesium	Potassium	Sodium	Suphate	($\begin{gathered}\text { Total } \\ \text { Arions }\end{gathered}$	${ }_{\substack{\text { Total } \\ \text { cations }}}$	(lanic	$\begin{array}{\|c} \text { Hydroxide } \\ \text { Alkainity as } \\ \mathrm{CaCOO}^{2} \end{array}$	$\begin{gathered} \text { Carbonate } \\ \text { Alkafintys } \\ \text { Caco3 } \end{gathered}$		$\begin{array}{\|l\|l\|} \hline \text { ATotal } \\ \begin{array}{c} \text { Akinity } \\ \text { cais } \\ \mathrm{CaCO}_{3} \end{array} \end{array}$
			Units	mgl	mgl	mg/	mgl	mgl	mg/	mg/	mg/	mgl	mgl	mgl	mg/	mg/	mgl	mg/	mgl	mgl	mg/	mg L	mg/	mg/	mg/	mg/	mg L	meq/	meal	\%	mg/	mg/	mg/	mgl
			Lor	2	5	1	1	0.001	0.1	0.0001	0.001	0.001	0.05	0.001	0.001	0.005	0.01	0.1	0.01	0.1	1		0.1	,		1		0.01	0.01	0.01	1	1		
			MTV	na	${ }^{\text {na }}$	${ }^{\text {na }}$	10	0.0240 .013	0.37	${ }^{0.0002}$	0.05	0.0014	0.2	0.0034	0.011	${ }^{0.008}$	${ }^{\text {na }}$	${ }^{\text {na }}$	0.05	${ }_{0} 0.5$	1000	175	0.1	na	${ }^{\text {na }}$	${ }^{115}$	400	174	${ }^{\text {na }}$	${ }^{\text {na }}$	4	$\stackrel{\text { na }}{\text { c }}$	${ }^{\text {na }}$	${ }^{\text {na }}$
D002 0002	${ }_{\text {D002 } 0550308}$	5032008 50302008	${ }^{\text {PS }}$		${ }^{31}$	8	152 146	0.002	<0.1	0.0002	0.004	0.005		0.004	0.004	0.016	0.141	1	0.2	1.1	${ }^{12}$	8	${ }^{0.1}$	4	6	${ }^{20}$	2	1.74	1.9		$\stackrel{ }{ }{ }^{1}$	$\stackrel{4}{ }$	${ }^{73}$	${ }^{73}$
D002		${ }^{5 / 332008} 130512088$	${ }_{\text {PS }}^{\text {P }}$	<	1	.	${ }^{146}$	<0.001	80.05	<0.0001	<0.001	<0.001	0.67	<0.001	<0.001	<0.005	<0.01	0.4	0.02	0.4	12 19	25	0.1	4	${ }^{5}$	22	$\stackrel{2}{31}$	2.93	2.97	-			-	
D004	D004-0503038	50322008	Ps	-	${ }^{47}$	10	152	0.002	<0.1	0.0001	0.006	0.008		0.007	0.008	0.031	0.174	0.9	0.19	1.1	18	16	${ }^{0.1}$	5	6	${ }^{28}$	2	2.54	2.68	.	${ }^{1}$	<1	102	102
${ }^{0} 004$	D004_05030308CHK	${ }^{50332008}$	${ }^{\text {LD }}$			${ }^{10}$																												
D004	QC02_051308	50322008	FD		49	<1	290	0.003	<0.1	0.0018	0.009	0.008		0.007	0.008	0.04	0.149	1.4	0.19	1.6	16	15	0.1	4	5	${ }^{28}$	2	2.51	2.52				102	102
D004	D0041305008	130522008	Ps	49	2	-	8	<0.001	0.05	20.0001	<0.001	<0.001	0.4	<0.001	80.001	<0.005	<0.01	0.1	0.03	0.1	27	${ }^{35}$	<0.1	9	4		${ }^{43}$	3.94	4.02	1.05	-	-		
D004	D004_13050088CHK	130522008	LD	-	2	-							-				0.012				28	-	-	-	4		49			-	-	-	-	
D005	D005 0500308	50322008	PS		${ }^{44}$	<1	270	0.002	0.1	0.0007	0.003	0.009		0.005	0.005	0.028	0.28	0.8	0.21	1.1	16	9	0.1	3	6	${ }^{20}$	2	1.93	2.05		<1	<1	${ }^{82}$	${ }^{82}$
D005	D005 1310508	130522008	Ps	<5	7		5	<0.001	0.08	<0.000	<0.001	<0.001	0.23	<0.001	0.001	${ }^{2} 0.005$	<0.01	0.8	0.05	0.8	35	19	0.2	6	6		${ }^{33}$	3.69	${ }^{3.83}$	1.82				
D007	D007_050308	50322008	PS		54	<1	74	0.002	<0.1	<0.0001	0.003	0.007		0.003	0.004	0.02	<0.01	1.8	0.56	1.8	${ }^{13}$	-	0.1	2	9	${ }^{20}$	2	1.84	1.95		${ }^{1}$	<1	78	${ }^{78}$
D007	D007_1305508	${ }^{1305512008}$	Ps	${ }^{28}$	9	-	119	0.002	0.05	<0.000	0.002	0.002	2.91	0.001	0.002	<0.005	0.012	1.2	0.22	1.2	24	14	0.4	5	9		25	2.88	2.92			-		
D007	D007_13050508CHK	130512008	LD	-	-	-													0.2			14	0.3	\cdot	-					.	.	-		
0009	D0090500308	50322008	Ps		49	<1	214	0.004	<0.1	0.0002	0.005	0.01		0.006	0.007	0.034	0.353	1.7	0.42	2.1	${ }^{12}$	6	0.1	2	8	${ }^{23}$	${ }^{3}$	1.89	2		<1	<1	${ }^{83}$	${ }^{83}$
D009	D009_1300508	130522008	Ps	16	7		122	0.002	0.05	<0.000	0.005	0.007	9.62	0.005	0.006	0.025	0.177	1.4	0.37	1.6	17	9	0.2	4	7		26	2.23	2.41					
D009	D009 - 13050508CHK	130522008	LD	14																														
0010	D010_050308	50322008	Ps	-	${ }^{42}$	<1	260	0.002	<0.1	0.0002	0.005	0.007		0.006	0.005	0.025	0.182	${ }^{1.3}$	0.17	1.5	${ }^{13}$	16	0.2	3	6	${ }^{35}$	2	${ }^{2.53}$	2.63	-	${ }^{<1}$	${ }^{<1}$	102	102
0010	D0100005030308CHK	5032008 13052088	${ }_{\text {LD }}^{\text {L }}$		${ }^{42}$																	15 39	0.2								<1	<1	102	
D010	D010130508	${ }^{1310520088}$	${ }_{\text {Ps }}$	<5	${ }^{3}$	<1	${ }^{6}$	$\stackrel{<0.001}{0.002}$	0.05 00.1 0	<0.0001	$\stackrel{<0.001}{<0.001}$	${ }^{<0.001}$	0.28	${ }_{0}^{<0.001}$	${ }^{<0.001}$	<0.005 <0.005	${ }_{0}^{20.01}$	${ }_{0}^{0.3}$	${ }_{0}^{<0.01}$	$\stackrel{0.3}{1}$	${ }^{28}$	${ }^{39}$	0.2 0.1	10	${ }_{8}^{5}$	17	${ }^{49}$	4.34 1.74	${ }^{4.45}$	1.18	<1	<1	${ }^{84}$	${ }^{84}$
D011	D011-130508	13052008	PS	8	7	.	${ }^{21}$	0.001	0.05	0.0005	<0.001	0.003	0.81	-0.001	0.001	-0.005	<0.01	0.7	0.09	0.7	${ }^{21}$	<1	0.1	4	7		16	2.02	2.22					
0012	D012140508	140512008	Ps	45	10	-	13	<0.001	<0.05	0.0001	<0.001	0.003	0.21	<0.001	0.002	<0.005	<0.01	0.9	0.07	0.9	26	12	0.2	7	8		${ }^{26}$	3.09	${ }^{3.2}$	1.69	-	-	-	
D012	D012 141050508CK	140522008															<0.01				25		0.1	7	7		25							

notes
MTV- minimum trigge ralue
BoLD
greater than MTV
PS - Primary Sample
FD - Field Dupiciate Sample

Review of salinity impacts on stream biota with particular focus on temporary and/or arid streams

Paul I Boon
Dodo Environmental
25 April 2008

1. Salinity units and terminology

1.1 Salinity units and measurement

Salinity is a measure of the concentration of salts in solution (Close 1990). In inland aquatic systems salinity is most directly expressed as Total Dissolved Solids (TDS), i.e. the total mass of salts per unit volume of water. The TDS of seawater is about 35,000 $\mathrm{mg} \mathrm{L} \mathrm{L}^{-1}$, whereas that of 'fresh' water is usually $<300 \mathrm{mg} \mathrm{L}^{-1}$ (see Table 1 below).

Electrical conductivity (EC) can be used as a surrogate for TDS-based salinity measurements because there is a consistent and linear relationship between EC and TDS over a wide range of ecologically relevant salinities. For NaCl-dominated systems in inland Australia, the following relationship is often used to infer TDS from EC:

$$
\begin{equation*}
\operatorname{TDS}\left(\mathrm{mg} \mathrm{~L}^{-1}\right)=0.6 * \mathrm{EC}\left(\mu \mathrm{~S} \mathrm{~cm}^{-1} @ 25^{\circ} \mathrm{C}\right) \tag{1}
\end{equation*}
$$

Thus a 'typical' inland water sample with an EC of $1500 \mu \mathrm{~S} \mathrm{~cm}^{-1}$ would have a TDS of about $900 \mathrm{mg} \mathrm{L}^{-1}$. This value is often rounded up to $1000 \mathrm{mg} \mathrm{L}^{-1}$.

The relationship between EC and TDS, however, varies with ionic composition, temperature, and salinity itself. The relationship shown in Equation (1) applies only for waters with an ionic composition that approximates that of seawater. The assumption of NaCL -dominance holds for most, but not all, inland waters in Australia (Williams 1967) and most terrestrial soils (Rengasamy 2006). It does not hold, for example, for waters draining karst systems, which are often dominated by other ions such as $\mathrm{Ca}^{2+}, \mathrm{Mg}^{2+}$ and carbonates. Thus EC cannot be used accurately to infer salinity, at least using most commonly available field instruments, in aquatic systems that have an ionic composition that differs significantly from that of seawater. The EC:TDS relationship is affected also by temperature; most field instruments automatically apply a temperature correction and results for EC are often standardised to $25^{\circ} \mathrm{C}$.

A main source of potential error in using EC to infer salinity in TDS units occurs when EC is measured in highly saline systems. The TDS:EC relationship is linear only for salinities around, and preferably less than, those of seawater. It becomes progressively less accurate as salinity increases greatly above seawater values. It is completely inappropriate to use EC to measure TDS with very highly saline samples, such as often occur in inland salt lakes (Williams \& Sherwood 1994).

Where it has been necessary to convert between units of TDS and EC, formula (1) has been used in this report to allow direct comparisons across different studies. In general,
though, the units used in the original report have been used, except where a direct comparison across studies is paramount.

1.2 Meaning of the term 'saline'

There is little agreement about meaning of the terms 'fresh', 'saline' and 'slightly saline' among different practitioners. Williams (1987) outlined the difference between limnologists and water managers in their perceptions of what constitutes fresh, saline and highly saline water (Table 1). Note that bypersaline merely means that the salinity is higher than that of seawater, although it is often implied to mean water with a very high salinity, as in the case of a 'hypersaline lake'. Brackish is often used to mean slightly salty water, but strictly speaking refers only to a mixture of fresh water and marine water (Bayly 1967)

Table 1: Comparison of limits used by water managers and limnologists for various water salinities. Source: Williams (1987).

	Salinity ($\mathrm{mg} \mathrm{L}^{-1}$)			
	Fresh	Slightly saline	Saline	Highly saline
Water managers	< 300	300-1,000	1,000-3,000	> 3000
Limnologists	<300	3,000-10,000	10,000-100,000	> 100,000

2. Salinity as an ecological perturbation

The following summary provides a background to the impacts of increased salinity on aquatic biota and has been taken largely from our recent book chapter on salinity impacts in arid and semi-arid streams (Bailey et al. 2006).

An ecological perturbation is a distinct change in the properties of an ecological system that has been created by a disturbance (Downes et al. 2002). Perturbations consist of two elements: a disturbance and a response. The conceptual separation of disturbance and response within the concept of perturbation allows comparisons of how different taxa, populations or ecosystems respond to a similar disturbance. It also allows the analysis of disturbance and response at contrasting temporal scales, which is valuable attribute since disturbances may be acute but their ecological impacts (i.e. responses) are often chronic.

2.1 Disturbances

Salinity-induced disturbances can take place over a wide range of spatial and temporal scales. A pulse disturbance is short-lived with a sharp peak in salinity whereas press disturbance is a sustained, long-term increase that builds at a constant rate. A long-term disturbance that increases in intensity with time is often called a ramp disturbance (Downes et al. 2002). These are important distinctions because the response of aquatic systems to increased salinity may depend strongly on the rate of salinisation. Although pulse and ramp disturbances are not often differentiated in the literature on salinity impacts, they are an important consideration because the mode of delivery of salt can have a large effect on the magnitude and type of response exhibited by the aquatic biota.

2.2 Responses and impacts

There are three components of ecological responses to an environmental disturbance such as salinisation: inertia, resilience and stability (Underwood 1996). Inertia refers to the ability of a population to withstand disturbance; abundance of a population with high inertia does not change with disturbance. Resilience is the ability of a population to recover from the disturbance; abundance of a poorly resilient population will be permanently reduced by the disturbance. Stability is the rate at which the abundance of a population recovers from the disturbance; a population with high stability will rapidly return to pre-disturbance abundances.

The literature on salinity impacts has not yet developed to the stage whether it differentiates among these different aspects of responses to salinity-induced disturbances. The different types of responses, however, are an important aspect to introduce because they have a strong bearing on how aquatic ecosystems respond to increased salinity. For example, repeated disturbances to a stable population will have little impact if the disturbances are spaced at intervals that allow the population to recover (i.e., it will show excellent resilience but possibly poor inertia). In an unstable population, however, disturbances could repeatedly occur before the population has recovered and the ecological impact could be much greater as inertia, resilience and stability are all compromised.

Since inertia, resilience and stability are rarely invoked in studies of salinity impacts, it is more profitable to examine ecological responses by looking at effects on the structure of the ecosystem (i.e., effects on individual species), ecological processes (i.e., interactions among species) and landscape-level changes (i.e., whole-of-ecosystem effects). Impacts can be manifest as changes in any or all of these components and this tripartite system is used to organise the subsequent review of salinity impacts.

3. How does salinity affect aquatic biota?

Salinity exerts impacts on aquatic systems via three mechanisms (Kozlowski 1997, Bailey et al. 2006):

- Direct toxic impacts arising from the accumulation of Na^{+}and Cl^{-}in cells, and to a lesser extent by the disruption of the uptake of other essential ions (e.g., Ca^{++} and Mg^{++}) by the presence of high external NaCl concentrations;
- Direct osmotic impacts caused by the effect of dissolved salts on the availability of water to plant and animal cells; and
- Indirect impacts arising from the effects of salinity on physio-chemical characteristics of water and/or aquatic systems.

Most studies address only the two direct impacts of increased salinity (e.g., see Kefford 1998, Kefford et al. 2004 a, Zalizniak et al. 2006). Nevertheless, indirect impacts may exert significant effects, especially through effects on dissolved oxygen (DO) concentrations, pH and altered availability of other dissolved material, especially sulfate. In the case of soils, they may exert an indirect effect via modification of soil structure.

Indirect impacts arising from DO changes

The concentration of DO in water at air-saturation is strongly dependent upon salinity (Table 2).

Table 2: Predicted air-equilibrium oxygen concentrations $\left(m g O_{2} L^{-1}\right)$ at three temperatures and six NaCl concentrations. Derived from Williams (1998 a).

$\mathbf{N a C l}$ concentration $\left(\mathbf{m g ~ L} \mathbf{~}^{-1}\right)$	Water temperature $\left({ }^{\circ} \mathbf{C}\right)$		
	$\mathbf{1 0}$	$\mathbf{2 0}$	$\mathbf{3 0}$
0	11.3	9.1	7.5
5,000	11.0	8.9	7.3
10,000	10.7	8.6	7.1
50,000	8.3	6.8	5.8
100,000	6.0	5.0	4.3

Oxygen deficiencies in waters in arid and semi-arid regions could be exacerbated by high salinity, especially if combined with high water temperature. The combination of very salty water sometimes found in hypersaline lakes (e.g., $260,000 \mathrm{mg} \mathrm{L}^{-1}$) and warm (e.g., $30^{\circ} \mathrm{C}$) water, for example, produces an air-equilibrium oxygen concentration of only $1,600 \mathrm{mg} \mathrm{L}^{-1}$, considerably below tolerances of almost all invertebrates and fish.

Indirect impacts arising from pH shifts

Increases in salinity in aquatic systems may be associated with changes in water-column pH . Bailey et al. (2006), for example, reported that, in a large temporary wetland in central Victoria, water-column pH decreased by 1.4 units (to 5.5) in low-salt treatments (initially $600 \mathrm{mg} \mathrm{L}^{-1}$) but in high salt treatments (initially $1,800 \mathrm{mg} \mathrm{L}^{-1}$) the pH fell to 3.8 . In contrast, water-column pH in controls and the general wetland decreased by only 0.5 pH units over the period of water-level drawdown.

Indirect impacts arising from other solutes

Saline disposal waters and saline groundwater often contains salts other than the NaCl that is most commonly responsible for toxic-ion and osmotic effects. Ecological impacts may arise from elevated concentrations of these other ions (see Section 4.4 of this report). Loads and/or concentrations of sulphate $\left(\mathrm{SO}_{4}{ }^{2}\right)$, for example, are often elevated in salinizised systems and the increased availability of $\mathrm{SO}_{4}{ }^{2-}$ has serious ramifications for decomposition pathways in wetland sediments; sulphate-reduction can these result in the production of phytotoxins such as $\mathrm{H}_{2} \mathrm{~S}$ and the generation of acid-sulfate soils.

4. Salinity impacts on aquatic systems - responses at the species level

4.1 Pre-adaptation of the extant biota in Australian fresh waters

It has long been thought that the Australia aquatic biota is well adapted to the periodically highly saline environments that have existed over the last 6 million years in the Murray-Darling Basin (Bailey et al. 2006. The consequence of this assumption is that it is often assumed also that the biota is 'pre-adapted' to high salinities resulting from secondary salinisation (e.g., Close 1990). Although it is well known that freshwater
organisms exhibit a range of tolerances to salinity (Hart et al. 1991, Bailey et al. 2002), extreme care must be taken when extrapolating such an argument to the case of secondary salinisation. Secondary salinisation is almost always associated with other hydrological changes to which the biota may not be well adapted. For example, taxa that are well adapted to high salinities and falling water levels in temporary wetlands may not be well adapted to the evolutionary rare combination of high salinity and permanent water logging (e.g., see Salter et al. 2006 for the example of Swamp Paperbark, Melaleuca ericifolia).

4.2 Salt-sensitivity of the Australian freshwater biota

Knowledge of the salt-sensitivity of the Australian freshwater biota comes primarily from biological presence-absence data that have been later correlated with field measurements of EC (Hart et al. 1991, Bailey et al. 2002). A reliance on presence-absence data means that critical salinity thresholds may be overestimated for the recorded taxa. In other words, a given species may have been lost from a given habit long before the observed (high) salinity was measured. Moreover, the mere existence of a species at a given salinity does not mean that it can reproduce at that salinity: many plants, for example, require falls in salinity for seeds to germinate and young seedlings to establish even though adults may continue to survive Finally, single measurements of EC give no indication of whether high salinity has resulted from acute (pulse) increases or a more gradual presstype disturbance over longer time frames.

The data that are available on the salt sensitivity of the Australian freshwater biota come from relatively few primary sources. The reviews by Hart et al. $(1990,1991)$ provide primary meta-data sources but are now dated. These reviews were updated by Bailey et al. (2002) in a report that is available on the website of Land \& Water Australia (see references). More recently, the Australian Journal of Botany devoted an entire issue to the topic of salinisation (e.g., see James et al. 2003, Nielsen et al. 2003) and a book chapter has been published recently on the impacts of secondary salinisation on arid and semi-arid zone systems in Australia (Bailey et al. 2006).

As part of the review for the current project, I undertook a literature search to identify the literature published on the ecological impacts of salinity on the Australian aquatic biota since 2000 (roughly when the Bailey et al. (2002) review ceased its inspection of the literature). An interrogation of the ISI Web of Science database for the key words salinity + Australia* returned 1093 reports: the first 300 of these were checked for this report. A refinement of this initial search, using the terms salinity + Australia* + freshwater returned 127 reports; all 127 were examined. Because of the limited time available to complete this report, it was not possible to include details from all the relevant studies.

Microbes

I could find no reports on the salt sensitivity of aquatic bacteria or fungi in Australian freshwaters. This result suggests there has been little or no advance in this field since Hart et al. (1991) reported the same state of knowledge over 15 years ago. It is likely, however, that salinisation does affect microbial populations in temporary wetlands, as Boon et al. (1996) reported changes in key biomarkers (e.g., sterols, fatty acids etc) for different groups of benthic microbes during the wet and dry phases of a large temporary wetland in central Victoria.

Algae

There seems to be little information on the salinity tolerance of freshwater phytoplankton. This group of plants was not examined at all by Bailey et al. (2002). Hart et al. (1991) reported that cyanobacteria were present in waters with salinities exceeding $200,000 \mathrm{mg} \mathrm{L}^{-1}$ but no information was provided on the salinity tolerance of individual taxa. More recently, Tonk et al. (2007) reported that the nuisance blue-green alga Microcystis aeruginosa was largely unaffected by salinity up to about $10,000 \mathrm{mg} \mathrm{L}^{-1}$ and it could temporarily endure salinities of up to $17,500 \mathrm{mg} \mathrm{L}^{-1}$.

Data on the salt sensitivity of aquatic algae are dominated by reports on macroscopic charophytes such as Chara and Lamprothamnium. Chara and Nitella seem to be restricted to salinities of $<10,000 \mathrm{mg} \mathrm{L}^{-1}$ whereas Lamprothamnium papulosum can be found in hypersaline waters with salinities $>100,000 \mathrm{mg} \mathrm{L}^{-1}$.

Aquatic vascular plants

Hart et al. (1990) concluded that the majority of macrophyte species in fresh waters were salt sensitive and that changes in plant performance and decreased botanical diversity commenced at salinities of about $1,000 \mathrm{mg} \mathrm{L}^{-1}$. A salinity of about $4,000 \mathrm{mg} \mathrm{L}^{-1}$ was proposed in Hart et al. (1990) as the upper limit tolerated by most species of freshwater macrophytes, such as Myriophyllum propinquum, Triglochin procera, Crassula belmsii and Isoetes muelleri. It was noted, however that sub-lethal effects, such as reduced vigour, were likely to operate at salinities less than the maximum that were tolerated by the adults of a given species. Sub-lethal effects are discussed later in the report.

The species richness - but not necessarily the productivity - of aquatic vascular plant communities decreases with increasing salinity (Hart et al. 1991). Bailey et al. (2002) provided 49 entries for emergent, submerged and floating aquatic plants from 12 reports which identified 26 plant genera. Unfortunately, 40% of the entries were from two reports on saline wetlands. About 40% of the plant genera were restricted to salinities < $5,000 \mathrm{mg} \mathrm{L}^{-1}$. This result is consistent with the conclusion reached by Brock \& Lane (1983) that macrophytes with freshwater affinities occur at salinities $<4,000-5,000 \mathrm{mg}$ L^{-1}. Even so, $\sim 40 \%$ of the reported plant genera were found in waters with a salinity $>8,000 \mathrm{mg} \mathrm{L}^{-1}$. The most salt tolerant aquatic vascular plant species were $\mathrm{R} u$ ppia tuberosa and Lepilaena preissii , which could be found at $230,000 \mathrm{mg} \mathrm{L}^{-1}$ and $150,000 \mathrm{mg} \mathrm{L}^{-1}$, respectively. Both taxa are known also to be able to tolerate large fluctuations in salinities (Brock \& Lane 1983). Other genera present at high salinities were Bolboschoenus caldwelli, Cyperus gymnocaulus, Pachycornia and Suaeda ($25,000 \mathrm{mg} \mathrm{L}^{-1}$) and Pbragmites australis

Zooplankton

Given they are such a diverse group, spanning a range of faunal orders, it is not possible to generalize about the impacts of increasing salinity on zooplankton. The key groups of zooplankton in Australian fresh waters are rotifers and microcrustaceans (cladocerans, copepods and ostracods).

Rotifers are critical zooplankton in Australian fresh waters because they have a dominant role in structuring planktonic food webs. Rotifers as a group seem to have a wide salinity tolerance, as species have been collected during field surveys from waters ranging from $<$ 1,000 to $>15,000 \mathrm{mg} \mathrm{L}^{-1}$ (Hart et al. 1991). It is unlikely that such a wide salinity
tolerance is possessed by individual species of rotifer, given the well-known niche separation that occurs among different rotifer taxa. Bailey et al. (2002) suggested that there was a bimodal response to salinity by rotifers, with one group showing a peak of abundance at salinities of $<500 \mathrm{mg} \mathrm{L}^{-1}$ and the other group having an optimum at a salinity of 7,000 $-8,000 \mathrm{mg} \mathrm{L}^{-1}$.

In contrast to rotifers, cladocerans (i.e., water fleas) seem, as a group, salt sensitive and are thus often restricted to fresh waters with salinities of $<1,000 \mathrm{mgL}^{-1}$ (Hart et al. 1991). Bailey et al. (2002) concluded that 30% of reported genera of cladocerans were found at salinities of $<3,000 \mathrm{mg} \mathrm{L}^{-1}$ and a number of genera were restricted to waters $<500 \mathrm{mgL}$ ${ }^{1}$. An exception is Daphniopsis pusilla, which has been found in the field at salinities of up to $50,000 \mathrm{mgL}^{-1}$ (Hart et al. 1991). Field studies in temporary ponds in central Victoria have shown that cladoceran abundances decreased by more than 90% when salinities increased from 200 to $2,500 \mathrm{mgL}^{-1}$ (Bailey et al. 2006).

The salt sensitivity of copepods, like that of rotifers, seems to be bimodal. Hart et al. (1991) concluded that most copepods were restricted to fresh waters, usually $<1,000 \mathrm{mg}$ L^{-1}, but a number of copepod genera had secondarily colonised saline waters. An example is Calamoecia salina, which can be found in waters with salinities that exceed $175,000 \mathrm{mg} \mathrm{L}^{-1}$ (Hart et al. 1991). Bailey et al. (2002) reported a broadly similar pattern, with $\sim 70 \%$ of genera having a salinity maximum of $>8,000 \mathrm{mg} \mathrm{L}^{-1}$ and the remaining 30% having a tolerance of $<2,000 \mathrm{mg} \mathrm{L}^{-1}$.

Many ostracods are found in highly saline waters (i.e. $>35,000 \mathrm{mg} \mathrm{L}^{-1}$) but those species that are restricted to fresh waters are rarely found at salinities of $>1,000 \mathrm{mg} \mathrm{L}^{-1}$ (Hart et al. 1991). Consistent with this conclusion, Bailey et al. (2002) reported that the abundance of ostracod genera peaked at salinities of $<500 \mathrm{mg} \mathrm{L}^{-1}$ but a smaller peak occurred at very high salinities of $>70,000 \mathrm{mg} \mathrm{L}^{-1}$. Some ostracod genera, e.g., Cypretta and Limnocythere, were seemingly insensitive to salinity differences and could be found at salinities ranging from $<1,000$ to $>15,000 \mathrm{mg} \mathrm{L}^{-1}$.

Macroinvertebrates

Aquatic macroinvertebrates are the best studied group of the Australian freshwater biota in terms of salt tolerance. The depth of knowledge has allowed some generalisations to be made about responses to increased salinities by different groups. Bailey et al. (2002), for example, identified 57 entries for molluscs, from 13 reports. Twenty one genera were examined, mostly gastropods, but there were only eight entries for bivalves. Molluscs could be divided into two groups in terms of salt sensitivity; one group was limited to salinities of less than $3,000 \mathrm{mg} \mathrm{L}^{-1}$, representing 48% of reported genera, and another was found it waters $>8,000 \mathrm{mg} \mathrm{L}^{-1}$, and represented 28% of the reported genera. Pettancyclus sp. and Helicorbis australiansis were the only taxa limited to salinities of $<1,000$ $\mathrm{mg} \mathrm{L}^{-1}$. The most salt tolerant genus was Coxiella, which could be found in salinities as high as $124,000 \mathrm{mg} \mathrm{L}^{-1}$.

Aquatic cnidaria (e.g., Hydra) seem to be largely limited to low-salinity waters ($<2,000$ $\mathrm{mg} \mathrm{L}^{-1}$). This group may be among the most salt-sensitive of all aquatic animals (Hart et al. 1991). Among the worms, there is little information for platyhelminths and what information is available does not permit of broad generalisations (Hart et al. 1991). Similarly, little is known about osmoregulation in annelid worms; most species, however,
seem to be restricted to waters with salinities of $<1,000 \mathrm{mg} \mathrm{L}^{-1}$ according to Hart et al. (1991).

Mayflies (Ephemeroptera) and stoneflies (Plectoptera) are generally restricted to well oxygenated, fast flowing streams of low salinity (Hart et al. 1991). For mayflies, Bailey et al. (2002) identified 33 entries from 11 reports that examined 11 genera. Mayflies seem a salt-sensitive group as they were not reported at salinities $>6,000 \mathrm{mg} \mathrm{L}^{-1}$, and 45% percent of genera were only found at salinities $<500 \mathrm{mg} \mathrm{L}^{-1}$. Clooon and Tasmanocoenis were the most salt-tolerant genera, and could be found in systems with a salinity of \sim $5,000 \mathrm{mg} \mathrm{L}^{-1}$. Kefford et al. (2003) reported a $72-\mathrm{h} \mathrm{LC}_{50}$ of $>9,000 \mathrm{mgL}^{-1}$ for Tasmanocoenis spp. collected from the Barwon River, Victoria. Similarly, most caddisflies (Trichoptera) are found in low-salinity environments and Hart et al. (1991) concluded that long-term increases in salinity would likely have a deleterious impact on the trichopteran fauna of streams.

Most dragonflies and damselflies (Odonata) are found in waters with salinities of $<1,000$ $\mathrm{mg} \mathrm{L} \mathrm{L}^{-1}$ and a number of species are restricted to dystrophic waters with salinities of <50 $\mathrm{mg} \mathrm{L}^{-1}$ (Hart et al. 1991). A few dragonfly species, however, are found in saline and hypersaline waters; Ischnura aurora survives over the salinity range of 100 to $21,000 \mathrm{mg} \mathrm{L}^{-1}$. Bailey et al. (2002) reported that the most salt-tolerant odonate was Austrolestes annulosus, which could be found at salinities of $>35,000 \mathrm{mg} \mathrm{L}^{-1}$.

Bailey et al. (2002) analysed 14 reports on 18 genera of water bugs (Hemiptera). They found that 72% of genera had a salinity maximum of $<6,000 \mathrm{mg} \mathrm{L}^{-1}$. Hart et al. (1991) concluded that hemipterans, as a group, seemed largely insensitive to increased salinity, even if some genera were clearly restricted to low-salinity waters (e.g., Anisops, Notonecta: $<1,000 \mathrm{mg} \mathrm{L}^{-1}$). Hart et al. (1991) postulated that increased salinity would merely replace these salt-tolerant taxa with more salt-tolerant species.

True flies (Diptera) seem to be the only order of aquatic insects that has successfully colonized highly saline waters (Hart et al. 1991). Two major families (Tipulidae and Simuliidae) seem to be restricted to salinities of $<1,000 \mathrm{mg} \mathrm{L}^{-1}$ but both families of biting or nuisance flies (Empididae and Ceratopogonidae) have been found in saline or even hypersaline waters with salinities of $>70,000 \mathrm{mg} \mathrm{L}^{-1}$. Bailey et al. (2002) identified 86 entries from ten reports (covering 35 genera) of chironomids and other aquatic diptera. Fifty percent of the reported dipteran genera were limited to salinities $<2,000 \mathrm{mg} \mathrm{L}^{-1}$, and the majority of genera (68%) occurred at salinities $<4,000 \mathrm{mg} \mathrm{L}^{-1}$. Four genera had salinity maxima $7,000-8,000 \mathrm{mg} \mathrm{L}^{-1}$, and six genera (17%) were found at salinities in excess of seawater (i.e. $>35,000 \mathrm{mg} \mathrm{L}^{-1}$). Thus it seems that chironomids and other aquatic diptera could be divided into two groups, one restricted to low salinities and another small group tolerant of hypersaline conditions. Among the more salt sensitive genera were Microspectra, Pseudochironomus, Rheocricotopus, Tvenetia and Cordites. The most salt tolerant genus was Tanytarsus barbitarsis, which was found in field samples from waters of $100,000 \mathrm{mg} \mathrm{L}^{-1}$.

Fish

The response of fish to salinity is complicated by the range of life histories shown by different fish species. Some species are restricted totally to fresh waters and have no marine ancestry. In Australia it seems that there are only three species (in two families) in this group. In contrast, Rainbowfish (family Melanotaeniidae) are somewhat tolerant
of salt, which is likely to be a function of their recent evolution from a marine hardyhead ancestor (Hart et al. 1991). Most other Australia fish fall into what is called the 'peripheral division', which have a high salinity tolerance and only those species that have been long isolated in freshwaters are likely to have lost this tolerance. At least 20 species of Australia 'freshwater' fish are diadromous, meaning they move between fresh water and sea water to complete their life stages.

In general, the Australian freshwater fish fauna seems quite salt tolerant. Bailey et al. (2002) analysed 34 entries from 14 reports of 19 genera of freshwater fish and concluded that over 80% of reported genera had a salinity maximum of $>8,000 \mathrm{mg} \mathrm{L}^{-1}$ and none had a salinity maximum of $<4,000 \mathrm{mg} \mathrm{L}^{-1}$. Hart et al. (1991, page 128) presented summary data for salt-sensitivity of a range of Australia fish species but emphasised that "care should be taken in interpreting [this information], since both laboratory and field results may not truly reflect actual halotolerance".

Galaxids (Galaxiidae) probably have considerable salt tolerance. Grayling
(Prototroctidae) are anadromous: they live in rivers but spawns in coastal streams and the larvae drift downstream to the ocean, then migrate up rivers from about 6 months of age. Smelts (Petropinnidae) have been reported in a wide range of inland waters and in seawater, although it seems that breeding is limited to fresh water. Hardyheads (Atherinidae) are, as group, highly salt tolerant and one species, Craterocephalus cuneiceps has been found in waters at $\sim 70,000 \mathrm{mg} \mathrm{L}^{-1}$. The limited amount of information available suggests that gudgeons (Eleotridae) can survive in waters $>10,000 \mathrm{mg} \mathrm{L}^{-1}$ and some taxa can survive $>30,000 \mathrm{mg} \mathrm{L}^{-1}$. In contrast, carp (Cyprinidae) seem to be restricted to salinities of $<\sim 7,000-10,000 \mathrm{mg} \mathrm{L}^{-1}$. The noxious pest Gambusia (Poeciliidae) is highly salt tolerant and can survive up to $59,000 \mathrm{mg} \mathrm{L}^{-1}$ for 30 days.

Amphibians

Hart et al. (1991) could find no studies of the salt tolerance of tadpoles or adults of any species of Australian frog. Bailey et al. (2002) reported a similar lack of data. Overseas studies, however, indicate strongly that amphibians are rarely able to osmoregulate well and from this it can be concluded that most adult frogs are probably intolerant of salinity. There is some information on salinity tolerance of the introduced cane toad (Bufo marinus); adults can survive in salinities of up to $14,000 \mathrm{mg} \mathrm{L}^{-1}$ and gradual acclimatization to higher salinities increases the number of toads that survive exposure to salt. More recently, Smith et al. (2007) reported that the numbers of tadpoles in wetlands in aquatic systems of south-eastern Australia should not be affected by salinities of up to about $3000 \mathrm{EC}\left(\sim 1,800 \mathrm{mg} \mathrm{L}^{-1}\right)$ but almost all tadpoles would be excluded should be salinity increase to $6000 \mathrm{EC}\left(\sim 3,600 \mathrm{mg} \mathrm{L}^{-1}\right)$.

4.3 Conclusions

Many aquatic vascular plants are salt sensitive and salinities of $1,000-2,000 \mathrm{mg} \mathrm{L}^{-1}$ could be lethal to these salt-sensitive taxa. Of the animal taxa, invertebrates seem the most sensitive to increases in salinity and some species would show adverse effects from salinities as low as $1,000 \mathrm{mg} \mathrm{L}^{-1}$ (Hart et al. 1991). The most sensitive insects seem to be stoneflies, some mayflies, caddisflies, dragonflies and damselflies, and some species of water bugs. The Australian freshwater fish fauna seems salt tolerant up to or greater than about $10,000 \mathrm{mg} \mathrm{L}^{-1}$, within the caveats noted below for the sensitivity of larval stages and eggs, and for non-lethal impacts.

4.4 Caveats

Considerable caution is required when interpreting data on the salt sensitivity of aquatic plants, since data have been obtained with a variety of approaches (e.g., glass house versus field observations), over different life stages (e.g., juveniles, small seedlings, and occasionally adult plants) and with a range of 'end points' (e.g., presence/absence, LD_{50}, etc). Hart et al. $(1990,1991)$ described in greater detail the implications of these procedural limitations for obtaining impact 'thresholds'. The most critical of these caveats are discussed in turn next.

Method used to infer salinity tolerance

Data on salinity-induced effects are often sparse and generally limited to mere presenceabsence information from field samples which are then correlated with observed salinities (measured as EC) at the time of collection. As noted earlier in this report, estimates of in situ salinity may be in error if TDS is inferred from EC values from very hypersaline waters or from waters that do not have an ionic composition similar to that of seawater. Where laboratory, mesocosm or glass house experiments have been used to generate data (admittedly a small subset of the available data), there is an inevitable trade -of between precision and realism. Horrigan et al. (2007) discussed the strengths and weaknesses of laboratory versus field-based observations of salinity tolerances of aquatic macro-invertebrates and concluded that acute mortality data (e.g., 96 -hour LC_{50}) were significantly correlated with maximum salinities for streams in south-east Queensland.

$\underline{\text { Salinity is not just } \mathrm{NaCl}}$

Secondary salinisation is a complex process that often involves various ions and synergistic effects on dissolved oxygen, pH , water density, nutrients and bioavailability of heavy metals. NaCl is one salt that contributes to the salinity of aquatic systems but it is not the only one. Other ions make up source materials for a wide range of chemicals, fertilizers and other commodities, including evaporates based on sulphates (e.g. gypsum), halides (e.g. halite and carnallite), carbonates (e.g. natron), borax and nitrates (e.g. nitre). Kefford et al. (2004 a) reported on the importance of salts other than NaCl in affecting the salt sensitivity of the aquatic biota.

Differences across life-history stages

Almost all the available data refer only to adult life-history stages, and it is possible that juveniles may be more sensitive to salt for some or even many taxa. Kefford et al. (2004 b) examined the salinity tolerance of eggs and hatchlings of ten taxa of macroinvertebrates from south-eastern Australia and two from South Africa, and concluded that young life-history stages may be less tolerant of salt than the adult or visually dominant stages. In a later report, Kefford et al. (2007 b) examined this issue further and noted that there was a range of responses among different macroinvertebrate taxa, with the younger life stages of some freshwater macroinvertebrates (e.g., eggs or hatchlings) having salinity tolerances $4-88 \%$ of their older life stages.

The situation is clearer with aquatic plants, where it was been demonstrated repeatedly that seedling establishment is the most salt-sensitive stage of their life history. In his expansive review, Kozlowski (1997) concluded that woody plants are usually relatively salt tolerant during seed germination, much more sensitive during emergence and
seedling establishment, and progressively more salt tolerant with maturation. Warwick \& Bailey (1996) showed that Triglochin procera was more tolerant to salt as adult plants than as juveniles. Moreover, field and greenhouse trials indicated that salinities of $\sim 6,000$ $\mathrm{mgL}-{ }^{-1}$ could prevent the development of reproductive structures in Triglochin procera, yet adult plants continued to survive.

The issue of timing of salinity increased is also important for predicting salinity impacts, and has some links to the issue of exposure of adults versus juveniles. Bailey \& Warwick (1996), for example, demonstrated that new turion development was completely prevented in Potamogeton tricarinatus plants that were exposed, from emergence, to a salinity of $6,000 \mathrm{mgL}^{-1}$, and that significant reductions in tuber dry weight were evident at salinities as low as $2,000 \mathrm{mgL}^{-1}$. In contrast, plants exposed to $6,000 \mathrm{mgL}^{-1}$ after 30 days of vegetative growth were unaffected by this level of salinity.

Differences within a single species across sites

It is not valid to assume that the same species from different sites will respond in the same way to increased salinity. There is also good evidence that salt tolerance within a single species can vary from region to region. Sands (1981), for example, reported that differences in germination of River red gum (Eucalyptus camaldulensis) seeds from three different sites in Australia were due to variations in tissue tolerances to Na^{+}and/or Cl^{-}. Similarly, Brock et al. (2005) showed that the effect of increased salinity on the germination of aquatic plants and emergence of zooplankton from sediments was not consistent across all the seven wetlands sites they examined in south-eastern Australia. Nevertheless, as salinity increased above about $1,000 \mathrm{mgL}^{-1}$, there was a general decrease in species richness and abundance of plants and zooplankton emerging from benthic resting stages.

It is possible that the biota of temporary wetlands and arid-zone regions could respond differently to that of perennial streams in the better-watered south-east of the continent: Porter et al. (2007) showed that saline temporary wetlands and permanent freshwater wetlands were the most variable in terms of their sediment-based seedbanks.
Unfortunately, little research has been undertaken on the biota of streams in arid or semi-arid regions of Australia (e.g., see Sheil et al. 2006) despite temporary wetlands being ubiquitous and of global significance (Deil 2005).

Sub-lethal effects

Data on structural aspects of aquatic systems often relate only to acute and lethal impacts. A range of sub-acute and non-lethal impacts, for example behavioural changes, may be manifest at much lower salinities. Hassell et al. (2006) showed that increased salinity extended by 15-88 \% the time-to-emergence for a chironomid species found in Victorian streams; moreover, growth rates were reduced with increasing salinity, especially once EC climbed over $10,000 \mu \mathrm{Scm}$ (equivalent to TDS of $\sim 6,000 \mathrm{mgL}^{-1}$). Sub-lethal effects may be induced also by changes in the ionic composition of aquatic systems subjected to secondary salinisation: Zalzniak et al. (2006) reported that Ca^{2+} availability was particularly important in explaining different sub-lethal responses in aquatic macro-invertebrates that had been induced by altered stream-water salinity.

Sub-lethal effects occur also with aquatic plants. As an example, Bailey et al. (2006) reported that the total combined biomass of all aquatic plant species in a temporary wetland
in central Victoria was not affected by salinities of up to $5,800 \mathrm{mg} \mathrm{L}^{-1}$, but there were differences among species in salinity tolerances. All the freshwater species present under non-saline conditions (Amphibromus fluitans, Potamogeton tricarinatus, Triglochin procera and Myriopbyllum crispatum) persisted at salinities of $5,800 \mathrm{mg} \mathrm{L}^{-1}$. Although A. fluitans was unaffected by salt, the biomass of P. tricarinatus and M. crispatum were both significantly reduced with increasing salinity. Triglochin procera was unaffected by increased salinity, probably because this species had completed most of its growth before the salinity had increased. (Note: this is another example of the difference between pulse and press salinity increases.) Increasing salinity can prompt other non-lethal changes in aquatic plants. Morris \& Ganf (2001), for example, reported that the emergent wetland plants Bolboschoenus medianus and Baumea arthrophylla shifted biomass allocation from above-ground culms to below-ground tubers with increasing salinity.

Sub-lethal effects may be apparent in fish also. Whiterod \& Walker (2006) reported that although carp were moderately tolerant of salinity (LC50 $\sim 12,000 \mathrm{mgL}^{-1}$), osmoregulation and behaviour were affected at $7,500 \mathrm{mg} \mathrm{L}^{-1}$, and sperm motility at $8,300 \mathrm{mg} \mathrm{L}^{-1}$.

Non-linear responses to salinisation

The responses to increasing salinity may not always be linear and increases in salt concentrations may not always have adverse ecological impacts. Hassell et al. (2006), for example, reported that the emergence of a chironomid species from Victoria showed a U-shaped response to salinity, with greatest emergence in intermediate ECs of 650-5,000 $\mu \mathrm{S} \mathrm{cm}^{-1}$ (equivalent to TDS of $\sim 400-3,000 \mathrm{mg} \mathrm{L}^{-1}$). Similarly, growth and development of the damselfly Ischnura heterosticta were better at intermediate salinities than at very low or very high salinities (Kefford et al. 2006). Similar results have been reported for the freshwater snail Pbysa acuta (Kefford \& Nugegoda 2005). Such responses are not limited to macro-invertebrates. Robinson et al. (2006), for example, showed that seed germination in Swamp Paperbark (Melaleuca ericifolia) was greater at slightly elevated salinity $\left(2,000 \mathrm{mgL}^{-1}\right)$ than in fresh water. Hyporheic invertebrates may also show highest biodiversity and total abundance at intermediate salt levels (see Boulton et al. 2007).

Press versus pulse disturbances
The way that salt is introduced to aquatic systems is a critical - but often neglected aspect of secondary salinisation. Nielsen et al. (2007) grouped aquatic plants and zooplankton into five groups according to how they responded to salinity increases that were delivered as pulse increases or as press increases. The emergence of aquatic plants and zooplankton from resting stages in sediments did not seem to be affected by short pulses of high salinity; indeed such pulses could prompt some taxa of zooplankton to hatch. Marshall \& Bailey (2004) compared the effect of press and pulse salinisation on macroinvertebrates in the ephemeral Hughes Creek of central Victoria. The abundance of the gastropod Ferrissia tasmanica, the mayfly Baetis spp. and scraper and predator functional groups were significantly reduced at a salinity of $1,500 \mathrm{mg} \mathrm{L}^{-1}$, and the effect was strongest in the pulse treatment. The abundance of 49 other macroinvertebrate taxa, composition of collector-gatherer functional groups, and species diversity were, however, unaffected by the way salt was increased in the creek system. Marshall \& Bailey (2004) concluded that delivering multiple, short pulses of salt was more detrimental than delivering the same salt load at a low concentration over a longer duration.

5 Salinity impacts on aquatic systems - responses at the level of ecological processes

A complementary approach for examining to impacts of increased salinity on freshwater systems is to explore the effects on fundamental ecological processes such as primary production, nutrient cycling and decomposition rates and pathways. The difficulty is there is far less information available on salinity impacts on ecological processes than there is on impacts on relatively simple structural analysis based on species composition (James et al. 2003, Nielsen et al. 2003). Nevertheless, it is possible to infer some likely impacts from fundamental understanding of how aquatic systems function in arid and semi-arid systems. The following list is not exhaustive, but meant to give an overview of the types of ecosystem-wide impacts that could accrue from increased salinity.

5.1 Biogeochemical processes, plant decay and nutrient release

Decomposition pathways

Decomposition proceeds by a biogeochemical sequence in aquatic systems, based on the relative availability of alternative electron acceptors (Boon 2006). It begins with aerobic decay $\left(\mathrm{O}_{2}\right.$ as the oxidant) and progresses through nitrification $\left(\mathrm{NO}_{3}\right.$ as the oxidant), metal reduction (Fe^{3-} to Fe^{2-} and Mn^{4} to Mn^{2}), sulfate reduction $\left(\mathrm{SO}_{4}^{2-}\right.$ to $\left.\mathrm{H}_{2} \mathrm{~S}\right)$ and, finally methanogenesis (production of CH_{4} from acetate, or the reduction of CO_{2} by H_{2}). Methanogenesis is the dominant anaerobic pathway in freshwater aquatic systems (Boon \& Mitchell 1995, Boon 2000), but is replaced by sulphate-reduction as salinity increases, due to the abundance of $\mathrm{SO}_{4}{ }^{2-}$ in most saline waters, especially those of a marine origin. Bartlett et al. (1987) showed a strong negative correlation between methane fluxes and long-term average salinity in a Virginia (USA) salt marsh. It is not the NaCl that shifts biogeochemical pathways away from methanogenesis towards sulphate-reduction under salinized conditions, but the presence of $\mathrm{SO}_{4}{ }^{2-}$; methanogenic bacteria are largely unaffected by NaCl up to quite high salt concentrations (Liu \& Boone 1991) but are easily outcompeted by sulphate-reducing bacteria once SO_{4}^{2-} is present (Boon 2000).

This biogeochemical shift has major implications for ecosystem-scale processes in aquatic systems because the end product of sulphate-reduction is hydrogen sulphide gas; $\mathrm{H}_{2} \mathrm{~S}$ is highly toxic to most aquatic organisms and its production has been invoked to explain the sudden death of plant communities in many salinized systems. The liberation of $\mathrm{H}_{2} \mathrm{~S}$ also has broader biogeochemical significance, as S^{2-} quickly reacts with reduced iron to produce ferrous sulfide (FeS) and pyrite $\left(\mathrm{FeS}_{2}\right)$, making metals such as iron unavailable to aquatic biota. Iron is a critical trace element because it is used in many biochemical reactions in cells. Mercury may also be precipitated by $\mathrm{H}_{2} \mathrm{~S}$ but, if the $\mathrm{SO}_{4}{ }^{2-}$ concentration is low, may be methylated by sulfate-reducing bacteria, greatly increasing its biological availability and toxicity (Lewis et al. 1999).

Leaf breakdown

Increasing salinity also reduced rates at which leaves breakdown. In one of the few Australian studies on this topic, Roache et al. (2004) reported that breakdown of the aquatic plants Triglochin procera and Phragmites australis was affected by relatively low salinity ($\sim 1,200 \mathrm{mg} \mathrm{L}^{-1}$) in field experiments undertaken in an ephemeral wetland in southern Victoria. The inhibitory effect was more pronounced in the laboratory at higher concentration ($\sim 5,400 \mathrm{mg} \mathrm{L}^{-1}$).

Nutrient release

It is likely also that secondary salinisation will affect the rate of nutrient release from aquatic sediments. In part this change will be a function of shifts in bacterial groups with the increased availability of SO_{4}^{2-}. Baldwin et al. (2006) have recently shown that increased NaCl concentrations in overlaying water prompted an immediate release of NH_{4}^{+}and Fe^{2+} from sediments collected from a wetland on the River Murray floodplain. The release of inorganic phosphorus, however, was inhibited by increasing salinity.

5.2 Trophic structure

Secondary salinisation would be expected to have ecosystem-scale impacts on trophic dynamics and food-web structure. One of the greatest sources of impact on higher trophic levels is likely to be through the effect of salinity on food availability for higher consumer. Kefford et al. (2007 a), for example, showed that the most salt-tolerant zooplankton in waters from the southern Murray-Darling Basin were much more sensitive to salt than were the most tolerant macroinvertebates and most freshwater fish. Thus salinisation would be expected to affect zooplankton diversity and abundance and then to have implications for food supply for carnivorous macro-invertebrates and fish further up the food web.

Although impacts of salinity on trophic interactions and food web dynamics have been rarely studied, it is well known that disturbance to natural landscapes, including salinisation, tends to diminish biodiversity (Biswas 1997, Williams 1999). A large number of studies have shown that the number of taxa within different trophic levels of aquatic food webs is reduced dramatically as salinity increases (e.g., Hammer 1986, Hart et al. 1991, Blinn 1993, Williams 1998 b, Blinn \& Bailey 2001, Herbst 2001). This effect may, in turn, reduce the number of linkages in food webs and carbon transfer within these ecosystems (Martinez 1994). Reduced biodiversity within primary and intermediate trophic levels would be expected to reduce the resilience of food webs in the affected ecosystems, because of a reduction in the number of alternative pathways available for carbon and energy flow.

There is some evidence from field studies in central Victoria to support these theoretical discussions. An increase in salinity from $\sim 140 \mathrm{mg} \mathrm{L}^{-1}$ to $1,500 \mathrm{mg} \mathrm{L}^{-1}$) significantly reduced the abundance of scraper and predator functional groups in Hughes Creek in central Victoria (Marshall \& Bailey 2004). Whereas the abundance of predators increased during the recovery period (5 days), the scrapers remained either rare or absent. The loss of scrapers could represent a significant change to community composition and trophic relationships because scrapers (dominated by gastropods and baetid mayflies) can represent over 15% of all macroinvertebrates present in this system (Bailey et al. 2006).

5.3 Plant performance

Sexual reproduction and allocation of biomass to underground, vegetative storage organs, such as tubers or rhizomes, can be reduced by increased salinity, a process which would compromise the survival of macrophytes over periods of dormancy (Bailey et al. 2002). At Raftery Swamp, a temporary wetland in central Victoria, Potamogeton tricarinatus did not flower when salinities increased to $2,000-3,000 \mathrm{mgL}^{-1}$; laboratory studies showed that the germination rate of Triglochin procera seeds was halved at $6,000 \mathrm{mgL}^{-1}$, and almost entirely ceased at $12,000 \mathrm{mgL}^{-1}$. The biomass and number of tubers of P. tricarinatus were
reduced 50% and 70%, respectively, at salinities of up to $6,000 \mathrm{mgL}^{-1}$. Tubers are not only a mechanism by which many plants survive adverse conditions (e.g., drought) but are also a source of food for many aquatic birds (e.g., swans and Ruppia tubers). It is clear that there are a range of sub-lethal effects of increased salinity on plants and many of these could have ecosystem-wide ramifications.

6 Salinity impacts on aquatic systems - landscape-scale analyses

There is considerable overlap between ecosystem-scale and landscape-scale impacts of salinity, but it is possible to conceptually limit the latter to largely physical considerations and the former to biogeochemical processes. Secondary salinisation could have significant impacts at the landscape level, primarily via impacts on the availability of refugia in arid and semi-arid zones.

Opportunistic resources for biota are a key feature of the ecology of these regions after rainfall (see Kingsford \& Norman 2002 for waterbirds). Critical refugia 'tie over’ the biota during dry periods, especially in arid and semi-arid regions. As many species of bird require fresh water for drinking (but can feed in saline waters), the loss of freshwater environments could have serious impacts on avian diversity and abundance.

Secondary salinisation could have impacts also on food supplies to animals at an ecosystem-wide scale. Recent research has demonstrated that shallow aquatic systems often exist in one of a limited number of stable states (e.g. see Boon \& Bailey 1998, Morris et al. 2004). Although the concept of alternative stable states was developed originally with reference to submerged plants and nutrient enrichment, it is now becoming clear that secondary salinisation also can drive a shallow aquatic system from one stable state into another (Jin 2007). Extreme salinisation, foe example, can drive a wetland that was previously densely vegetated with submerged aquatic plants into a different, but equally stable state, now dominated by benthic algae (Strehlow et al. 2005, Sim et al. 2006 a, b). Benthic algae provide different - and likely poorer - food sources than dense beds of submerged aquatic plants.

7 Synthesis of guidelines for salinity increases in aquatic systems

7.1 ANZECC guidelines

The range of default trigger values for salinity set in the Australian and New Zealand guidelines for fresh and marine water quality 2000 (ANZECC-ARMCANZ 2000) to protect aquatic systems in various regions of Australia is shown in Table 3. Note that there are currently no trigger values for wetlands in south-eastern Australia and that salinities in tropical and arid-zone regions are expected to vary markedly with hydrological conditions.

Table 3: Range of default trigger values for salinity for various ecosystem types and different regions of Australia. Source: ANZECC-ARMCANZ (2000, Section 3.3.2). Note that salinities bave been converted from EC units in the original report to approximate TDS units to facilitate comparison with Section 4.2 of this report.

Region and ecosystem type	Approximate salinity range $(\mathbf{m g ~ L ~ L}$
South-east Australia (slightly disturbed)	$20-200$
Upland rivers	$80-1,300$
Lowland rivers	$10-20$
Lakes and reservoirs	$10-150^{\mathrm{a}}$
Tropical Australia (slightly disturbed)	$50-540^{\mathrm{b}}$
Upland and lowland rivers	
Lakes, reservoirs and wetlands	$60-3,000^{\mathrm{a}}$
Low-rainfall central Australia (slightly disturbed)	$180-600^{\mathrm{b}}$
Lowland rivers	
Lakes, reservoirs and wetlands	

${ }^{a}$ Expected to vary markedly with flow
${ }^{\mathrm{b}}$ May be higher during water-level drawdown
Default trigger values for protecting ecosystems against the adverse impacts of increased salinity were given in EC units in the ANZECC-ARMCANZ report. They have been converted to TDS values in Table 3 in order to allow a direct comparison with the critical values outlined in Section 4.2 of this report. For aquatic systems in arid and semi-arid zones, the trigger salinities for rivers and wetlands are about 3,000 and $600 \mathrm{mg} \mathrm{L}^{-1}$, respectively.

7.2 Other reports

Hart et al. (1991, page 105) concluded that " \ldots. direct adverse biological effects are likely to occur in Australian river, stream and wetland ecosystems if salinity is increased to around $1000 \mathrm{mg} \mathrm{L}^{-1 \prime}$. Similarly, Neilson et al. (2003), in their review of the impacts of secondary salinisation on Australian freshwater ecosystems, concluded that 1500 EC (equated with a TDS of $1,000 \mathrm{mgL}^{-1}$ in their review) was the limit at which aquatic biota would be adversely affected by increasing salinity. Muschal (2006) suggested a guideline trigger value of $1,100 \mathrm{mg} \mathrm{L}^{-1}$ for the Hunter River in central New South Wales.

8 Conclusions

Most reports indicate that substantial changes can be expected to aquatic ecosystems in south-eastern Australia should salinity increase to over about $1,000 \mathrm{mgL}^{-1}$. Impacts on sensitive groups, especially some taxa of macro-invertebrates, would be expected at lower salinities. Higher salinities may be experienced in arid and semi-arid regions, but there is too little empirical evidence to give a more definitive threshold. On the basis of ANZECC-ARMCANZ guidelines, the salinity of arid-zone wetlands should not exceed about $600 \mathrm{mg} \mathrm{L}^{-1}$ and arid-zone rivers about $3,000 \mathrm{mgL}^{-1}$. Such inland environments, however, are characterised by highly variable ecological systems it is likely that salinities could well vary greatly outside these ranges.

Almost all the information on salinity impacts refers to effects on structural elements. There is less information available to infer impacts on ecosystem-scale ecological processes and on landscape-scale phenomena. Even so, there are good theoretical
reasons for predicting that there will be impacts on ecological processes by salinities in the grams-per-litre range.

9 References

ANZECC_ARMCANZ (2000). National water quality management strategy. Australian and New Zealand guidelines for fresh and marine water quality. Volume 4. The guidelines.

Bailey, P.C.E., Boon, P.I., Blinn, D. \& Williams, W.D. (2006). Salinity as an ecological perturbation to rivers, streams and wetlands of arid and semi-arid zones. In Ecology of desert rivers, ed. R. Kingsford, pp 280-314. Cambridge: Cambridge University Press.

Bailey, P.C.E., Boon, P.I. \& Morris, K. (2002). Australian biodiversity - salt sensitivity database. Land and Water Australia, Canberra. URL at http://www.rivers.gov.au/research/contaminants/saltsen.htm

Baldwin, D.S., Rees, G.N., Mitchell, A.M. \& Williams, J. (2006). The short-term effects of salinisation on anaerobic nutrient cycling and microbial community structure in sediment from a freshwater wetland. Wetlands 26: 455-464.

Bartlett, K.B., Bartlett, D.S., Harriss, R.C. \& Sebacher, D.I. (1987). Methane emissions along a salt marsh salinity gradient. Biogeochemistry 4: 183-202.

Bayly, I.A.E. (1967). The general biological classification of aquatic environments with special reference to those of Australia. In Australian inland waters and their fauna, ed. A.H. Weatherley, pp. 78-104. Canberra: Australian National University Press.

Biswas, A.K. (1997). Water resources: environmental planning, management, and development. New York: McGraw-Hill.

Blinn, D.W. (1993). Diatom community structure along physiochemical gradients in saline lakes. Ecology 74: 1246-1263.

Blinn, D.W. \& Bailey, P.C.E. (2001). Land-use influence on stream water quality and diatom communities in Victoria, Australia: a response to secondary salinisation. Hydrobiologia 466: 231-244.

Boon, P.I. (2000). Carbon cycling in Australian wetlands: the importance of methane. Verbandlungen Vereinigung Internationale Limnologie 27: 1-14.

Boon, P.I. (2006). Biogeochemistry, ecology and management of hydrologically dynamic wetlands. In The ecology of freshwater and estuarine wetlands, ed. D.P. Batzer \& R.R. Sharitz, pp 115-176. Berkeley: University of California Press.

Boon, P.I. \& Bailey, P.C.E. (1998). Implications of nutrient enrichment for management of primary productivity in wetlands. In Wetlands in a dry land: understanding for management, ed. W.D. Williams. Canberra: Environment Australia.

Boon, P.I. \& Mitchell, A. (1995). Methanogenesis in the sediments of an Australian freshwater wetland: comparison with aerobic decay, and factors controlling methanogenesis. FEMS Microbiology Ecology 18: 175-190.

Boon, P.I., Virtue, P. \& Nichols, P.D. (1996). Microbial consortia in wetland sediments: a biomarker analysis of the effects of hydrological regime, season and vegetation on benthic microbes. Marine and Freshwater Research 47: 27-41.

Boulton, A.J., Marmonier, P., \& Sarriquet, P.E.X. (2007). Hyporheic invertebrate community composition in streams of varying salinity in southwestern Australia: diversity peaks at intermediate thresholds. River Research and Applications 23: 579-594.

Brock, M.A. and Lane, J.A.K. (1983). The aquatic macrophyte flora of saline wetlands in Western Australia in relation to salinity and permanence. Hydrobiologia 105, 63-76

Brock, M.A., Neilsen, D.L. \& Crossie, K. (2005). Changes in biotic communities developing from freshwater wetland sediments under experimental salinity and water regimes. Freshwater Biology 50: 1376-1390.

Close, A. (1990). River salinity. In The Murray, ed. N. Mackay \& D. Eastburn, pp. 127144. Canberra: Murray Darling Basin Commission.

Deil, U. (2005). A review of habitats, plant traits and vegetation of ephemeral wetlands a global perspective. Pbytocoelogia 35: 533-705.

Downes, B.J., Barmuta, L.A., Fairweather, P.G., Faith, D.P., Keough, M.J., Lake, P.S., Mapstone, B.D. \& Quinn, G.P. (2002). Monitoring ecological impacts: concepts and practice in flowing waters. Cambridge: Cambridge University Press.

Hassell, K.L., Kefford, B.J. \& Nugegoda, D. (2006). Sub-lethal and chronic tolerances of three freshwater insects: Cloen sp and Centroptilum sp (Ephemeroptera: Baeidae) and Chironomus sp (Diptera: Chironomidae). Journal of Experimental Biology 209: 4024-4032.

Hammer, U.T. (1986). Saline lake ecosystems of the world. Amsterdam: W. Junk.
Hart, B.T. et al. (1990). Effects of salinity on river, stream and wetland ecosystems in Victoria, Australia. Water Research 24: 1103-1117.

Hart, B.T., Bailey, P., Edwards, R., Hortle, K., James, K., McMahon, A., Meredith, C. \& Swadling, K. (1991). A review of the salt sensitivity of the Australian freshwater biota. Hydrobiologia 210: 105-144.

Herbst, D.B. (2001). Gradients of salinity stress, environmental stability and water chemistry as a template for defining habitat types and physiological strategies in inland salt waters. Hydrobiologia 466: 209-219.

Horrigan, N., Dunlop, J.E., Kefford, B.J. \& Zavahir, F. (2007). Acute toxicity largely reflects the salinity sensitivity of stream macroinvertebrates derived using field distributions. Marine and Freshwater Research 58: 178-186.

James K.R., Cant, B. \& Ryan, T. (2003). Responses of freshwater biota to rising salinity levels and implications for saline water management: a review. Australian Journal of Botany 51: 703-713.

Jin, C. (2007). Biodiversity dynamics of freshwater wetland ecosystems affected by secondary salinisation and seasonal hydrology variation: a model-based study. Hydrobiologia 598: 257-270.

Kefford, B.J. (1998). Is salinity the only water quality parameter affected when saline water is disposed in rivers? International Journal of Salt Lake Research 7: 285-300.

Kefford, B.J., Papas, P.J. \& Nugegoda, D. (2003). Relative salinity tolerance of macroinvertebrates from the Barwon River, Victoria, Australia. Marine and Freshwater Research 54: 755-765.

Kefford, B.J., Palmer, C.G., Pakhomova, L. \& Nugegoda, D. (2004 a). Comparing test systems to measure the salinity tolerance of freshwater invertebrates. Water SA 30: 499-506.

Kefford, B.J., Dalton, A., Plamer, C.G. \& Nugegoda, D. (2004 b). The salinity tolerance of eggs and hatchlings of selected aquatic macroinvertebrates in south-eastern Australia and South Africa. Hydrobiologia 517: 179-192.

Kefford, B.J. \& Nugegoda, D. (2005). No evidence for a critical salinity threshold for growth and reproduction in the freshwater snail Physa acuta. Environmental Pollution 134: 377-383.

Kefford, B.J., Palmer, C.G.. \& Nugegoda, D. (2005). Relative salinity tolerance of freshwater macroinvertebrates from the south-east Eastern Cape, South Africa, compared with the Barwon Catchment, Victoria, Australia. Marine and Freshwater Research 56: 163-171.

Kefford, B.J., Zalizniak, L. \& Nugegoda, D. (2006). Growth of the damselfly Iscbnura beterosticta is better in saline water than freshwater. Environmental Pollution 141: 409419.

Kefford, B.J., Fields, E.J., Clay, C. \& Nugegoda, D. (2007 a). Salinity tolerance of riverine microinvertebrates from the southern Murray-Darling Basin. Marine and Freshwater Research 58: 1019-1031.

Kefford, B.J.,Nugegoda, D., Zalizniak, L., Fields, E.J. \& Hassell, K.L. (2007 b). The salinity tolerance of freshwater macroinvertebrate eggs and hatchlings in comparison with their older life-stages: a diversity of responses. Aquatic Ecology 41: 335-348.

Kingsford, R.T. \& Norman, F.I. (2002). Australian waterbirds - products of the continent's ecology. Emu 102: 47-69.

Kozlowski, T.T. (1997). Responses of woody plants to flooding and salinity. Tree Physiology Monograph 1: 1-29.

Liu, Y. \& Boone, D.R. (1991). Effects of salinity on methanogenic decomposition. Bioresource Technology 35: 271-273.

Lewis, M..A.., Mayer, F.L., Powell, R.L., Nelson, M.K., Klaine, S.J., Henry, M.G. \& Dickson, G.W. (1999). Ecotoxicology and risk assessment for wetlands. Montana: SETAC Press.

Marshall, N.A. \& Bailey, P.C.E. (2004). Impact of secondary salinisation on freshwater ecosystems: Effects of contrasting, experimental short-term releases of saline wastewater on macroinvertebrates in a lowland stream. Marine and Freshwater Research 55: 509-523.

Martinez, N.D. (1994). Scale-dependent constraints on food-web structure. American Naturalist 144: 935-953.

Morris, K.L., Harrison, K.A., Bailey, P.C. \& Boon, P.I. (2004). Domain shifts in the aquatic vegetation of shallow urban lakes: the relative roles of light limitation and anoxia in the catastrophic loss of the submerged angiosperm Vallisneria americana. Marine and Freshwater Research 55: 749-758.

Morris, K. \& Ganf, G. (2001). The response of an emergent sedge Bolboschoenus medianus to salinity and nutrients. Aquatic Botany 70: 311-328.

Muschal, M. (2006). Assessement of risk to aquatic biota from elevated salinity - a case study from the Hunter River, Australia. Journal of Environmental Management 79: 266278.

Neilsen, D.L., Brock, M.A., Rees, G.N. \& Baldwin, D.S. (2003). Effects of increasing salinity on freshwater ecosystems in Australia. Australian Journal of Botany 51: 655-665.

Neilsen, D.L., Brock, M. Petrie, R. \& Crossie, K. (2007). The impact of salinity pulses on the emergence of plant and zooplankton from wetland seed and egg banks. Freshwater Biology 52: 784-795.

Piscart, C., Usseglio-Polatera, P., Moreteau, J.C., \& Beisel, J.N. (2006). The role of salinity in the selection of biological traits of freshwater invertebrates. Archiv für Hydrobiologie 166: 185-198.

Porter, J.L., Kingsford, R.T. \& Brock, M.A. (2007). Seed banks in arid wetlands with contrasting flooding, salinity and turbidity regimes. Plant Ecology 188: 215-234.

Rengasamy, P. (2006). World salinisation with emphasis on Australia. Journal of Exprimental Botany 57: 1017-1023.

Roache M.C., Bailey, P.C.E. \& Boon, P.I. (2006). Effects of salinity on the decay of aquatic macrophytes. Aquatic Botany 84: 45-52.

Robinson, R.R., Boon, P.I. \& Bailey, P.C. (2006). Germination characteristics of Melaleuca ericifolia Sm. (Swamp Paperbark) and their implications for the rehabilitation of coastal wetlands. Marine and Freshwater Research 57:1-9.

Sands, R. (1981). Salt resistance in Eucalyptus camaldulensis Dehnh. from three different seed sources. Australian Forestry Research 11: 93-110.

Salter, J., Morris, K., Bailey, P.C.E. \& Boon, P.I. (2007). Interactive effects of salinity and water depth on the growth of Melaleuca ericifolia Sm. (Swamp paperbark) seedlings. Aquatic Botany 86: 213-222.

Sheil, R.J., Costello, J.F., Reid, J.R.W., Hudson, P. \& Powling, J. (2006). Zooplankton diversity and assemblages in arid zone rivers of the Lake Eyre Basin, Australia. Marine and Freshwater Research 57: 49-60.

Sim, L.L., Chambers, J.M. \& Davis, J.A. (2006 a). Ecological regime shifts in salinised wetland systems. I. Salinity thresholds for the loss of submerged macrophytes. Hydrobiologia 573: 89-107.

Sim, L.L., Davis, J.A., Chambers, J.M. \& Strehlow, K. (2006 b). What evidence exists for alternative ecological regimes in salinising wetlands? Freshwater Biology 51: 1229-1248.

Smith, M.J. et al. (2007). Associations between anuran tadpoles and salinity in a landscape mosaic of wetlands impacted by secondary salinisation. Freshwater Biology 52: 75-84.

Strehlow, K., Davis, J., Sim, L. Chambers, J., Halse, S., Hamilton, D., Howritz, P., McComb, A. \& Froend, R. (2005). Temporal changes between ecological regimes in a range of primary and secondary salinised wetlands. Hydrobiologia 552: 17-31.

Tonk, L., Bosch, K., Visser, P.M. \& Huisman, J. (2007). Salt tolerance of the harmful cyanobacterium Microcystis aeruginosa. Aquatic Microbial Ecology 46: 117-123.

Underwood, A.J. (1996). Spatial and temporal problems with monitoring. In River Restoration, ed. G. Petts \& P. Calow, pp. 182-204. Oxford: Blackwell.

Warwick, N. \& Bailey, P. (1996). Salinity in wetlands: detrimental effects on the growth and development of ephemeral wetland macrophytes. Danthonia 5: 3-5.

Whiterod, N.R. \& Walker, K.F. (2006). Will rising salinity in the Murray-Darling Basin affect common carp (Cyprinus carpio L)? Marine and Freshwater Research 57: 817-823.

Williams, W.D. (1967). The chemical characteristics of some surface waters in Australia. In Australian inland waters and their fauna, ed. A.H. Weatherley, pp. 18-77. Canberra: Australian National University Press.

Williams, W.D. (1987). Salinisation of rivers and streams: an important environmental hazard. Ambio 16: 180-185.

Williams, W.D. (1998a). Guidelines of lake management. 6. Management of inland saline waters. Shiga: International Lake Environment Committee Foundation.

Williams, W.D. (1998b). Salinity as a determinant of the structure of biological communities in salt lakes. Hydrobiologia 381: 191-201.

Williams, W.D. (1999). Salinisation: A major threat to water resources in the arid and
semi-arid regions of the world. Lakes and Reservoirs: Research and Management 4: 85-89.
Williams, W.D. (2001). Anthropogenic salinisation of inland waters. Hydrobiologia, 466: 329-337.

Williams, W.D. \& Sherwood, J.E. (1994). Definition and measurement of salinity in salt lakes. International Journal of Salt Lake Research 3:53-63.

Zalizniak, L., Kefford, B.J. \& Nugegoda, D. (2006). Is all salinity the same? I. The effect of ionic compositions on the salinity tolerance of five species of freshwater invertebrates. Marine and Freshwater Research 57: 75-82.

Limitation: This report has been prepared on behalf of and for the exclusive use of URS Australia Pty Ltd. Dodo Environmental accepts no liability or responsibility for or in respect of any use of or reliance upon this report by any third party.

WATER MANAGEMENT OPTIONS FOR ASSOCIATED WATER AT THE FAIRVIEW CSG FIELD, QUEENSLAND

A LITERATURE REVIEW OF MACROINVERTEBRATE DRIFT AND AN ANALYSIS OF MACROINVERTEBRATE DISTRIBUTION DATA IN THE FITZROY \& CONDAMINE-BALONNE RIVER SYSTEMS

Acknowledgements

The author gratefully acknowledges the following inputs:

- Angus Webb of the eWater CRC \& School of Social and Environmental Enquiry, The University of Melbourne provided statistical advice and provided the numerical analyses in this report;
- macroinvertebrate and associated environmental data were supplied by the Queensland Department of Natural Resources and Water; and
- review and editing of the report was undertaken by David Fuller and Penny Flukes, URS Australia Pty. Ltd.

1. INTRODUCTION

This report was prepared in response to a request from URS Australia Pty Ltd (URS) to undertake a review of literature and data in relation to water management options being examined by Santos Ltd (Santos). Santos requires a qualitative investigation into possible environmental impacts of production water from drilling activities at its gas fields near Roma, Queensland.

This report forms a small part of the larger investigation and focuses on ecological behaviour and requirements of stream macroinvertebrate fauna that are likely to be encountered in the region of the gas fields. Specific deliverables of the work include:

1. Undertake a literature review of macroinvertebrate drift due to salinity, temperature, turbidity and flow (i.e. low flows versus moderate flows). The focus of the review where possible should be key triggers for drift and catastrophic drift in ephemeral streams during non event times (i.e. dry season). As part of this review a tabularised summary of information reviewed should be provided;
2. Undertake analysis of existing river health monitoring data (DNRW data, provided in an electronic format) to identify whether different macroinvertebrate species are found at different sites and whether this is related to salinity, temperature, turbidity and flow;
3. Examine the approach undertaken by Webb and Hart (2004) for assessing environmental risks from salinity increases in the Goulburn-Broken catchment with particular focus on how the consequence data was built and employed. Using the approach of Webb and Hart (2004), undertake a review of the Bailey and Boon (2002) salinity sensitivity database to construct macroinvertebrate sensitivity distributions using data from relevant DNRW databases. The information compiled needs to be relevant to the area under investigation (i.e. ephemeral streams in Queensland). The output needs to be formatted for use as consequence data in an ecological risk assessment. Where possible, construct sensitivity distributions of
a. Relevant macroinvertebrate salinity tolerances (to be predominantly informed by the Bailey and Boon database)
b. Relevant macroinvertebrate temperature tolerances (to be predominantly informed by the Bailey and Boon database) and
c. Macroinvertebrate species likely to be present in ephemeral streams and non ephemeral streams. This may be informed by a multivariate analysis of macroinvertebrates in ephemeral versus non ephemeral streams to determine if there are any differences in assemblages between the two stream types.

2. APPROACH

Each of the three deliverables outlined above were approached separately with results synthesised in the Discussion and Summary section.

Each deliverable was approached with an understanding of the environmental setting that led to the investigation. In particular, the following possibilities were considered:

- potential influences of long-term discharges to streams that are naturally episodic (i.e. naturally the streams only flow after rainfall events);
- potential influences of differing salinity concentrations at an individual discharge point; and
- potential influences of elevated temperatures across the individual discharges.

During the course of the project, further exploration of some deliverables was identified as not being worthwhile due to a lack of literature, relevant information, or data. In particular, the multivariate analysis (MVA) that was suggested as part of deliverable 3c was not undertaken because:
a. the literature review identified that the taxa in ephemeral streams will typically be derived from the fauna of nearby refugia or other sources of colonists; and
b. we did not have access to data sets from the region that delineated ephemeral streams from non-ephemeral streams.

Some investigations were identified as not being ecologically meaningful and these are identified within the findings for each of the individual deliverables. In contrast, MVA was identified as being a useful tool for Deliverable 2: assessing differences in macroinvertebrate species assemblages across sites and identifying the role of salinity, turbidity, temperature and flow in species distributions. Therefore, a MVA of the DNRW data sets was included in the assessment of these potential influences.

3. DELIVERABLES

3.1. DELIVERABLE 1: LITERATURE REVIEW OF MACROINVERTEBRATE DRIFT

The three intersecting foci of the literature review were:
I. identify key triggers for drift (and catastrophic drift)
II. identify and characterise drift in ephemeral stream systems; and
III. Identify and characterise drift during non-event times in ephemeral streams.

A tabulated summary of the most relevant documents is provided in Appendix 1. The information presented below has been gleaned from these documents.

Definitions of Drift

Aquatic macroinvertebrate drift is a phenomenon in which the invertebrate fauna (referred to as the 'drift fauna') of a flowing stream enters the water column from the benthic zone (stream bed) and drifts with the water current. For an individual, any single drift is typically in the order of a few centimetres to 10s (tens) of metres (Brittain and Eikeland 1988). Several drifting episodes can accumulate to result in substantial distances being covered by individuals or parts of populations. Drifting can be voluntary or accidental (Brittain and Eikeland 1988).

Several different types of drift have been described (Brittain and Eikeland 1988, Ramirez and Pringle 1998). These include:

- active drift (whereby the fauna actively enters the flowing water column, usually to avoid predation or to seek more abundant resources);
- passive drift (where the fauna are going about their activities, are picked up by the current and transported downstream). Passive drift can be exacerbated by changes in environmental conditions. For example, low dissolved oxygen concentrations may encourage some species to seek locations with higher current velocities (which are typically more aerated);
- catastrophic drift, in which large numbers of invertebrates enter the drift in a short period of time. Catastrophic drift is usually flood related but can occur due to a range of triggers such as pesticide inputs, temperature changes and increased suspended sediment concentrations. Catastrophic drift can be active (e.g. avoidance of toxic conditions), or passive (e.g. fauna are picked up by high flow events).

Drift has also been described in terms of its ecological function, with distributional drift being described as a method of dispersal within a population or community. Many species have been observed to have a greater probability of drifting during specific stages of their life-cycle, especially very young stages (O'Hop and Wallace 1983; Svendsen et al. 2004).

Drift in the Context of CSG Discharges to Intermittent Streams

There is little information on the drift fauna of subtropical, ephemeral, Australian streams. There is even less information (possibly none) on the influences of salinity, temperature and sediment inputs to drift in these streams. The vast majority of the ecological information provided in the discussion below was derived from international literature on drift (refer Appendix 1) rather than literature focused on Australian, subtropical, ephemeral/episodic stream systems.

Within the context of this project, the source of the drift fauna is an important issue. The invertebrate fauna of a stream system includes the bottom-dwelling fauna ('benthic fauna'). Stream systems also contain a fauna that inhabits the subsurface waters below rivers and their banks ('hyporheic fauna') (Clinton et al. 1996; del Rosario and Resh 2000). The drift community within a stream is not a separate community. Rather, it is a part of the benthic community that enters the drift. The hyporheic fauna do not typically form part of the drift (Clinton et al. 1996).

During prolonged dry spells (that is, periods of no surface water, rather than cease-to-flow periods with isolated pools), a hyporheic fauna may be supported at, or near, the water table, whereas stream systems without any surface water typically do not support a benthic fauna (del Rosario and Resh 2000). Since the drift fauna is a component of the benthic fauna, a lack of surface water inhibiting existence of a benthic fauna also inhibits a drift fauna.

Therefore, during prolonged dry spells, key triggers for drift and catastrophic drift in ephemeral streams are unlikely to exist as there is as there is unlikely to be a benthic community and to provide any drift fauna. The benthic community in an ephemeral stream during a wet period most likely originates through colonisation from nearby habitats (including refuges), rather than from dormant stages of the fauna (Miller and Golliday 1996; Stanley et al. 1994), although a small percentage of the fauna (primarily zooplankton) may survive dry periods in the egg stage of the life cycle (e.g. URS 2006). The likely absence of a benthic community in dry drainage lines means that an artificial discharge into this habitat is unlikely to have a significant effect on either the benthic community or the drift community.

Many of the streams currently receiving discharges of production water from drilling activities are more episodic (event-driven) rather than ephemeral (seasonal). The study area experiences semi-regular wet seasons. However, the uncertainty of whether any given year will experience a wet season probably means that the area will be somewhere between episodic and ephemeral. Under current conditions, many of the drainage lines have been observed to flow for less than 2 days after rain events. There is unlikely to be substantial colonisation of fauna under these conditions.

Drift in the Context of CSG Discharges to Larger Streams and Refuges

Beyond the episodic systems discussed above, discharges of water with elevated temperature or salinity to larger ephemeral stream systems (generally flowing for a whole season or longer) may also occur, including systems that may normally contain refuge habitat (e.g. pools, wetlands) or even low flows, during dry periods.

Effects of Flow Changes The influence of flow changes on invertebrate drift has long been recognised with a substantial number of studies showing that an increase in flow volumes or velocity leads to increased drift (Brittain and Eikeland 1988). Studies of stream flow
influences on macroinvertebrate drift include those that assess effects of reduced flows (e.g. Corrarino and Brusven 1983; Clinton et al. 1996; del Rosario and Resh 2000), increased flows (e.g. Brooker and Hemsworth 1978; O'Hop and Wallace 1983; Matthei et al. 1997) and both increased and decreased flows (e.g. Perry and Perry 1986; Miller and Golladay 1996). Many studies have reported an increase in drift during spates, with some taxa drifting in the initial phases of the spate whereas other taxa drift following the flow peak (Brittain and Eikeland 1988).

In a study examining the effects of flow reduction on invertebrate drift, Corrarino and Brusven (1983) demonstrated that catastrophic drift was created by substantial reductions in stream flows, although the drift response was influenced by season, channel shape and time of day. The effects of the drying phase of an intermittent prairie stream in Oklahoma, USA indicated that the drying phase led to a lower diversity of taxa due to the dry phase preventing flow dependent taxa from completing their life-cycle (Miller and Golladay 1996). The study did not test for drift migration of invertebrates from riffles to pools during the drying period, but noted that this phenomenon has been reported in several studies, including one study in Australia (Boulton and Lake 1992). In contrast, a study of intermittent streams in northern California, USA showed that the invertebrates did not migrate to either pools or the hyporheos to avoid stream drying (del Rosario and Resh 2000).

Results of several studies have been mixed, with authors reporting that the importance of streamflow versus suspended sediment loads are difficult to separate as drift triggers. Some researchers suggest that suspended sediment cannot be separated from flow as the cause of drift (O'Hop and Wallace 1983), while others have used elevated suspended sediment concentrations to mimic high flow events and found drift increased significantly in number of individuals and number of taxa (Doeg and Milledge 1991). One study of an artificial discharge downstream of an impoundment reported a dramatic increase in drift with the increased flow and noted that although this was accompanied by a large increase in the total load of suspended sediment, the actual concentration never increased above $6 \mathrm{mgL}^{-1}$ (Brooker and Hemsworth 1978).

A study of drift in an Australian tropical stream (Benson and Pearson 1987) noted that there was a distinctly seasonal drift pattern, with greater drift during the wet (summer) season and that this was related to life-cycles rather than disturbance. The authors suggest that this drift pattern was therefore dispersive, distributing young nymphs to new habitats while conditions were favourable. No flood events occurred during the study or in the few months prior to sampling. Therefore, impacts of event flows could not be assessed.

Svendsen et al. (2000) note: "Unfortunately, it is not possible to conduct meaningful comparisons of drift rates between studies due to lack of detail provided on total discharge patterns and how drift rates are actually quantified and reported" (underline mine). Within the context of this study, the increase in drift associated with increased discharge that is often
reported (Brittain and Eikeland 1988) cannot be readily transferred to the stream systems in the study area or to the potential discharge regime of associated water. Assessments of increased flows on invertebrate drift are typically associated with spates and floods, rather than longer-term additions to base flows. An understanding of the influence of potential discharges to stream systems of the study area is more likely to be achieved through a carefully designed experiment than through a literature review. However, fluctuations in flows of large streams in the study area caused by discharges of associated water are likely to be substantially less than the fluctuations that occur naturally.

Effects of Temperature Changes Similar to the effects of flow changes, results of studies on the influence of temperature on the drift of macroinvertebrates are not readily transferred to the specific situation for this study. Temperature is typically discussed in terms of night/day ranges or seasonal differences. Brittain and Eikeland (1988) note that one author had suggested that rising temperatures may be a trigger for species that drift during the daytime, whereas another author had found a negative correlation between rising temperatures and drift. Similarly, Svendsen et al. (2000) state that in general, stream temperature has not been shown to have a primary influence on stream drift and that instead it has been inferred that increases in temperature increase insect activity, which may then increase the risk of accidental drift (see for e.g. Williams 1990, Winterbottom et al. 1997, in Svendsen et al. 2000).

A complicating factor in considering effects of temperature on drift is the multiple confounding with season, photoperiod and flow rates. No studies were found that isolated temperature as an influence on drift. Any further examination of the potential effects of temperature on streams that may receive discharges of associated water from the Fairview gas field, consideration should be given to the extent to which water temperature will decrease after it leaves the discharge pipe, as a function of time, distance, dilution and weather conditions.

Effects of Salinity Changes Salinity has long been known to influence the community structure of stream macroinvertebrates. Metzeling (1993) showed community variation in species compositions at salinities ranging from 51 to $1100 \mathrm{mg} / \mathrm{L}$ (approximately 80 to 1800 $\mu \mathrm{S} / \mathrm{cm}$). These ranges have been supported by a study in Queensland (Horrigan et al. 2005) that demonstrated changes in macroinvertebrate communities at similar salinities, with a salinity-based index decreasing rapidly as salinities increased to approximately 800-1000 $\mu \mathrm{S}$ cm^{-1} and thereafter decreasing at a slower rate as salinities further increased.

A study measuring macroinvertebrate drift in relation to salinity recorded increases in drift as a result of adding saline solutions independent of discharge (Wood and Dykes 2002), whereas another study recorded difficulty in distinguishing between the effect of a salinity "spike" on drift and the effects of a specific "trigger" salinity concentration (Silva and Davies
1999). In many ecosystems elevated salinities are likely to occur over long periods, making it difficult to assess the effects of salinity on drift events.

Possible Effects of the Discharges on Refuges The term 'refuge' is used here to describe remnant waterbodies (wetlands, deep pools) associated with intermittent streams. Refuges provide a source of biota for colonisation of more ephemeral waterbodies following the return of wet conditions. The relationships between refuges and macroinvertebrate drift are not clear nor consistent. Some studies have indicated that macroinvertebrates may drift from riffle zones into refuges during the drying phase of a stream (e.g. del Rosario and Resh 2000), whereas others have recorded catastrophic drift in response to flow reductions (Corrarino and Brusven 1983), indicating that the macroinvertebrates were seeking refuge from drying conditions.

A potential impact of the discharge of associated water from the Fairview gas field on refuges would be the possible concentration of salts as water flows into the refuges and subsequently evaporates. The extent to which this occurs naturally is unknown, as is the expected load of salts from the discharges to any refuges and the potential for dilution. Each of these would be worthy of investigation. A report by Simmonds and Bristow (2008) records clear increases in salt concentrations at sites downstream of the associated water discharges. All sites upstream of the discharges meet salinity guidelines whereas nearly all sites downstream fail the salinity guidelines. These results suggest that salinity from the discharges has the potential impact the ecology of the larger flowing streams and refugia that remain during drier periods.

3.2. DELIVERABLE 2: VARIATIONS IN MACROINVERTEBRATE DISTRIBUTIONS

The two primary questions for this deliverable were:
I. Do macroinvertebrate distributions in the region near the Santos gas field operations vary across sampled sites; and
II. if macroinvertebrate distributions do vary across sampled sites, can the distributions be related to salinity, flow (discharge), temperature and/or turbidity?

The Data

River health monitoring data for the region, incorporating aquatic macroinvertebrate fauna and water quality measures, were obtained from data sets supplied by URS and compiled by Queensland DNRW. These data were from the Condamine-Balonne (8 sites) and the Fitzroy River (6 sites) Catchments, which occur in the region of Santos' gas field operations. The data set contained 130 samples from the 14 sites, taken between 1994 and 2004, using Edge (E), Rocky Pool (K), Riffle (R), Sandy Pool (S) and Macrophyte (M) sampling methods (Table 3.1).

As well as presence of the biota, the DNRW data set contained macroinvertebrate indices, derived from the species assemblages and used to provide indications on the ecological condition of streams. The indices used included Invertebrate Richness, PET Richness, SIGNAL Score, and AusRivAS O/E. Invertebrate Richness is a simply the number of invertebrate families found at a site (with a higher number of families indicating a 'healthier' stream), while PET Richness sums the number of families belonging the ecologically sensitive orders of Plecoptera (stoneflies), Ephemeroptera (mayflies) and Trichoptera (caddisflies). The SIGNAL Score is an index that assigns a score based on the tolerance/sensitivity to pollution of the aquatic invertebrate families present and AusRivAS O/E is the Observed (O) number of families at a site, divided by the Expected (E) number of families at the site. The number of Expected families is calculated using a model with measured environmental conditions as the input, whereas the number of Observed families is simply the tally of families collected during sampling. For all of the indices, a higher score indicates a higher standard of stream condition.

Table 3.1: Number of samples by Sample Type used in the MVA

Habitat Code	Habitat Type	Number of Samples
E	Edge	60
K	Rocky pool	13
R	Riffle	17
S	Sandy pool	34
M	Macrophyte	6

Environmental data that were collected with the biological sampling and subsequently used in the numerical analyses were:

- stream discharge;
- electrical conductivity (an indicator of salinity), using the mean of field and laboratory readings for each sampling;
- turbidity ('muddiness'), using laboratory data from each sampling; and
- water temperature, using field data from each sampling.

Methods for Numerical Analyses I: Univariate Analysis

The biological indices (SIGNAL, Richness, PET Richness and AusRivAS) were all subjected to univariate analyses (Generalized Linear Model). The model was formulated as an additive model, without any interaction terms. The dependent variables were normally distributed sufficiently for them to be analysed in their raw form. The independent variables had to be transformed as follows:

1. EC - used $\log (\mathrm{EC})$ to normalise the distribution
2. Discharge - changed to bivariate (YES/NO) data, as there were a large proportion of zero flows (so no transform could help these). Included as a categorical variable.
3. Turbidity - used Log(Turbidity) to normalise the distribution
4. Temperature - not transformed.

To be included in the analysis, all environmental data had to be present for a record. If one or more of the four variables (EC, Discharge, Turbidity, Temperature) was missing, then the record was excluded.

Methods for Numerical Analyses II: Multivariate Analysis

Multivariate analyses were undertaken on the biological and environmental data using the PRIMER computer package (Clarke and Warwick 1994). Site ordinations were undertaken using the multidimensional scaling (MDS) program in PRIMER. Relationships between the sites' community composition and environmental variables were subsequently analysed using PRIMER's BIOENV procedure (Clarke and Ainsworth 1993), which exhaustively searches for the combination of environmental variables that that produces a similarity matrix most correlated to the similarity matrix of sites based on the biota. In effect, this procedure carries out tests of the relationship between community composition and environmental variables - comparable to multiple regressions. BIOENV examines all possible combinations of variables, from each environmental variable separately through to all at the same time. The output provides combinations of the environmental variables that are effective in explaining the distributions of the macroinvertebrate biota.

Multivariate analyses were undertaken with habitats with sufficient sample sizes (E and S , refer Table 3.1). The BIOENV procedure requires the environmental data to be normally distributed. Turbidity and EC data were log-transformed to normality. Temperature data were normally distributed. Discharge data were fourth root transformed; this resulted in a bimodal distribution with a one peak at zero and then a normal 'sub-distribution' away from zero.

Two BIOENV analyses were carried out for each of the E and S habitats (Table 3.1). One used all four environmental variables, and the other excluded discharge. This was done for two reasons.

1. Discharge data are missing for more records than the other environmental variables, leading to a larger proportion of the biological data being excluded from the analysis (as a missing data point leads to elimination of the sample within the analysis); and
2. The discharge data was not normally distributed and so there may be some effect on the environmental data matrix.

Results and Findings of the Numerical Analyses

The results of the numerical analyses indicate that:
I. The macroinvertebrate assemblages do vary between sites, although the differences are quite small; and
II. There are no major correlations of assemblages with the environmental variables. The greatest correlation appears to be with EC, although this is weak and is not reflected in the results of the univariate analyses.

Univariate Analyses: The p values associated with the effects for each habitat and independent variable are displayed in Table 3.2. Sample sizes are also shown. Note that the sample size in Table 3.2 differs from the numbers of samples per habitat type in Table 3.1 as some samples were removed from the analysis due to missing data (generally discharge data).

Table 3.2: Number of samples by Sample Type used in the MVA.
Significance at $\mathrm{p}=0.01$ (with rounding) are indicated in bold

Index	Habitat Code	N	p values for test of Independent Variables			
			$\boldsymbol{l o g}$ EC	Flow (Y/N?)	\log Turb	Temp
SIGNAL	E	45	0.145	0.374	0.226	0.042
	K	11	0.827	0.922	0.73	0.829
	R	16	0.872	0.122	0.174	0.107
	S	22	0.178	0.525	0.837	0.72
Richness	E	45	0.287	0.49	0.075	0.05
	K	11	0.175	0.012	0.014	0.031
	R	16	0.225	0.95	0.058	0.422
	S	22	0.824	0.463	0.631	0.301
PET	E	45	0.65	0.474	0.018	0.053
	K	11	0.027	0.001	0.004	0.038
	R	16	0.11	0.347	0.015	0.123
	S	22	0.558	0.692	0.499	0.918
AusRivAS	E	45	0.637	0.043	0.704	0.031
	K	11	0.459	0.035	0.369	0.149
	R	16	0.87	0.596	0.507	0.085
	S	22	0.73	0.703	0.471	0.755

Habitat "M" had also been sampled ($\mathrm{N}=5$), but with 4 independent variables in the model, this results in 0 degrees of freedom for the error term, and no ability to test any hypotheses.

Although the analysis resulted in a few significant results, there was not a particularly consistent output among the different indices. Habitat K (Kick) was the only habitat type that gave significant result, these being for the PET and Richness indices, in relation to Flow
and Turbidity influences. This habitat type had the smallest number of samples, which reduces confidence in the outputs.

Multivariate Analyses: The MDS plots (Figure 1) show some slight grouping of sites (based on macroinvertebrate assemblages), although the grouping is weak. The plots are 2dimensional representations of distributions in multidimensional space. Fitting the distributions into 2 dimensions results in distortions to the display that are measured as 'stress'. Generally speaking, a stress value of >0.20 means that 'caution' should be used in interpreting the plots. Values of 0.3 to 0.4 mean that the plot is not meaningful. Stress for the plots in Figure 1 was quite high (0.26 and 0.21), which means that the 2 -dimensional representation of the multivariate data is acceptable but should be used for general interpretations only.
"Bubble plots" were also produced for each of the environmental variables (Appendix 2). A bubble plot scales the symbol by the value of the environmental variable. A gradient of increasing symbol size from one side of the plot to the other would indicate a correlation of the macroinvertebrate assemblage with that environmental variable. The title for each plot shows what variable was used to scale the bubbles. The largest bubble corresponds to the highest value in the data set, and the smallest - the smallest. The bubble plots indicate no effects for any of the environmental variables, except a possible slight effect of EC in the Edge habitat data, but not EC for Sweep habitat.

The results of the BIOENV analyses are displayed below (Tables 3.3 and 3.4). The results are displayed as combinations of environmental variables that provide the best explanation of the patterns produced by the multivariate analyses of macroinvertebrate assemblages.

Table 3.3: Best results for Edge habitat from the BIOENV analyses

Number of Variables used	Correlations (Spearmans rho)	Variables used
3	0.125	LogEC; Fourth Root Discharge; LogTurbidity
4	0.106	All
2	0.103	Fourth Root Discharge; LogTurbidity
2	0.101	LogEC; Fourth Root Discharge

ODawson River at Taroom
-Don River at Rannes Recorder
Omimosa Creek at Redcliffe

- Dawson River at Woodleigh

ODawson River at Beckers
Ocomet River at The Lake
OCulgoa River at Whyenbah
\square Narran River at Dirranbandi-Hebel Road

- Bungil Creek at Tabers
\square Priarie Creek at Woolerbilla-Hebel Road
\square Yuleba Creek at Forestry Station
DBalonne River at Weribone
\square Condamine River at Chinchilla
\square Condamine River at Cotswold
Δ Maranoa River at Cashmere

Taxon level data - S habitat

Figure 1: Species-based site ordination for Edge (E) and Sandy Pool (S) habitats

Table 3.4: Sweep habitat Best results

Number of Variables used	Correlations (Spearmans rho)	Variables used
1	0.194	LogEC
2	0.110	LogEC; Fourth Root Discharge

The results reveal poor correlations between the macroinvertebrate data and the environmental variables, with no correlation reaching even 0.2 . As many of the discharge data points were missing, this led to several samples being omitted from the analyses. Therefore, the analyses were run a second time, without the discharge data included. The results were very similar, with slightly lower correlations being obtained and are therefore not displayed. In summary, the BIOENV analyses did not produce any strong correlations between the environmental variables and the biological data. Of the variables, $\log E C$ appears to be the one that appears near the top of the best solutions most of the time, albeit weakly.

3.3. DELIVERABLE 3: COMPILATION OF SALINITY AND TEMPERATURE TOLERANCES OF REGIONAL INVERTEBRATE FAUNA

Salinity Tolerances

Lists of representative aquatic macroinvertebrate fauna for the region were obtained from the data sets supplied by URS and compiled by Queensland DNRW. These data were from the Condamine-Balonne and the Fitzroy River Catchments, which occur in the region of Santos' gas field operations. The data were gathered by DNRW in accordance with the AUSRIVAS sampling and processing methods (e.g. DNRM 2001), which requires identification of most taxa to family level. Higher level (i.e. less detailed) identifications are accepted for groups that are difficult to identify.

The combined Fitzroy and Condamine-Balonne data sets contained a total of 83 families. One of these families - Chironomidae - was divided into three subfamilies (Table 3.5).
The families recorded in the DNRW data sets were compared against aquatic salinity tolerances derived by Webb and Hart (2004), using records from a salinity tolerance database produced by Bailey and Boon (2002). The approach undertaken in the allocation of salinity tolerances to aquatic fauna by Webb and Hart (2004) involved the following steps:

1. Use of field-based data only (i.e. exclusion of laboratory-derived tolerance data)
2. Entries in the database that had not been identified at least to family level were discarded
3. Family was added to entries that had been identified to genus or species level but had not had family allocated
4. Family-level estimates of EC tolerance were derived using the geometric mean of the maximum EC estimates for all species genus and family entries that fell within that particular family

A more detailed description of the process for obtaining species-level and genus-level maxima can be found in Webb and Hart (2004). The individual family-level salinity tolerances used by Webb and Hart (2004) were not presented in their report, and were provided for this project by Webb (unpublished data). The majority of the families identified in the DNRW data set had been assigned family-level salinity tolerances in the Webb salinity tolerances data set. These are presented in Table 3.5, along with the highest EC measures at which each family was recorded in the Queensland DNRW data sets. Table 3.5 shows that many of the families were found at ECs that exceeded their assigned EC tolerance levels. In their report, Webb and Hart (2004) identified several uncertainties that arise from using salinity tolerance data derived by examining unrelated studies of biota and compiling associated salinity measures. One particularly pertinent to this study is that using these outputs to determine salinity/EC maxima for selected taxa does not mean that all stages of the taxa are able to tolerate the salinity/EC maxima. For example, finding an adult of an insect family at a site with an EC of $2000 \mu \mathrm{~S} \mathrm{~cm}^{-1}$ does not guarantee that eggs or larvae from that family would be able to withstand $2000 \mu \mathrm{~S} \mathrm{~cm}^{-1}$. Another issue raised by Webb and Hart is duration, whereby spot measures of salinity/EC associated with the presence of a particular taxon, does not provide evidence that the taxon can withstand the same measures for a prolonged period. The use of geometric means by Webb and Hart was an environmentally conservative approach, designed to account for these uncertainties. This conservative approach may also result in some of the families being allocated tolerances within the boundaries of their natural salinity ranges.

A further issue with the use of the data in this study is the use of family data. The macroinvertebrates sampled for the DNRW program were identified to family level, which is the standard approach for Australia-wide for the AusRivAS program. However, this level of identification misses detailed information that may be obtained from genus and specieslevel identifications, particularly in the examination of individual taxon responses to single issues/impacts (i.e. salinity). Within many of the families identified in the DNRW data, there may be a large number of species with varying tolerances to salinity concentrations. Again the use of geometric means by Webb and Hart (and in this study) provides an environmentally conservative approach to the issues arising from this uncertainty.

Table 3.5: EC tolerance levels for families found in the DNRW data sets from Condamine-Balonne and Fitzroy River data sets, with accompanying highest EC measure recorded against each family in the data sets (ND = No data)

Family	EC Tolerance Levels	Highest EC (Qld data)
Aeshnidae	1288	1249
Ancylidae	978	345
Atriplectidae	ND	265
Atyidae	8100	1848
Baetidae	1148	1848
Belostomatidae	5916	340
Bithyniidae	1455	206
Caenidae	1368	1848
Calamoceratidae	3900	1848
Carabidae	ND	342
Chaoboridae	876	230
Ceratopogonidae	5954	1848
Chironomidae (Tanypodinae)	1850	1848
Chironomidae (Orthocladiinae)	1081	378
Chironomidae (Chironominae)	3716	1848
Chrysomelidae	ND	616
Clavidae	8568	337
Coenagrionidae	4631	1848
Conoesucidae	1085	273
Corallanidae	ND	378
Corbiculidae	13800	1848
Corduliidae	163	1848
Corixidae	7017	1848
Culicidae	2805	1516
Curculionidae	5916	1848
Dolichopodidae	3428	700
Dugesiidae	ND	1848
Dytiscidae	5424	1848
Ecnomidae	3049	1516
Elmidae	700	700
Empididae	2024	727
Ephydridae	10729	337
Erpobdellidae	ND	273
Gerridae	3200	700
Glossiphoniidae	683	1848
Glossosomatidae	1809	265
Gomphidae	720	1848
Gyrinidae	2738	1516
Haliplidae	381	1848
Hebridae	1108	378

Heteroceridae	ND	145
Hydraenidae	4215	1848
Hydridae	947	265
Hydrobiidae	6809	335
Hydrobiosidae	1046	345
Hydrometridae	85	378
Hydrophilidae	5287	1848
Hydropsychidae	1387	700
Hydroptilidae	1818	345
Hygrobiidae	3502	238
Hyriidae	ND	296
Isostictidae	ND	1848
Leptoceridae	3153	1848
Leptophlebiidae	678	700
Libellulidae	10199	1848
Lymnaeidae	1152	1516
Mesoveliidae	1901	1516
Naucoridae	5916	1516
Nepidae	1288	1516
Noteridae	ND	1516
Notonectidae	3018	1848
Ochteridae	ND	378
Ornithobdellidae	ND	265
Palaemonidae	24216	1848
Parastacidae	4348	1516
Physidae	5800	1848
Planorbidae	1248	1848
Pleidae	2940	1848
Protoneuridae	163	1516
Psephenidae	887	273
Ptilodactylidae	ND	145
Pyralidae	13550	317
Sciomyzidae	3339	160
Scirtidae	1623	1516
Simuliidae	2688	700
Sisyridae	ND	1848
Sphaeriidae	5243	1516
Staphlinidae	2999	700
Stratiomyidae	3136	313
Tabanidae	ND	700
Temnocephalidae	ND	378
Thiaridae	2940	1848
Tipulidae	1241	700
Veliidae	9039	1516
Viviparidae	1139	1848

Temperature Tolerances

A review of the Bailey and Boon (2002) database revealed that it was solely focused on salinity tolerances - there were no temperature data for tolerance-setting. As noted in the drift review, further examination of the potential effects of temperature on streams that may receive discharges of associated water from the Fairview gas field, should consider the extent to which water temperature will decrease after it leaves the discharge pipe, as a function of time, distance, dilution and weather conditions. This may not require elaborate monitoring: a simple survey of temperature changes with distance from discharge from pipes selected to cover a range of scenarios may be sufficient.

4. DISCUSSION AND SUMMARY

The findings of this study suggest that long-term discharges to the drainage lines are unlikely to impact the 'natural' drift fauna within the drainage lines as there are unlikely to be drift communities without the discharges. Further review may be best to consider the possible effects of elevated salinity discharges on the overall stream system (ephemeral and otherwise), rather than a focus on the drift fauna. Further downstream, in larger stream lines and dry season refugia, the discharges have the potential to impact the stream ecosystems through elevated salinities. This could be particularly problematic if saline discharges lead to concentration of salts in refuge pools and wetlands, through evaporation during dry seasons. The potential extent of this problem could only be evaluated with information on discharge quantities, salt concentrations and natural flow volumes in the receiving streams.

The numerical analyses of four selected variables - discharge, salinity, turbidity and temperature - against the macroinvertebrate fauna distributions did not yield any marked influences, although the data did indicate that salinity (EC) may be influencing distributions to some extent. This suggests that within the ranges measured, there was no measurable influence of the other three variables upon invertebrate distributions. However, Simmonds and Bristow (2008) reported on sampling undertaken in the region subsequent to heavy rainfall event, and recorded very high turbidities at many sites, typically associated with light grazing and extensive bank and local catchment erosion. Although beyond the scope of this report, the findings of Simmonds and Bristow (2008) highlight the importance of significant rainfall events on streams and suggest that land management (in the form of restricting stock access to streams and improve management of riparian zones) could be an important stream management consideration within the region generally.

The weak associations between salinity measures and biota suggest that increases to the range in salinity may yield changes in the faunal assemblages at stream sites downstream of the drainage lines receiving saline discharges. This is supported by the salinity tolerance data derived from Bailey and Boon (2002) by Webb and Hart (2004), indicating that many of the families recorded in the DNRW data sets were close to, or exceeding, their salinity tolerance estimates.

Within the context of the greater study, the potential impacts can be divided into two distinct receiving environments: minor drainage lines with episodic flows, and larger streams with longer-lasting seasonal flows and potential refugia. The findings of this study suggest that aquatic macroinvertebrates are more likely to be useful in the assessment of larger streams impacts, rather than the minor drainage lines, because:

- the discharge of production water into the minor drainage lines creates an aquatic invertebrate fauna where none previously existed. It is therefore unsound to assess impacts of the discharges on a fauna that has been created by those discharges;
- although some of the episodic streams receiving the discharges may occasionally build up an invertebrate fauna during a prolonged wet period, the literature suggests the fauna will be opportunistic colonists that will disappear upon stream drying;
- the DNRW data from larger streams lower in the catchment indicates that the macroinvertebrate fauna in these streams may be influenced by salinity concentrations. A recent report by Simmonds and Bristow (2008) has recorded salinity concentrations above State guidelines at most sites downstream of the discharges. It is therefore important to monitor the potential cumulative effects of the saline discharges in the larger streams and associated refugia. This is aided by the existence of current and recent data from several sites that are potentially affected.
- assessment of impacts from the discharges to the minor drainage lines should logically be undertaken through monitoring the biota and habitat conditions that were present prior to the discharges. This would include the vegetation cover within and abutting the drainage lines, as well as the soil/substrate conditions under the vegetation, including soil salinity and water-logging.

5. REFERENCES CITED

This references list contains general documents referred to in this study, as well as references cited in the review of the drift literature. Appendix 1 contains only the references used in the literature review, accompanied by their most salient points for this report.

Anholt, B. (1995). Density Dependence Resolves the Stream Drift Paradox, Ecology 76:22352239.

Bailey, P. and Boon, P. (2002). Contaminants fact sheet and salt sensitivity database. Land and Water Resources Research and Development Corporation, Canberra.

Benson, L and Pearson, R. (1987). Drift and upstream movement in Yuccabine Creek, an Australian tropical stream, Hydrobiologia 153:225-239.

Borchardt, D. (1993). Effects of flow and refugia on drift loss of benthic macroinvertebrates: implications for habitat restoration in lowland streams, Freshwater Biology 29:221-227.

Boulton, J. and Lake P.S. (1992). The ecology of two intermittent streams in Victoria, Australia. III. Temporal changes in faunal composition. Freshwater Biology 27:123-138.

Brewin, P. and Ormerod, S. (1994). Macroinvertebrate drift in streams of the Nepalese Himalaya, Freshwater Biology 32:573-583.

Brittain J.E. \& Eikeland T.J. (1988). Invertebrate Drift - A Review, Hydrobiologia 166 : 77-93.

Brooker, M. and Hemsworth R. (1978). The effect of the release of an artificial discharge of water on invertebrate drift in the R. Wye, Wales, Hydrobiologia 59:155-163.

Clarke, K.R. and Ainsworth, M. (1993). A method for linking multivariate community structure to environmental variables. Marine Ecology Progress Series 92:205-219.

Clarke, K.R. and Warwick, R.M. (1994). Change in Marine Communities: An Approach to Statistical Analysis and Interpretation. Natural Environment Research Council, Plymouth Marine Laboratory, Plymouth, UK.

Clinton, S., Grimm, N. and Fisher, S. (1996). Response of a hyporheic invertebrate assemblage to drying disturbance in a desert stream, Journal of the North American Benthological Society 15:700-712.

Corrarino, C. and Brusven, M. (1983). The Effects of Reduced Stream Discharge on Insect Drift and Stranding of near Shore Insects, Freshwater Invertebrate Biology. 2:88-98.

Del Rosario, R. and Resh, V. (2000). Invertebrates in intermittent and perennial streams: is the hyporheic zone a refuge from drying? Journal of the North American Benthological Society 19:680-696.

DNRM (2001). Australia-Wide Assessment of River Health: Queensland AusRivAS Sampling and Processing Manual, Monitoring River Health Initiative Technical Report no. 12, Commonwealth of Australia and QLD Department of Natural Resources and Mines, Canberra and Rocklea. August 2001.

Doeg, T. and Milledge, G. (1991). Effect of experimentally increasing concentrations of suspended sediment on macroinvertebrate drift, Australian Journal of Marine and Freshwater Research 42:519-26.

Horrigan, N., Choy, S., Marshall, J. and Recknagel, F (2005). Response of stream macroinvertebrates to changes in salinity and the development of a salinity index. Marine and Freshwater Research 56:825-833.

Matthei, C., Uehlinger, U. and Frutiger, A. (1997). Response of benthic invertebrates to natural versus experimental disturbance in a Swiss prealpine river. Freshwater Biology 37:61-77.

Miller, A.M. and Golladay, S. (1996). Effects of spates and drying on macroinvertebrate assemblages of an intermittent and a perennial prairie stream, Journal of the North American Benthological Society 15:670-689.

Moser, D. and Minshall, G.W. (1996). Effects of localised disturbance on macroinvertebrate community structure in relation to mode of colonisation and season, American Midland Naturalist 135:92-101.

O'Hop, J. and Wallace, J.B. (1983). Invertebrate drift, discharge, and sediment relations in a southern Appalachian headwater stream, Hydrobiologia 98:71-84.

Perry, S. and Perry W (1986).Effects of experimental flow regulation on invertebrate drift and stranding in the Flathead and Kootenai Rivers, Montana, USA. Hydrobiologia 134:171182.

Ramirez, A. and Pringle, C. (1998). Invertebrate drift and benthic community dynamics in a lowland neotropical stream, Costa Rica, Hydrobiologia 386:19-26.

Sheldon, F and Thoms, M. (2006). Relationships between Flow Variability and Macroinvertebrate Assemblage Composition: Data from Four Australian Dryland Rivers, River Research and. Applications 22: 219-238.

Silva, E. and Davies, R. (1999). The effects of simulated irrigation induced changes in salinity on metabolism of lotic biota. Hydrobiologia 416:193-202.

Simmonds and Bristow (2008). River Health Assessment of the Upper Dawson River November 2007. Report to Santos Toga Pty Ltd, November 2007. Simmonds and Bristow Pty Ltd, 40 Reginald Street, Rocklea QLD.

Stanley, E., Buschman, D., Boulton, A., Grimm, N. and Fisher, S. (1994). Invertebrate Resistance and Resilience to Intermittency in a Desert Stream. American Midland Naturalist 131:288-300.

Svendsen, C.R., Quinn, T. and Kolbe, D. (2004). Review of Macroinvertebrate Drift in Lotic Ecosystems. Final Report, Wildlife Research Program Environmental and Safety Division Seattle City Light, WA, USA

URS (2006). Aquatic Communities of Ephemeral Stream Ecosystems. Arid West Water Quality Research Project: Executive Summary. Prepared by URS Corporation, Albuquerque, New Mexico and GEI Consultants, Inc./Chadwick Ecological Division, Littleton, Colorado.

Wallace, J.B., Vegel, D.S. and Cuffney, T.F. (1986). Recovery of a headwater stream from an insecticide-induced community disturbance, Journal of the North American Benthological Society 5:115-126.

Webb, J.A. and Hart, B.T. (2004). Environmental Risks from Salinity Increases in the Goulburn-Broken Catchment. Report to Goulburn Broken Catchment Management Authority. Water Studies Centre, Monash University, Melbourne.

Williams, D. (1990). A field study of the effects of water temperature, discharge and trout odour on the drift of stream invertebrates. Archiv für Hydrobiologie 119:167-181.

Williams, D. (1996). Environmental constraints in temporary fresh waters and their consequences for the insect fauna, Journal of the North American Benthological Society 15:634-650.

Winterbottom, J.H., S.E. Orton, and A.G. Hildrew (1997). Field experiments on the mobility of benthic invertebrates in a southern English stream. Freshwater Biology 38:37-47.

Wood P. and Dykes A. (2002). The use of salt dilution gauging techniques: ecological considerations and insights. Water Research 36:3054-3062.

This report has been prepared with due diligence and care and is based on the best information reasonably available at the time of publication. Although due care has been taken in the preparation, the author holds no responsibility for any errors or omissions within this report. Any decisions made by other parties based on the information in this report are solely the responsibility of those parties.

APPENDIX 1: TABULATED SUMMARY OF ARTICLES REVIEWED FOR LITERATURE REVIEW ON IMPACTS OF DISCHARGES ON MACROINVERTEBRATE DRIFT IN EPHEMERAL STREAMS DURING NON-EVENT PERIODS

Reference	Notes
1. Brittain J.E. \& Eikeland T.J. (1988). Invertebrate Drift - A Review, Hydrobiologia 166 : 77-93	General: This paper reviewed the literature on drift, with focus on the 15 years prior to publication. General findings include: - Drift can occur for many reasons (simultaneously), making it difficult to ascribe it to one or a few factors in isolation - Some factors include dispersal, predator avoidance, habitat needs, foraging, accidental uptake while foraging; pollution, high flows, life-cycle triggers - There have been many descriptive papers, adding little to theory of drift - There have been many conflicting findings as to whether or not the invertebrates drift under specific scenarios, making theory-development difficult Project Specific: - Low DO concentrations can result in some fauna moving to areas of greater current exposure, increasing their susceptibility to accidental drift - Reduced seasonal influence in tropics/subtropics - although 'end of rainy season' can have increased drift - One study found peak in winter in subtropics - One study found less drift in a temporary stream than in an adjacent permanent stream

2. Svendsen, C.R., Quinn, T. and Kolbe, D. (2004). Review of Macroinvertebrate Drift in Lotic Ecosystems. Final Report, Wildlife Research Program Environmental and Safety Division Seattle City Light, WA, USA

General: This report reviewed the drift literature, providing a more recent account of studies and findings than Brittain and Eikeland (1988). These included:

- drift is not a distinct faunal group. It is derived from the benthic community and is that subset that participates in drifting (whether voluntarily or otherwise)
- abiotic influences on drift include light (generally a peak in dusk/evening drift density), current (positive association with drift), oxygen (lower oxygen leads to some spp. seeking areas with higher velocity and accidentally entering the drift), season (season with greatest biomass production of benthos = season with greatest drift)
- biotic factors influencing drift include predation (invertebrate predators tend to increase drift, especially at night, when they are most active. Fish predators that feed from the water column tend to reduce drift, especially during the day, when they are most effective)
- sediment movement and pollution can cause catastrophic drift

Project Specific:

- for there to be a drift fauna there has to be a benthic fauna (as distinct from a hyporheic fauna). So, in an episodic stream, there will not be a drift fauna.
- very little info on the impacts of landscape-scale influences on drift, but it could be important (e.g. land clearance, agricultural activities)
General: This paper examined spp assemblages in Dryland rivers in relation to flow variability. Generally not relevant to a study on drift, although a couple of observation may translate into the current study.

Project Specific:

- flow variability may be a strong determinant of species assemblage composition in dryland rivers
- with time and in the absence of floods that connect waterbodies and instigate a homogenising effect, selective pressures may lead to a depauperate assemblage of tolerant generalists, many of which are vagile and show little habitat specificity

4. Anholt, B. (1995). Density Dependence Resolves the Stream Drift Paradox, Ecology 76:22352239	General: This paper explores the concept of density dependence (i.e. that drift occurs as a result of excess production). Uses modelling to explore influence of density versus 'upstream flight for ovipositing + downstream drift = population maintenance'. Not really relevant to this study, more an exploration of the ecological theories of drift in terms of population dynamics Project Specific: - concept of drift as a function of invertebrate production (i.e. reduced drift if populations are low?)
5. Matthei, C., Uehlinger, U. and Frutiger, A. (1997). Response of benthic invertebrates to natural versus experimental disturbance in a Swiss prealpine river. Freshwater Biology 37:61-77.	General: This paper compared the impacts of a natural flood versus an experimental disturbance on the invertebrate fauna (including drift). Not overly relevant to this study - focus was more on invert population in general, rather than causes of drift. Project Specific: - drift was most important form of recolonisation after flood and artificial disturbance - drift rates did not necessarily increase post flood, but remained proportional to benthic densities. This was still enough for rapid recolonisation - probable that egg "seed bank" provided an important source for colonisation, through entering the drift after hatching (i.e. part of seasonal cycle rather than 'waiting' in storage for any flood cues)
6. Brooker, M. and Hemsworth R. (1978). The effect of the release of an artificial discharge of water on invertebrate drift in the R. Wye, Wales, Hydrobiologia 59:155-163.	General: This paper used a BACl approach, with one control and one impact site, during a release of water from a reservoir. The authors found a substantial increase in invertebrate drift (total numbers and density) as a result of the increased flows, noting that Temp., D.O. and TSS concentrations did not change significantly during the discharge. Project Specific: - substantial increase in drift even though stage height only increased from approx 70 to 80 cm - increased flow \Rightarrow increased drift

7. Brewin, P. and Ormerod, S. (1994). Macroinvertebrate drift in streams of the Nepalese Himalaya, Freshwater Biology 32:573-583	General: This paper compared drift in two stream systems, at different altitudes. Taxa in drift was significantly correlated with benthic composition. Drift aperiodic in streams without fish, nocturnal peak in streams with fish. Project Specific: - notes that tropical and subtropical systems poorly studied regarding drift - terrestrial macroinvertebrate drift lowest in treeless catchments - notes positive relationship between drift and temperature (taken from other studies)
8. Ramirez, A. and Pringle, C. (1998). Invertebrate drift and benthic community dynamics in a lowland neotropical stream, Costa Rica, Hydrobiologia 386:19-26.	General: This paper looked at factors influencing drift in a neotropical stream. Noted that much of the drift was larval shrimp, which could be in other tropical/subtropical streams. No seasonal patterns, strongly nocturnal due to predatory fish and omnivorous adult shrimp. Similar to many other papers reviewed here, not directly relevant to current study Project Specific: - lack of studies of drift in tropical regions - no seasonal fluctuation in drift (common in tropics) - drift can be function of resource (eg algal standing crop)
9. Benson, L and Pearson, R. (1987). Drift and upstream movement in Yuccabine Creek, an Australian tropical stream, Hydrobiologia 153:225-239.	General: This paper studied drift in a tropical stream over a 14 month period. Findings include no correlation between drift density and benthic density, or between drift density and water discharge. A strong diel pattern was observed, peaking just after sunset and indicating a strong behavioural component of drift. No catastrophic drift observed (as there were no high flow events during, or just prior to, any sampling). Sampling of upstream movement indicated an average of 8% of drift was compensated by fauna crawling back upstream. Distinct seasonal drift (higher in wet season), suggesting peak drafts associated with life cycles rather than disturbance (i.e. young nymphs drifting to new habitats, just created by rising stream levels) Project Specific: - The authors only 8 studies found that looked at drift in tropical areas - distinctly seasonal tropical stream with wet $\&$ dry seasons \Rightarrow distinct seasonality of drift. Less seasonal tropical streams showed little if any seasonality

10. Borchardt, D. (1993). Effects of flow and refugia on drift loss of benthic macroinvertebrates: implications for habitat restoration in lowland streams, Freshwater Biology 29:221-227.	General: This paper examined concurrent changes in flow velocity and volumes of woody debris in influencing drift of invertebrates. The major finding was that increased shelter offered by woody debris mitigates against impacts of increased flow velocities (albeit differently for different species). So more woody debris results in less catastrophic drift
Project Specific: 11. Corrarino, C. and Brusven, M. (1983). The Effects of Reduced Stream Discharge on Insect Drift and Stranding of near Shore	General: Experimentally reduced stream flows were shown to cause catastrophic drift of invertebrates. Magnitude of Insects, Freshwater Invertebrate varied by time of day (greater drift at night), season, channel shape. Mayfly spp drift more at night, Blackfly drifted immediately after flow reductions regardless of time of day
Biology. 2:88-98.	Project Specific: $\bullet \quad$ Flow fluctuations may be important in drift.
12. Doeg, T. and Milledge, G. (1991). Effect of experimentally increasing concentrations of suspended sediment on macroinvertebrate drift, Australian Journal of Marine and Freshwater Research 42:519-26.	General: Experimentally increased suspended sediment concentrations to an artificial channel within a stream in Victorian foothills. Substantial increase in drift recorded. Rates of increase varied between taxa but almost all taxa recorded an increase in drift. The increased drift did not deplete the benthic fauna, measured by kick sampling. Species that drifted the most were those known to be sensitive to agricultural disturbances in catchments

13. Clinton, S., Grimm, N. and Fisher, S. (1996). Response of a hyporheic invertebrate assemblage to drying disturbance in a desert stream, Journal of the North American Benthological Society 15:700-712.	General: Study of a drying ephemeral creek system. Examined biota and water quality in wells as the stream dried. The study found that invertebrate abundances decreased at the near surface and increased in the deeper sediments, indicating that the biota actively migrate down the sediment profile, pursuing the wet areas. Project Specific: - hyporheic fauna is distinct and different from the benthic fauna - benthic fauna did not move into the hyporheic zone - there do not seem to be desiccation-resistant forms in the life-cycles of the hyporheos - seems that the system has benthic biota that get decimated by floods and drought, and a hyporheic biota that survives by migrating up and down with the water table.
14. Miller, A.M. and Golladay, S. (1996). Effects of spates and drying on macroinvertebrate assemblages of an intermittent and a perennial prairie stream, Journal of the North American Benthological Society 15:670-689.	General: Compared two adjacent streams - one intermittent and one perennial. Examined effects of spates and drying periods on biota. Study appeared to be a little confounded by differences in habitat (perennial stream had forested streamside and better substrate for invertebrates). Project Specific: - intermittent stream had lower density and taxa richness, probably due to summer drying reduces recruitment potential - summer drying also prevents flow-dependent taxa from completing life-cycle - data suggested that pool refugia in the intermittent stream were key sources for recolonisation of riffles after dry season
15. Del Rosario, R. and Resh, V. (2000). Invertebrates in intermittent and perennial streams: is the hyporheic zone a refuge from drying? Journal of the North American Benthological Society 19:680-696.	General: This study compared two streams - one intermittent and one perennial (similar to Miller and Golladay 1996, but this time the study had less confounding influences). Benthic and hyporheic faunas were similar between streams, although the intermittent stream had lower densities of animals. The hypothesis being tested was that the hyporheic zone acts as a refuge for benthic fauna during drying of the intermittent stream. Project Specific: - benthic fauna did not migrate to hyporheic zone during drying - benthic invertebrates also did not seem to move to pools as refuges during drying, either

16. O'Hop, J. and Wallace, J.B. (1983). Invertebrate drift, discharge, and sediment relations in a southern Appalachian headwater stream, Hydrobiologia 98:71-84.	General: This study sampled drift, suspended sediments (organic and inorganic) and discharge relations in a headwater stream in SE USA. Some of the daily drift data occasionally correlated with one of the environmental variables, but there didn't appear to be any consistent patterns with any taxa. Project Specific: - noted that storm events increase sediment transport and drift density, with drift density corresponding with organic sediment transport more than inorganic - drift was seasonally influenced and related to growth stages of the community
17. Moser, D. and Minshall, G.W. (1996). Effects of localised disturbance on macroinvertebrate community structure in relation to mode of colonisation and season, American Midland Naturalist 135:92-101.	General: Compared drift versus crawling in terms of importance for colonising benthic areas under different influences (seasons, after disturbance). Sampled by placing tiles on stream bed (for crawling) and at $2-5 \mathrm{~cm}$ above stream bed (for drift fauna). In spring, greater density but lower diversity of invertebrates on elevated tiles. Colonisation through drift was more important in spring, when temperature was low, discharge was high and algal resources were low. In summer and autumn, when temperature was low, discharge was high and algal resources were abundant, drift and crawlers colonised equally rapidly.
18. Williams, D. (1996). Environmental constraints in temporary fresh waters and their consequences for the insect fauna, Journal of the North American Benthological Society 15:634-650.	General: Intermittent = cyclically refilled; Episodic = unpredictably refilled water body. Length of time between filling seems to be a key determinant of diversity, with longer dry period leading to decreasing diversity of invertebrate fauna. Project Specific: - in some temporary waters, some taxa are derived entirely from recolonisation from nearby waterbodies - when drying occurs, some spp move to where the water is

| 19. Stanley, E., Buschman, D., |
| :--- | :--- |
| Boulton, A., Grimm, N. and Fisher, |
| S. (1994). Invertebrate Resistance |
| and Resilience to Intermittency in a |
| Desert Stream, American Midland |
| Naturalist 131:288-300. |\quad| General: Discharge in desert streams is characterised by flash-floods, followed by drying. This study examined two |
| :--- |
| stream reaches in Sonoran desert - one which dries completely and one which typically recedes upstream and only |
| dries partially. After complete drying, few individuals persisted at any site beyond 10 days and only 5 individuals were |
| found twing. |

APPENDIX 2: Bubble Plots of Environmental variables overlain on sites

Document information

Title	Dawson's Creek Survey
Client organisation	URS
Client contact	Penny Fluke
Document ID number	DCRS April 08
Project manager	Anthony Buckland
Project reference	P206718

Current document approval

Prepared by	Prepared by	Sign
	Craig Tybell	Sate
Reviewed by	Reviewed By	Anthony Buckland

Current document distribution list

Organisation	Date	

Document history and status

Revision	Prepared by	Reviewed by	Approved by	Date approved	Revision type

The concepts and information contained in this document are the property of Hydro Tasmania Consulting. This document may only be used for the purposes for which, and upon the conditions, the report is supplied. Use or copying of this document in whole or in part for any other purpose without the written permission of Hydro Tasmania Consulting constitutes an infringement of copyright.

Table of Contents

Introduction 4
Scope \& Background 4
Instrumentation and Methodology 5
Field discharge measurements (gaugings) 5
Field water quality measurements 5
Summary of results 8
Dawson's Creek Flow and Water Quality Summary 8
Spring inflow and Water Quality Summary 9
CD contents 10
Attachment A Dawson's Creek Spring survey results spreadsheet xi
Appendix B Map and photo disk xiii

Introduction

This report summaries work carried out by the Hydro Tasmania Consulting's (HTC) Resource Monitoring \& Information personnel in the measurement of flow and water quality within an eighteen kilometre reach of Dawson Creek near Roma Queensland. The River survey was conducted on foot over a three day period from $29^{\text {th }}$ April to $2^{\text {nd }}$ May 2008.

The river survey was requested by URS representative Penny Flukes and was undertaken by Anthony Buckland and Craig Tybell.

Scope \& Background

HTC was engaged to conduct flow and water quality measurements on an eighteen kilometre reach of Dawson's Creek beginning at the Yebna Crossing and was terminated at the junction of the Hutton River. Particular reference was made in sampling of springs entering Dawson's Creek.

The scope of the monitoring being:

1. To conduct discharge (flow) measurements on the reach of Dawson's Creek and at the springs encountered;
2. Measure physical water quality parameters of springs and Dawson Creek waters;
3. Sample fifteen springs for further analysis and duplicates for quality assurance testing.
4. Photos taken both upstream and downstream of each site.

Instrumentation and Methodology

Listed below are the Hydrographic field instrumentation used in the determination of flow and physical chemical properties onsite.

- Hydrological Services flow current meter (model Os-B1) meter 40 fan 4 and 30 m cloth measurement tape. Volumetric gaugings $=1$ litre bottle/time
- Hydrolab MS-5 water quality meter (Temperature, pH, Conductivity, Salinity, Turbidity, Dissolved Oxygen (mg/l) \& (\% saturation).
- GPS - Magellan eXplorist XL`

Field discharge measurements (gaugings)

Flow measurements (Gaugings) were carried out at each site by physically wading the stream with a current meter to determine the velocities, and the corresponding the width and depth at numerous points of the x-section to determine the flow. Velocity measurements were untaken for a 40 second period. Dawson's Creek had long distances between the riffle and runs zones and as is expected in low gradients streams large pondage zones where present. These large zones of pondage however meant that locations for gaugings were limited and therefore were undertaken where possible.

Gauging's were conducted to Australian standards (flow measurements in open channels).

Field water quality measurements

Field water quality measurements were undertaken with a Hydrolab MS-5 multiprobe measuring pH , Temperature, conductivity, turbidity and dissolved oxygen at each flow measurement (gauging) location and at each spring sites (refer to map and spreadsheet 1), Photos were taken and the locations GPS coordinates noted at each site which is included in the accompanying disk (appendix B).

Calibration of the water quality meter was conducted using Manufacturers laboratory specified solutions and procedures.

Site map (Gaugings)

Site Map (Springs)

Summary of results

Dawson's Creek Flow and Water Quality Summary

As shown in the tabulated results (appendix A) the discharge measurements within Dawson's creek ranged from 0.068 cumecs (68 litres per second) at the upper most flow measurement site (gauging 14) to 0.273 cumecs (273 litres per second) at gauging 4. There were losses in the lower reaches of Dawson's Creek near the homestead (Gaugings 1-6) which may have been the extraction of water for domestic or agricultural purposes or merely increased losses from geological anomalies (cast) or sub surface movement through course sand beds. There was evidence of extraction (polypipe) that had been used for drilling operations. Although no permanent pumping sites were located in the reach in question the extraction pipe/s may have been submerged at the time of this survey.

Figure 1: Flow versus gauging locations on Dawson's Creek

	TEMP	SAL(PPT)	pH	TURB (NTU)	$\begin{gathered} \text { LDO } \\ \text { (\%) } \end{gathered}$	$\begin{gathered} \hline \text { LDO } \\ \text { (Mg/I) } \end{gathered}$	SCOND (uS/cm)
Max	19.5	0.15	7.83	18	102.7	10.05	314.8
Min	14.31	0.14	6.95	7.2	43.8	4.27	284.7
Average	16.2	0.1	7.3	11.4	72.0	7.1	303.2
Stdev	1.3	0.0	0.3	3.1	17.6	1.8	8.7
Table 1 Dawson's Creek water quality results at gauged sites							

Water temperature's within Dawson's creek ranged from a maximum of $19.5^{\circ} \mathrm{C}$ to a minimum of $14.31^{\circ} \mathrm{C}$ (average $=15.1^{\circ} \mathrm{C}$) but is highly dependent on the ambient air temperatures at the time of the field measurement.

Measurements of Ph found variations from a minimum 6.95 to a maximum of 7.83 with an increasing trend toward the lower reaches of Dawson's Creek with the maximum value recorded at the Yebna crossing. This was likewise the case for conductivity readings to which the maximum was recorded at Yebna crossing - $314 \mathrm{uS} / \mathrm{cm}$ and the minimum at gauging site 12 being $284.7 \mathrm{uS} / \mathrm{cm}$.

The dissolved oxygen readings likewise increased with the distance downstream with the minimum recorded at gauging site 9 (43% saturation/ $4.27 \mathrm{mg} / \mathrm{l}$) and the maximum being at gauging site 2 (maximum 102% or $10.05 \mathrm{mg} / \mathrm{L}$).

Dawson's Creek Turbidity ranged only 11 ntu with a maximum of 18 ntu (gauging site 9) to 7.2ntu (gauging site 13).

Spring inflow and Water Quality Summary

A total of thirty springs were discovered in the survey area. The majority of springs were discovered on the right bank of Dawson's Creek, notably in aggregations over a small geographical area (refer to map2). Cattle disturbance of the river bed and banks was evident throughout the survey area. The weather was stable during the survey period with no rainfall occurring. Fifteen water samples were taken for further analysis at sites

There was much variation in the water quality results from the numerous springs discovered in this survey, as shown in table 2 below.

	TEMP	SAL(PPT)	pH	TURB (NTU)	LDO $(\%)$	LDO $(\mathbf{M g / l})$	SCOND $(\mathbf{u S / c m})$
Max	26.16	0.46	7.62	18	92.8	8.63	890.1
Min	12.85	0.06	5.8	0	0.45	0.21	131.7
AVG	22.1	0.1	6.6	7.1	42.2	4.1	283.4
Stdev	3.3	0.1	0.5	7.1	33.6	3.1	162.9
Table 2 Spring water quality results							

Temperature and conductivity readings from the springs varied greatly. The highest conductivity recorded at spring 2 being $890 \mathrm{uS} / \mathrm{cm}$ but its discharge was minimal ($15 \mathrm{ml} / \mathrm{s}$). The highest temperature was recorded at spring 11 at $26.16^{\circ} \mathrm{C}$ surrounding springs 9 through C all being above $20^{\circ} \mathrm{C}$. Waters from Spring 6 had very low dissolved oxygen readings at $0.21 \mathrm{mg} / \mathrm{l}$ and also had the lowest Ph 5.8. The springs flow ranged from $2 \mathrm{mls} / \mathrm{sec}$ to 3 litres/sec.

CD contents

Please find enclosed in Appendix B a disk containing the following

- Site digital photos
- Maps (gauging and springs)
- Interactive sample map file
- Raw data worksheet

Attachment A Dawson's Creek Spring survey results spreadsheet.

Environmental Values and Associated Water

 Quality
REPORT

GLNG Project

Environmental Values and Associated Water Quality

Project Manager:

Project Director:

Table of Contents

ES Executive Summary 1
1 Introduction 1
1.1 Background 1
1.1 Study Area 1
1.2 Catchment Overview 1
1.2.1 Condamine-Balonne 1
1.2.2 Upper Dawson River 2
1.2.3 Comet-Brown River 2
2 Environmental Values 4
2.1 Overview 4
2.2 Condamine-Balonne 5
2.3 Upper Dawson River 5
2.4 Comet-Brown Catchment 6
3 Water Quality Guidelines 7
3.1 Regulatory Framework 7
3.2 Water Regions and Types 7
3.3 Relevant Water Quality Guidelines 8
3.3.1 Condamine-Balonne 8
3.3.2 Upper Dawson River 12
3.3.3 Comet-Brown Catchment 15
3.4 Application of Water Quality Guideline Trigger Values 18
4 Data Sources and Water Quality Monitoring Events 19
4.1 Data Sources 19
4.2 URS Water Quality Monitoring Events 20
4.2.1 Site Selection 20
4.2.2 Analytical Program 22
4.2.3 Methodology and QAQC 23
4.3 Targeted Data Collection - Condamine - Balonne Continuous Stream Gauging Sites 23
5 Condamine-Balonne Water Quality 25
5.1 Review of Water Quality Data 25
5.1.1 Physico-Chemical Parameters 28
GLNG PROJECT ENVIRONMENTAL VALUES AND ASSOCIATED

Table of Contents

5.1.2 Metals 29
5.1.3 Nutrients 31
5.1.4 Major Ions 31
5.1.5 Organic Indicators 31
5.2 Summary 32
6 Upper Dawson Catchment Existing Environment 33
6.1 Review of Water Quality Data 33
6.1.1 Physico-Chemical Parameters 35
6.1.2 Metals 36
6.1.3 Nutrients 37
6.1.4 Organic Indicators 37
6.2 Summary 37
7 Comet-Brown Catchment Water Quality 39
7.1 Review of Water Quality Data 39
7.1.1 Physico-Chemical Parameters 40
7.1.2 Metals 42
7.1.3 Nutrients 43
7.1.4 Organic Indicators 43
7.2 Summary 44
8 The Quality of Associated Water 45
8.1 Water Quality of Associated Water at Fairview and Roma 45
8.2 Investigation of Associated Water Quality - Roma and Fairview Fields 48
8.2.1 pH 48
8.2.2 Conductivity 48
8.2.3 Sodium 48
8.2.4 Chloride. 48
8.2.5 Bicarbonate 48
8.2.6 Fluoride 53
8.2.7 Iron 53
8.3 Investigation of Other Water Quality Parameters - Fairview Field 53
8.3.1 Dissolved Oxygen 53
8.3.2 Boron 54
GLNG PROJECTENVIRONMENTAL VALUES AND ASSOCIATED
Table of Contents
8.3.3 Ammonia 54
8.3.4 Aluminium 54
8.3.5 Cadmium 54
8.3.6 Copper 54
8.3.7 Zinc 54
8.3.8 Additional Ungraphed Parameters 55
8.3.9 Notes on Other Parameters 55
8.4 Summary 56
9 Discussion and Conclusions 57
9.1 Comparison of Surface and Associated Water Quality 57
9.1.1 Surface Water Quality. 57
9.1.2 Associated Water Quality and Likely Impacts of Discharge 58
9.2 Conclusions 61
10 Limitations 62
11 References 63

Tables, Figures \& Appendices

Tables

Table 2-1 Catchment Environmental Values. 4
Table 3-1 Spot water quality data sufficient to establish local guidelines 8
Table 3-2 MTVs for major streams in the Balonne-Condamine catchment 10
Table 3-3 Spot water quality data sufficient to establish local guidelines 12
Table 3-4 MTVs for major streams in the Upper Dawson River catchment 13
Table 3-5 Spot water quality data sufficient to establish local guidelines 15
Table 3-6 MTVs for major streams in the Brown \& Comet River catchment 16
Table 4-1 Condamine-Balonne Water Quality Monitoring Sites 20
Table 4-2 Upper Dawson Catchment Water Monitoring Sites 21
Table 4-3 Comet-Brown Catchment Water Quality Monitoring Sites 22
Table 4-4 Stream gauging site details 23
Table 5-1 Condamine-Balonne Physico-chemical Results Summary. 25
Table 5-2 Condamine-Balonne Surface Water Chemistry 26
Table 6-1 Water Quality in the Upper Dawson Catchment 34
Table 8-1 Associated Water Quality Parameters for Further Review 45
Table 8-2 Fairview Field Wellhead Water Quality -Parameters for Further Investigation 46
Table 8-3 Roma Field Wellhead Water Quality - Showing Parameters for Further Investigation 47
Table 9-1 Associated Water Quality Compared With Existing Environments. 58
Figures
In Text
Figure 6-1 Hutton Creek at Moonah Continuous EC and Relative Depth 35
Figure 6-2 Baffle Creek at Waterview - Turbidity 36
Figure 7-1 Water quality and flow sites Comet-Brown River catchment 39
Figure 7-2 DNRW continuous water quality data Comet-Brown river catchment 41
Figure 8-1 Roma Field - Associated Water Quality Distributions 49
Figure 8-2 Roma Field - Associated Water Quality Distributions (ctd) 50
Figure 8-3 Fairview Field - Associated Water Quality Distributions 51
Figure 8-4 Fairview Field - Associated Water Quality Distributions (ctd) 52
Figure 8-5 Fairview Field - Associated Water Quality Distributions (ctd) 53

Tables, Figures \& Appendices

Attached

Figure 1 Surface Water Catchment Areas and Water Quality Site Locations
Figure 2 Condamine-Balonne River Catchment Water Quality Sites and DNRW Monitoring Sites
Figure 3 Upper Dawson River Catchment Water Quality Sites and DNRW Monitoring Sites
Figure $4 \quad$ Comet River Catchment Water Quality Sites and DNRW Monitoring Sites
Figure 5 Condamine-Balonne River Catchment EC Concentrations
Figure $6 \quad$ Upper Dawson River Catchment EC Concentrations
Figure $7 \quad$ Springs on Dawson River
Figure 8 Comet River Catchment EC Concentrations

Appendices

A Condamine-Balonne Catchment Water Quality Data
B Upper Dawson Catchment Water Quality Data
C Comet-Brown Catchment Water Quality Data
D Calibration Certificates \& Records
E Full Statistics of Associated Water Quality - Fairview and Roma Fields

Executive Summary

This brief report reviews the water quality of streams and associated water in the catchments and well fields of the Gladstone Liquid Natural Gas (GLNG) project. The GLNG field is situated within the Condamine-Balonne, Upper Dawson and Comet-Brown catchments.

Environmental Values

The report identifies the environmental values and water quality objectives of the Condamine-Balonne, Upper Dawson and Comet-Brown rivers. Similar environmental values exist for all catchments as follows:

- Protection of slightly to moderately disturbed aquatic ecosystems.
- Primary Industries: irrigation, water for farm use (other than drinking water, such as in fruit packing or milking sheds), stock watering, and human consumption of wild or stocked fish or crustaceans.
- Recreation \& aesthetics: primary recreation (direct contact), secondary recreation (indirect contact), and visual appreciation (no contact).
- Industrial uses.
- Cultural and spiritual values: indigenous and non-indigenous cultural heritage.

In addition, the environmental value of raw drinking water supply for human consumption applies for the Condamine-Balonne (in the Balonne River only) and Comet-Brown catchments.

Regulatory Framework

The National Water Quality Management Strategy (ARMCANZ \& ANZECC, 1994) is implemented in Queensland through the EPP(Water). Scientific guidelines are available that provide trigger values for the protection of the above environmental values. The preferred order of application in Queensland, as outlined in the EEP(Water) are local guidelines, the Queensland Water Quality Guidelines, and the Australian Water Quality Guidelines ANZECC \& ARMCANZ (2000).

The EPP(Water) encourages the development of water quality objectives for a waterbody; that is the set of water quality guidelines that will protect all the identified environmental values. But water quality objectives must also take into account social, economic and current environmental condition factors, and involve a process of community consultation. Often the technical guideline trigger value may prove to be too conservative and economically unacceptable.

There are no officially endorsed water quality objectives developed for the catchments influenced by the GLNG field. Therefore in order to make a meaningful evaluation of the quality of associated water compared with the existing surface water quality across the GLNG field area, the available data is reviewed against the available technical guidelines for protection of each environmental value. Where several guidelines trigger values are available for one parameter, the minimum trigger value (MTV) has been adopted for comparison purposes.

Existing Surface Water Quality

The pre-CSG development surface water quality of the three catchments is evaluated using data from DNRW, supplemented by targeted and spatially dense samples taken during this study. Unverified QMDC catchment water quality data is used to assess the representativeness of project data. The data is compared with the MVT for each indicator, that is, the most conservative guideline value that protects all identified environmental values.

The review shows that:

Executive Summary

- The majority of waters sampled fall in the $6.5-8.5 \mathrm{pH}$ range, consistent with the protection of all environmental values. However, some pH readings around 9.0 were observed. These readings are slightly higher than recommended for recreation and drinking water supply, but are still consistent the protection of irrigation use.
- All systems are subject to significant dissolved oxygen sags which correspond with the high levels of chemical and biological oxygen demand measured. The observed DO levels are well below those recommended for recreation, drinking water supply or the maintenance of aquatic ecosystems.
- All catchments are subjected to a wide range of electrical conductivity (EC - a surrogate for salinity) over time and space. However, most streams typically have EC consistent with the recommended WQO (340 ${ }^{1} \mu \mathrm{~S} / \mathrm{cm}$).
- Sodium is normally found in the range $30-40 \mathrm{mg} / \mathrm{L}$ which is well below the trigger values for irrigation, recreation or drinking water supply. There is no trigger value for the protection of aquatic ecosystems.
- Chloride has a wider range in the Condamine-Balonne system ($1-40 \mathrm{mg} / \mathrm{L}$) compared with the Upper Dawson and Comet-Brown catchments ($10-20 \mathrm{mg} / \mathrm{L}$). All chloride concentrations are below the recommended trigger values for irrigation, recreation and raw water drinking water supply. There are no trigger values for stock watering or the protection of aquatic ecosystems.
- Fluoride concentrations are usually below the recommended trigger levels for stock, irrigation and drinking water supply. There are no trigger values for the protection of aquatic ecosystems or for recreation.
- Boron concentrations are predominantly below the recommended trigger levels for the protection of all environmental values (aquatic ecosystems, stock, irrigation, recreation and drinking water supply).
- Surface waters across all catchments are nutrient enriched (eutrophic) with concentrations of nitrogen, phosphorus and ammonia frequently higher than the guideline trigger values for protection of aquatic ecosystems.
- Turbidity and suspended solids concentration are frequently orders of magnitude above the recommended trigger values for the protection of aquatic ecosystems.
- At least 25% of all samples have copper concentrations higher than the relevant trigger value for the protection of aquatic ecosystems, but substantially lower than the trigger values for stock watering, irrigation, recreation and the taking of raw water for drinking water supply.
- Iron concentrations are often well above the recommended trigger levels for irrigation, recreation and the taking of raw water for drinking water supply.
- Zinc concentrations regularly exceed the trigger level for the protection of aquatic ecosystems across all catchments. The observed maximum concentration is below the trigger levels for stock watering, irrigation, recreational use and the taking of raw water for water supply.
${ }^{1}$ Note there is no guideline value for EC available for the Condamine-Balonne. The QWQG (2006) provides the $75^{\text {th }}$ percentile of EC $(325 \mu \mathrm{~S} / \mathrm{cm})$ in the Maranoa-Balonne-Border Rivers salinity zone which provides a suitable reference point.

Executive Summary

- Lead concentrations are above the trigger level for the protection of aquatic ecosystems in approximately 50% of samples. The maximum recorded lead concentration is well below the relevant trigger levels for stock watering, irrigation, recreational use and the taking of raw water for water supply.

In summary, the existing water quality of surface streams across the GLNG catchments is variable. Surface waters frequently do not meet the quality specified for the protection of aquatic ecosystems for a number of indicators such as salinity, DO, nutrients, copper, iron, zinc and lead. This suggests the published water quality guideline trigger values are overly conservative in these ephemeral stream networks.

Associated Water Quality

The quality of associated water from the Fairview and Roma well fields is similar at the two fields, but Roma water quality is typically more saline and contains higher chloride levels than Fairview water. Given the ephemeral nature of the streams the potential exists for flow to be comprised entirely of associated water. Therefore a comparison of associated water quality with the guideline trigger values is appropriate as a conservative measure.

Examination of associated water indicates that the existing fields have water with:

- High pH, low dissolved oxygen, low to moderate salinity.
- Moderately high temperature
- Elevated sodium, fluoride and boron concentrations.
- No hydrocarbons
- No coliforms.
- Low chloride concentrations at Fairview.
- Elevated chloride concentrations at Roma.
- Elevated ammonia concentrations (compared with Queensland guidelines but well below national guidelines).
- Elevated copper or zinc concentrations from some wells.
- Low phosphorus and iron concentrations from most wells.
- Low nutrients (with the exception of ammonia and phosphorus).

Comparison of Surface and Associated Water Quality

Surface water quality and associated water quality are contrasted in Section 9. It is concluded that the following key water quality parameters need to be addressed in assessing the risk of discharge to grade:

- Salinity (electrical conductivity)
- Sodium
- Chloride
- Fluoride

Executive Summary

- Boron

In addition, due care needs to be taken to manage pH , dissolved oxygen, suspended solids and temperature.
Existing surface water is of variable quality. Once potential discharge points are identified detailed water quality information of the existing environment will need to be captured in order to evaluate the impacts of associated water discharge. Discharging associated water will cause increased concentrations of some indicators such as EC, but may result in dilution of others such as iron and copper if there is water remaining in stream.

A wide variation in the quality of associated water from individual wells is identified and plotted within the report. It is concluded that it will be necessary to capture water quality data to establish the characteristics of the water from each well field before decisions can be made on discharge to grade or other means of water management. Water quality data is also of importance in deciding whether individual poor quality wells are separated from or mixed with discharges from other wells in a field.

1.1 Background

Santos Ltd (Santos) is proposing to expand and commercialise its existing coal seam gas (CSG) operations in central Queensland. The development will include expansion of the field areas in the Arcadia, Comet Ridge, Fairview and Roma region. Liquefied Natural Gas (LNG) will be transported to an export facility at Gladstone via a 425 km gas transmission corridor. The export facility will initially be constructed to produce three to four million tonnes per annum (Mtpa) of LNG, with the potential for future expansion to a nominal 10 Mtpa . An Environmental Impact Statement (EIS) is being undertaken to assess the feasibility of the LNG project from an environmental, social and economic perspective

In order to extract CSG it is necessary to extract significant amounts of groundwater from each production bore. Production of groundwater, termed associated water, increases during the initial stages of extraction. As the amount of water held within the coal seam fractures decreases, the production of gas increases and associated water production declines over time. The volume of associated water produce varies between wells and across the different regions.

Appropriate management of the associated water is paramount for the GLNG Project. . Santos is considering a variety of water management options including discharge to grade, evaporation, stock watering, treatment, injection, irrigation and beneficial use. This report focuses on the discharge of associated water to grade, providing an overview of the existing surface water quality within the catchments and the quality of associated water.

1.1 Study Area

The proposed field development area consists of a number of regions in central Queensland: Roma, Fairview, Arcadia Valley, Denison, Comet and Mahalo. These areas are defined by either Production Licences (PL) or Authorities to Prospect (ATPs) and are situated within three different surface water catchments. In order to provide an assessment of surface water environments it is necessary to consider catchments as a whole. This report therefore makes reference to three catchments; the Condamine-Balonne Catchment, Upper Dawson Catchment, and Comet-Brown Catchment.

The following provides an overview of each catchment. Figure 1 (attached) shows the extent of each catchment and the proposed LNG field development area.

1.2 Catchment Overview

1.2.1 Condamine-Balonne

The Roma field area is situated within the Condamine-Balonne catchment (Figure 2, attached). Roma is the main township in the area, situated on Bungil Creek. The catchment contains extensive, meandering streams that are largely ephemeral or intermittent. The topography is primarily flat with wide alluvial floodplains. Streams have long periods of low to zero flows, forming a series of disconnected waterholes.

Major streams within the subcatchment include Bungil Creek, Wallumbilla Creek, Yuleba Creek and minor tributaries. Bungil Creek flows roughly north to south. Wallumbilla and Yuleba Creeks flow to the southsouthwest. Another principal stream, Bungeworgorai Creek, is located in the western portion of proposed Roma field and flows in a south-westerly direction discharging into Bungil Creek. The three main creeks discharge to the Balonne River which in turn flows to the Murray Darling Basin, hence all creeks fall within the MDB and are subject to inter-governmental agreements and actions such as the Basin Salinity Management Strategy.

Introduction

Section 1

Waters within the catchment generally exhibit high turbidity levels, likely associated with the nature of local soils but exacerbated by increased removal of native vegetation and cattle grazing in the central reaches. Total phosphorous (TP) has been found to be extremely high in the middle catchment. Salinity levels are generally low, though they increase in the upper catchment where soils have a naturally high salt content (Australian Natural Resources Atlas, November 2007).

During a field visit in January 2008 extensive evidence of flooding was observed, with debris noted well above the bank-full level in the major streamlines. The major streams were flowing in January 2008, however smaller tributaries to the northeast of Roma (e.g. Coxon Creek) were essentially dry. All streams had ceased to flow when subsequent field trips (March and May 2008) were undertaken. Pond habitats of varying size were present in many of the larger streamlines, though some sites on Bungil Creek were dry.

Evidence of cattle access is widespread cross the catchment, with banks frequently showing signs of erosion. Streambed substrate varied from sandstone/mudstone bedrock in Coxon Creek and surrounding streams, to predominantly sand in the lower reaches and larger streams. The major streams are deep and wide in sections, with many of the tributaries incised.

There are limited CSG pilot and producing wells currently operating in the Roma field area. Associated water is captured in holding dams, with no releases to grade.

1.2.2 Upper Dawson River

The Fairview project area lies within the Upper Dawson River catchment that extends upstream and westwards from Taroom, encompassing the townships of Injune and Wandoan (Figure 3, attached). The catchment contains extensive but largely ephemeral or intermittent stream networks. Major streams in the area are the Dawson River, Hutton Creek, Baffle Creek, Juandah Creek, Eurombah Creek, Commissioner Creek and Broken Creek. The Dawson River is spring fed along a reach from the outflow of Hutton Creek to Yebna Crossing.

During field visits undertaken in January through April 2008 the Dawson River was observed to be flowing at several locations upstream from Taroom. Major tributaries had generally ceased to flow by March 2008 and were either dry or contained minor ponds. In January 2008 extensive evidence of flooding was observed, with debris noted well above the bank-full level in the major streamlines and extensive erosion of roadways.

Coal Seam Gas (CSG) production at Fairview has occurred since at least 1993 initially under the control of the Tri-Star Petroleum Company (1993 to 2002), then Tipperary Oil and Gas (Australia) Pty Ltd. (TOGA, 2002 to 2005). In September (June) 2005 TOGA was purchased by Santos Ltd.

Discharge of associated water to grade has occurred throughout this period into small, often intermittent, streamlines or gullies that then discharge to Baffle Creek, the Dawson River or Hutton Creek. Santos captures associated water with salinity greater than $3,500 \mu \mathrm{~S} / \mathrm{cm}$ and this is used for plant works or disposes via injection into the basement Timbury Hills Formation.

1.2.3 Comet-Brown River

The Arcadia Valley, Denison, Comet and Mahalo field areas lie within the Comet-Brown Catchment (Figure 4, attached), extending from east of the Carnarvon Ranges northwards to Emerald. The Comet-Brown catchment is part of the larger Fitzroy Basin, which comprises almost 10\% of the agriculturally productive land in Queensland. The primary river within the basin, the Fitzroy River, discharges into the marine environment at the southern end of the Great Barrier Reef, near the major urban centre of Rockhampton.

The primary land uses in the catchment include grazing and cropping. The catchment contains extensive but largely ephemeral or intermittent stream networks with summer rainfall dominant. The major stream in the GLNG field area is the Brown River, which becomes Comet River in the vicinity of Rolleston, flowing north and discharging to the McKenzie River. Major tributaries enter the Comet-Brown River from the east and west. The only township in the Arcadia Valley, Rolleston, is situated on the Comet River.

With the exception of Carnarvon Creek all streams had ceased to flow by March 2008, with minimal ponding observed at some locations and vegetation present in many of the dry streambeds. Carnarvon Creek continued to flow in April 2008.

Comet and Brown Rivers and their tributaries have a catchment area of approximately $17,295 \mathrm{~km}^{2}$, with stream lengths totally approximately $4,821 \mathrm{~km}$ (Henderson, 2000). Basin flow is mostly from south to north and is largely ephemeral.

2.1 Overview

Environmental values are broadly defined in the Environment Protection (Water) Policy 1997 (EPP(Water)) as maintaining water quality suitable for the biological integrity of an aquatic ecosystem (modified or pristine); recreational use; minimal treatment before supply as drinking water; agricultural use; and industrial use. Queensland EPA (2005) provides further clarity on the definition of environmental values based on the EPP (Water) and National Water Quality Management Strategy (NWQMS) to include:

- Protection of aquatic ecosystems: ranging from high conservation value aquatic ecosystems, slightly to moderately disturbed aquatic ecosystems, and highly disturbed aquatic ecosystems systems.
- Primary Industries: irrigation, water for farm use (other than drinking water, such as in fruit packing or milking sheds), stock watering, and human consumption of wild or stocked fish or crustaceans.
- Recreation \& aesthetics: primary recreation (direct contact), secondary recreation (indirect contact), and visual appreciation (no contact).
- Drinking Water: raw drinking water supply.
- Industrial uses: includes power generation, manufacturing plants.
- Cultural and spiritual values: indigenous and non-indigenous cultural heritage.

The EPP(Water) Schedule 1 prescribes environmental values for specific water bodies in Queensland, however none of the catchments in the vicinity of the GLNG project are listed. Since similar land uses exist within each catchment it is expected that the same environmental values will apply to all streams within a catchment. The relevance of each of the above environmental values to these streams is therefore considered at the catchment scale.

Table 2-1 summarises the environmental values applicable in each catchment, discussed further in Sections 2.2 to 2.4.

Table 2-1 Catchment Environmental Values

Environmental Value	Catchment		
	Condamine- Balonne	Upper Dawson	Comet-Brown
Protection of aquatic ecosystems (slightly to moderately disturbed)	\checkmark	\checkmark	\checkmark
Primary Industries	\checkmark	\checkmark	\checkmark
Recreation \& aesthetics	\checkmark	\checkmark^{1}	\checkmark
Raw drinking water supply			\checkmark
Industrial uses	\checkmark	\checkmark	\checkmark
Cultural and spiritual values	\checkmark	\checkmark	\checkmark

NOTE: ${ }^{1}$ not including secondary contact

Environmental Values

2.2 Condamine-Balonne

Protection of aquatic ecosystems is applicable to all stream lengths within the proposed development area. The waterways of the Condamine-Balonne River catchment are considered predominantly to consist of slightly to moderately disturbed ecosystems, as "systems that have undergone some changes, with aquatic biological diversity affected to some degree but the natural communities are still largely intact and functioning" (EPA, 2005).

Weirs and dams along the Balonne River are used for primary and secondary recreation purposes such as swimming and fishing. It is possible that water holes along the Bungil Creek are also utilised for local recreational purposes. The use of the waterways for 'visual recreation' purposes must also be considered, particularly in the less disturbed regions of the upper Bungil Creek.

The towns of Roma and Mitchell draw drinking water from the artesian groundwater basin. However Surat takes drinking water from the Balonne River, as do towns situated further downstream. On this basis the environmental value of drinking water must be protected at and downstream of Surat, but is not considered relevant to upstream Bungil Creek, Wallumbilla Creek and Yuleba Creek.

The Roma area is extensively used for cattle grazing, and across the catchment there is evidence of stock access to streams. It is likely that water is taken from the waterways for stock and farming purposes, evident by observation of a dam on the Bungil Creek downstream of Roma.

The Roma field area falls within the Condamine Balonne Tributaries Zone 2 Water Management Area. Water allocations in the Tributaries Water Management Area including from Bungil Creek, Bungeworgorai Creek and Yuleba Creek are listed for the purposes of any' (DNRW, 2007). This includes agriculture, irrigation and industrial water use.

2.3 Upper Dawson River

Protection of aquatic ecosystems is applicable to all stream lengths within the proposed development area. The waterways of the upper Dawson River catchment are considered predominantly to consist of "slightly to moderately disturbed ecosystems" based on the State of the River Report for the region (Telfer, 2005). These are "systems that have undergone some changes, with aquatic biological diversity affected to some degree but the natural communities are still largely intact and functioning".

Water allocations under the Dawson Valley Water Supply Scheme are primarily for the purposes of 'agriculture' or 'any' (DNRM, 2006). Significant allocations are made along the Dawson River from approximately 20 km downstream of Taroom to the Fitzroy River junction, though some licences are used upstream particularly on Juandah Creek. Taroom is approximately 90 km downstream from Fairview. Allocations are for stock watering, irrigation and industrial water use. Between the Hutton Creek Junction and Fairview it is evident from river health surveys (EnviroTest various, Simmonds and Bristow, 2007 \& 2008) that stock access waterways in this area from time to time. However, stock access to the Dawson River is generally limited due to steep banks.

Fishing is a widespread recreational activity along the Dawson River including upstream of Yebna Crossing only 12 km downstream of Fairview (Mr Radel pers. comm.). Other recreational activities such as swimming are possible but realistically only along the Dawson River downstream of Yebna Station. Access along the Dawson River is restricted due to steep banks and limited road crossings. Swimming is probably occasional and intermittent. At Taroom, treated groundwater supplies are used to maintain the local swimming pool. Without specific evidence of swimming, primary contact recreation has not been identified as an environmental value.

Environmental Values

Along the Dawson River downstream of Taroom, the Glebe Weir is utilised for primary recreation (such as swimming) and secondary recreation purposes (such as canoeing and fishing) (Taroom Shire Council pers. comm.). It is possible that other waterholes upstream and downstream along the Dawson River are also used for local recreational purposes. The aesthetics of the waterways are of relevance with parts of the region considered to be of "inherent natural beauty" (Telfer, 1995).

The towns of Taroom and Injune draw drinking water from an artesian groundwater supply. Water from the Dawson River is used in the urban setting for irrigation of schools and sports fields only. It is understood that residential properties within the catchment but outside of the townships utilise rainwater or borewater for drinking purposes (Taroom Shire Council pers. comm.). On this basis the environmental value of drinking water is not considered to apply to the upper Dawson catchment. Whilst the possibility exists that local properties not connected to water supply will draw water from the river under riparian rights for personal use this is considered unlikely.

2.4 Comet-Brown Catchment

Along the Comet River a number of dams and the Comet Weir provide water primarily for irrigation purposes. Water allocations from the Nogoa-McKenzie Supply Scheme downstream of the Comet River are predominantly for 'agricultural' or 'other' purposes (Fitzroy Basin Resource Operations Plan, April 2006).

The town of Rolleston utilises water from the Comet River for drinking purposes. Water is harvested approximately once per year based on rainfall events, stored in ring tanks and treated. Groundwater is also used to supplement the drinking water supply (Bauhinia Shire Council pers. comm.).

Regions of the Brown and Comet River catchment, particularly in the western portion have been identified as 'scenic rural settings', with the potential for activities such as swimming and fishing to be realised (Henderson, 2002).

Based on the above identified uses of the rivers and tributaries all environmental values are considered applicable in the Comet and Brown River catchment area.

Water Quality Guidelines

3.1 Regulatory Framework

The National Water Quality Management Strategy (ARMCANZ \& ANZECC, 1994) is implemented in Queensland through the EPP(Water). The EPP(Water) outlines the relevant water quality guidelines for Queensland in order of preference:

- Locally derived guideline values;
- Queensland Water Quality Guidelines (QWQG) which provide guideline values tailored to Queensland regions and water types and were published in 2006 (updated March 2007); or
- Where the QWQG or local guidelines are not available, the default guidelines are the Australian Water Quality Guidelines (AWQG) published by ANZECC \& ARMCANZ (2000).

Under the EPP(Water), Water Quality Objectives (WQOs) are the set of water quality guidelines that will protect all of the identified environmental values for an area. The EPP(Water) specifies WQOs for some water bodies throughout Queensland (Schedule 1). The water bodies within the proposed GLNG field development area are not listed therefore the WQOs are the minimum set of water quality parameter guideline values that will ensure each of the identified environmental values is maintained. However, the derivation of WQOs must also take into account social, economic and current condition factors. In many instances the technical guideline value may prove to be technically and economically unacceptable. Queensland EPA provides guidance on establishing draft WQOs for a waterway (QLD, 2005).

There have been no officially endorsed WQOs developed for the catchments influenced by the GLNG field development. For the purposes of evaluating and comparing the existing surface water quality and the predicted quality of associated water the appropriate guideline trigger values have been used as a point of comparison. Where several trigger values are available to protect different environmental values the most conservative, or minimum trigger value (MTV), has been adopted.

3.2 Water Regions and Types

The QWQG specifies guideline values for a range of indicators for the Central Coast region, which encompasses the Upper Dawson and Comet-Brown catchments. The Condamine-Balonne catchment falls within the Murray Darling region. There is considered to be insufficient data available in the Murray-Darling region for appropriate reference values to be derived, therefore the QWQG default to the AWQG for all parameters.

The QWQG defines fresh waterways as either:

- Upland stream: small (first, second and third order) upland streams (surrogate $=$ altitude $>250 \mathrm{~m}$): moderate-to-fast flowing due to steep gradients, substrate usually cobbles and bedrock, sometimes gravel, rarely sand or mud; or
- Lowland stream: larger (third, fourth and fifth order), slow-flowing and meandering streams and rivers, gradient very slight, substrates sometimes cobble and gravel but more often sand, silt or mud.

The AWQG defines all waters $>150 \mathrm{~m}$ elevation as upland waters. However, the predominant characteristics of streams across all catchments are in line with the definition of lowland freshwater waterways. On this basis the guideline values applicable to lowland streams have been adopted for the region.

Water Quality Guidelines

3.3 Relevant Water Quality Guidelines

QWQG provides guideline trigger values for the protection of aquatic ecosystems for the Central Queensland Region. The AWQG provide trigger values for water used for stock watering, primary and secondary contact recreation, and irrigation, It is noted that while the QWQG and AWQG refer to drinking water as an environmental value, the specified guidelines are the Australian Drinking Water Guidelines 2004 (ADWG). The ADWG applies at the point of water consumption, and does not provide guidelines for untreated catchment surface water quality. These guidelines are therefore extremely conservative and should be applied with caution.

Based on the environmental values identified in Section 2, and an examination of the QWQG and AWQG the relevant set of water quality guideline trigger values has been identified for the waters of each catchment. These are shown in Table 3-2 (Condamine-Balonne), Table 3-4 (Upper Dawson), and Table 3-6 (Comet-Brown) below.

The QWQG also establish a framework for deriving and applying local guidelines for Queensland waters. Development of local guideline values is important as they reflect existing local conditions which may vary substantially from broader guidelines developed at the regional scale. Local guidelines can therefore take into account natural and anthropogenic influences on water quality and flow that would not otherwise be recognised.

The preferred means of establishing local water quality guidelines is to establish reference condition (. background condition, most commonly subject to minimal disturbance, but may be modified from natural condition) immediately upstream of an activity, or in the immediate region. Guidelines for reference condition must be derived from a minimum of at least 18 samples from one or more reference sites (QWQG, 2006).

Given the large extent of the GLNG field area and variability in water quality across the catchments, local water quality guidelines have not been developed for this report. Once the location of proposed associated water discharges have been clarified suitable reference sites can be identified and local guidelines derived for relevant indicators where sufficient data is available.

The following outlines for each catchment the identified guideline trigger values based on the environmental values identified for each catchment.

3.3.1 Condamine-Balonne

There is minimal local water quality information across the Condamine-Balonne Catchment. However, sufficient spot water quality data is available to establish local guideline values at two sites within the study area, as shown in Table 3-1. Twentieth and $80^{\text {th }}$ percentile values of water quality data from Bungil Creek at Tabers are shown in Table 3-4 for comparison with the WQOs and guidelines. Cells are shaded where local data exceeds WQOs and guidelines.

Table 3-1 Spot water quality data sufficient to establish local guidelines

Sampling Site	Water Quality Parameter
Bungil Ck at Tabers ${ }^{1}$	EC, DO, pH, Turbidity, Temperature, TSS, TN, TP, calcium, chloride, fluoride, sodium, sulphate, boron, copper, iron
Yuleba Creek at Forestry ${ }^{2}$	Temperature, boron, TP, calcium, chloride, fluoride, magnesium, potassium, sodium, sulphate, alkalinity
Note: 1 URS and DNR data 2 DNR data	

Water Quality Guidelines

Only temperature falls within the range of the MTV. The local data suggests that WQOs should be relaxed for the rest of the parameters.

Water Quality Guidelines
Section 3
Table 3-2 MTVs for major streams in the Balonne-Condamine catchment

WQ PARAMETER	Units	$\begin{gathered} \text { QWQG } \\ 2006 \end{gathered}$	ANZECC 2000					Drinking Water ${ }^{\text {c }}$	MTV ${ }^{\text {d }}$	Local Data*	
			Aquatic Ecosystems ${ }^{\text {a }}$		Stockwater	Irrigation ${ }^{\text {b }}$	Recreation				
			Lowland	Upland						20\%ile	80\%ile
Electrical Conductivity (at $25^{\circ} \mathrm{C}$)	$\mu \mathrm{S} / \mathrm{cm}$	$325^{\text {e }}$	125-2200	30-350	-	$<650{ }^{\text {f }}$	-	-	325	120.8	659.2
Dissolved Oxygen	\% sat	-	85-110	90-110	-	-	>80	> 85\%	85-110	55	110
pH	Stand.	-	6.5-8.0	6.5-7.5	-	6-9	6.5-8.5	6.5-8.5	6.5-8.0	7.5	8.2
Temperature	${ }^{\circ} \mathrm{C}$	-	20\%ile-80\%ile		-	-	15-35	-	20\%ile-80\%ile ${ }^{\text {1 }}$	17	25.24
Turbidity	NTU	-	6-50	2-25	-	-	-	5	50	19.1	323.8
Total dissolved solids	mg/L	-		-	4000g	-	1000	$500^{\text {h }}$	500		
Total suspended solids	mg/L	-	-	-	-	-	1000	-	10	17.6	466.4
Ammonia (as N)	ug/L	-	900				10	500	10		
Ammonium (NH^{4+})	$\mu \mathrm{g} / \mathrm{L}$	-	20	10	-	-	-	-	20		
Chlorophyll-a	$\mu \mathrm{g} / \mathrm{L}$	-	5	na	-	-	-	-	5		
Nitrate	ug/L	-	700		400	-	-	50°	50		
Oxidised nitrogen (NOx)	$\mu \mathrm{g} / \mathrm{L}$	-	40	15					40		
Total nitrogen	$\mu \mathrm{g} / \mathrm{L}$	-	500	250	-	5000	-	-	500	620	1723
Total phosphorous	$\mu \mathrm{g} / \mathrm{L}$	-	50	30	-	50	-	-	50	45	422
Calcium	mg/L	-			1000	-	-		1000	8.9	55
Chloride	mg/L	-			-	$175^{\text {f }}$	400	$250{ }^{\text {i }}$	175	5	43
Fluoride	mg/L	-			2	1	-	1.5	1	0.05	0.2
Sodium	mg/L	-				115	300	180	$115^{\text {i }}$	10.4	64.7
Sulphate	mg/L	-			1000		400	500	400	2.0	82.1
Aluminium	ug/L	-			5000	5000	200	200	$55^{\text {i }}$		
Arsenic	$\mu \mathrm{g} / \mathrm{L}$	-			500	100	50	7	7		
Boron	$\mu \mathrm{g} / \mathrm{L}$	-			5000	500	1000	4000	370	24	100

Water Quality Guidelines
Section 3

WQ PARAMETER	Units	$\begin{gathered} \text { QWQG } \\ 2006 \end{gathered}$	ANZECC 2000					Drinking Water ${ }^{\text {c }}$	MTV ${ }^{\text {d }}$	Local Data*	
			Aquatic Ecosystems ${ }^{\text {a }}$		Stockwater	Irrigation ${ }^{\text {b }}$	Recreation				
			Lowland	Upland						20\%ile	80\%ile
Cadmium	$\mu \mathrm{g} / \mathrm{L}$	-	0.2		10	10	5	2	0.2		
Chromium (VI)	$\mu \mathrm{g} / \mathrm{L}$	-	1		1000	100	50	50 (CrVI)	1		
Copper	$\mu \mathrm{g} / \mathrm{L}$	-	1.4		1000	200	1000	2000	1.4	2	10
Iron	$\mu \mathrm{g} / \mathrm{L}$	-	-			200	300	300	200	152	932
Lead	$\mu \mathrm{g} / \mathrm{L}$	-	3.4		100	2000	50	10	3.4		
Mercury	$\mu \mathrm{g} / \mathrm{L}$	-	0.6		2	2	1	1	0.6		
Nickel	$\mu \mathrm{g} / \mathrm{L}$	-	11		1000	200	100	20	11		
Zinc	$\mu \mathrm{g} / \mathrm{L}$	-	8		20000	2000	5000	3000	$8{ }^{\text {i }}$		

NOTES
a Trigger values for protection of 95\% of freshwater aquatic ecosystems
b Values for long term irrigation trigger chosen at most conservative
c National Water Quality Management Strategy, Australian Drinking Water Guidelines 6, 2004
d MTV - minimum trigger value
e No guideline specified in QWQG, but Appendix G identifies the $75^{\text {th }}$ percentile of EC in relevant salinity zone (Maranoa-BalonneBorder rivers) as a suitable point of comparison.
f Sensitive crops
g Suitable for beef cattle and horses
n/a Not available
h Drinking water aesthetics: $<500 \mathrm{mg} / \mathrm{L}$ regarded as good drinking water based on taste, $500-1000 \mathrm{mg} / \mathrm{L}$ acceptable based on taste, $>1000 \mathrm{mg} / \mathrm{L}$ may be associated with excessive scaling, corrosion and unsatisfactory taste.
i Aesthetic value
j Drinking water guideline value will protect bottle-fed infants under 3 months from methaemoglobinaemia. Adults and children over 3 months can safely drink water with up to $100 \mathrm{mg} / \mathrm{L}$ nitrate.
k AsIII/AsV respectively
I The QWQG recommend temperature guidelines for protection of aquatic ecosystems such that median discharge temperature lies within the 20th and 80th percentiles of observed temperature variation. Significant diel and seasonal variation in temperature are evident within river systems. Ensuring an appropriate data set from which to identify these percentiles is problematic since samples are often collected in particular seasons and during daylight hours. Continuous records of temperature are available from Bungil creek at Tabers.
Most conservative guideline trigger values to satisfy all environmental values
Relevant water quality objectives for streams in the Condamine-Balonne River Catchment
\# Based on analysis of data from Bungil Creek at Tabers. DO in mg / L converted to $\%$ saturation assuming observed temperatures for samples with DO similar to percentiles. It is also assumed that the stream is at sea level.

Water Quality Guidelines

3.3.2 Upper Dawson River

Sufficient spot water quality data is available from the Upper Dawson catchment to establish local guideline values at the sites shown in Table 3-1. Twentieth and $80^{\text {th }}$ percentile values of water quality data from Dawson River at Utopia Downs are shown in Table 3-4 for comparison with the published guidelines. Cells are shaded where local data exceeds the published guidelines.

Table 3-3 Spot water quality data sufficient to establish local guidelines

Sampling Site	Water Quality Parameter
Upper Baffle Creek ${ }^{1}$	Temp, EC, TDS
Lower Baffle Creek ${ }^{2}$	Temp, EC, TDS
Dawson R d/s Baffle Ck^{2}	Temp, EC, TDS
Dawson R at Yebna Crossing ${ }^{2}$	Temp, EC, TDS
Dawson R at Utopia Downs ${ }^{2}$	Temp, pH, DO, EC, TDS, TSS, Na, K, Mg, Ca, $\mathrm{HCO}_{3}, \mathrm{Cl}, \mathrm{F}, \mathrm{SO}_{4}, \mathrm{TN}, \mathrm{TP}, \mathrm{NH}_{4}, \mathrm{NO}_{3}, \mathrm{~B}, \mathrm{Cu}$
Dawson R at Taroom ${ }^{2}$	Temp, EC, TDS
$\begin{array}{ll}\text { Note: } & { }^{1} \text { upstream of associated water discharges } \\ & { }^{2} \text { downstream of associated water discharges }\end{array}$	

It should be noted that while the site Dawson River at Utopia Downs (1964-2007) has the most significant set of spot sample water quality data, it also lies downstream of existing associated water discharges. The data from this site were therefore examined for differences in median water quality parameter values before and after associated water discharges commenced using two sided Mann-Whitney U tests at 95% significance. The only water quality parameter with a significant increase in median concentration was Boron. Other parameters with significant shifts in median values were EC, TDS, Ca, Mg, Alkalinity, Cl and SO_{4}. All these parameters exhibit a reduction in concentration pre to post associated water discharges.

The data from Dawson River at Utopia Downs was therefore used to derive $20^{\text {th }}$ and $80^{\text {th }}$ percentile water quality values for comparison with the guideline based water quality objectives (Table 3-4). The local data suggests that WQOs should be relaxed for nutrients, turbidity and suspended solids.

Water Quality Guidelines
Section 3
Table 3-4 MTVs for major streams in the Upper Dawson River catchment

$\begin{gathered} \text { WQ } \\ \text { PARAMETER } \end{gathered}$	UNITS	QWQG 2006 ${ }^{\text {a }}$		ANZECC GUIDELINES 2000				MTV	Local Data ${ }^{\#}$	
		Lowland	Upland	Aquatic Ecosystems ${ }^{\text {b }}$	StockWater	Irrigation ${ }^{\text {c }}$	Recreation		20\%ile	80\%ile
Temperature*	${ }^{\circ} \mathrm{C}$	20\%ile-80\%ile	20\%ile-80\%ile	NA	NA	NA	15-35	**	14.7	26.1
pH	units	6.5-8.0	6.5-7.5	NA	NA	6-9	6.5-8.5	6.5-8.0	7.56	8.1
Electrical Conductivity (at $25^{\circ} \mathrm{C}$)	$\mu \mathrm{S} / \mathrm{cm}$	$340{ }^{\text {d }}$	$340{ }^{\text {d }}$	NA	NA	$<650{ }^{\text {e }}$	NA	$340^{\text {a }}$	223	330
Dissolved Oxygen	\% Sat.	85-110	90-110	NA	NA	NA	>80	85-110	72	86
Total dissolved solids	mg/L	-	-	-	$4000{ }^{\text {f }}$	-	1000	1000	131	189
Total suspended solids	mg / L	10	-	NA	NA	NA	1000	10	9	124
Turbidity	NTU	50	25	NA	NA	NA	NA	50	7.0	100
Sodium	mg / L	-	-			$<115^{\text {e }}$	300	<115	24	38.1
Potassium	mg / L							-	3.3	4.7
Calcium	mg / L	-	-		1000	-	-	1000	13.0	21.0
Magnesium	mg / L							-	4.48	8
Alkalinity HCO_{3}	mg / L							-	104	153
Chloride	mg / L	-	-	-	-	$<175^{\text {e }}$	400	<175	18.0	32
Fluoride	mg / L	-	-		2^{9}	1		1	0.1	0.16
Sulphate	mg / L	-	-		<1000		400	400	1	3.2
Total nitrogen	$\mu \mathrm{g} / \mathrm{L}$	500	250	NA	NA	5000	NA	500	118	795.8
Total phosphorous	$\mu \mathrm{g} / \mathrm{L}$	50	30	NA	NA	50	NA	50	21.7	146
Ammonia	$\mu \mathrm{g} / \mathrm{L}$	20^{2}	10	900	NA	NA	NA	20	8	37.3
Oxidised nitrogen (NOx)	$\mu \mathrm{g} / \mathrm{L}$	60	15	NA	400,000 ${ }^{\text {k }}$	NA	NA	60	138	524

 national guideline triggers for ammonia- N and ammonium ion concentrations.

Water Quality Guidelines
Section 3

WQ PARAMETER	UNITS	QWQG 2006 ${ }^{\text {a }}$		ANZECC GUIDELINES 2000				MTV	Local Data ${ }^{\#}$	
		Lowland	Upland	Aquatic Ecosystems ${ }^{\text {b }}$	StockWater	Irrigation ${ }^{\text {c }}$	Recreation		20\%ile	80\%ile
Boron	$\mu \mathrm{g} / \mathrm{L}$	-	-	370	$5000^{\text {i }}$	500	1000	370	20	100
Copper	$\mu \mathrm{g} / \mathrm{L}$	-	-	1.4	$1000{ }^{\text {g }}$	200	1000	1.4	0.02	0.05
Chlorophyll-a	$\mu \mathrm{g} / \mathrm{L}$	5	n/a	NA	NA	NA	NA	5		
Arsenic	$\mu \mathrm{g} / \mathrm{L}$	-	-	24/13 ${ }^{\text {j }}$	500^{9}	100	50	24/13	-	-
Cadmium	$\mu \mathrm{g} / \mathrm{L}$	-	-	0.2	10^{9}	10	5	0.2	-	-
Chromium	$\mu \mathrm{g} / \mathrm{L}$	-	-	1.0 (CrVI)	$1000{ }^{\text {g }}$	100	50	50	-	-
Iron	$\mu \mathrm{g} / \mathrm{L}$	-	-	300 (interim)	-	200	300	200	-	-
Lead	$\mu \mathrm{g} / \mathrm{L}$	-	-	3.4	100^{9}	2000	50	3.4	-	-
Mercury	$\mu \mathrm{g} / \mathrm{L}$	-	-	0.6	$2^{\text {h }}$	2	1	0.6	-	-
Nickel	$\mu \mathrm{g} / \mathrm{L}$	-	-	11	$1000{ }^{\text {g }}$	200	100	11	-	-
Zinc	$\mu \mathrm{g} / \mathrm{L}$	-	-	8	<20000	2000	5000	8	-	-

NOTES a $\begin{aligned} & \text { Guideline trigger values for protection of aquatic ecosystems (Central } \\ & \text { Coast Region) }\end{aligned}$ Coast Region)
b Values for 95\% protection of aquatic ecosystems
c Values for long term irrigation trigger chosen as most conservative
k For nitrate
d $75^{\text {th }}$ percentile of EC in relevant salinity zone (Fitzroy Central). Source
NA indicates not applicable as QWQG take precedence QWQG (2006)
e For sensitive crops
f Suitable for beef cattle and horses
These cells are the most conservative parameter values to satisfy all environmental values
g May be hazardous to animal health if exceeded
These cells are the relevant water quality objectives for streams in the Upper Dawson River catchment.
h Mercury may accumulate in edible animal tissues $>2 \mu \mathrm{~g} / \mathrm{L}$ and may
therefore pose a human health risk
n/a Not available
^ MTV - minimum trigger value
i Higher concentrations of Boron ($>5000 \mu \mathrm{~g} / \mathrm{L}$) may be tolerated for short periods of time.
\# Based on analysis of data from Dawson R at Utopia (1964-2007) DO in mg/L converted to \% saturation assuming observed temperatures for samples with DO similar to percentiles

* The QWQG recommends setting temperature guidelines for protection of aquatic ecosystems so that median discharge temperature lies within the 20th and 80th percentiles of observed temperature variations. Significant diel and seasonal variation in temperature are evident within river systems. Ensuring an appropriate data set from which to identify these percentiles is problematic since samples are often collected in particular seasons and during daylight hours.

Water Quality Guidelines

Section 3

3.3.3 Comet-Brown Catchment

Sufficient spot water quality data is available in the Comet-Brown Catchment to establish local guideline values at the sites shown in Table 3-5. Twentieth and eightieth percentile values of water quality data from Comet River at Comet Weir are shown in Table 3-6 for comparison with the WQOs and guidelines. Cells are shaded where local data exceeds WQOs and guidelines (see footnote on page 12 regarding adopted Ammonia - N trigger values).

Table 3-5 Spot water quality data sufficient to establish local guidelines

Sampling Site	Water Quality Parameter
Comet River at Comet Weir*	EC, DO, pH, Turbidity, Temp
Comet River d/s Rolleston	EC, DO, pH, Turbidity, Temp
Meteor Creek	Temp
Planet Creek	Temp
Brown Creek	EC, Temp
Carnarvon Creek at Ingelara	EC, pH, Temp

Note: * URS and DNR Data
EC, temperature and pH levels are all within the MTVs. The local data suggests that WQOs should be relaxed for dissolved oxygen and turbidity.

Water Quality Guidelines
Section 3
Table 3-6 MTVs for major streams in the Brown \& Comet River catchment

WQ Parameter	Units	QWQG 2006 ${ }^{\text {a }}$		ANZECC GUIDELINES 2000				Drinking Water	MTV	Local Data ${ }^{\text {\# }}$	
		Lowland	Upland	$\begin{gathered} \text { Aquatic } \\ \text { Ecosystems } \end{gathered}$	Stockwater	Irrigation ${ }^{\text {c }}$	Recreation			20\%ile	80\%ile
Electrical conductivity (at $25^{\circ} \mathrm{C}$)	$\mu \mathrm{g} / \mathrm{L}$	$340{ }^{\text {d }}$	$340^{\text {d }}$	NA	NA	$<650{ }^{\text {e }}$	NA	NA	340	121	253
Dissolved Oxygen	\% Sat	85-110	90-110	NA	NA	NA	>80	$>85^{\circ}$	85-110	55	100
pH	units.	6.5-8.0	6.5-7.5	NA	NA	6-9	6.5-8.5	6.5-8.5 ${ }^{\circ}$	6.5-8.0	6.96	7.8
Temperature	${ }^{\circ} \mathrm{C}$	20\%ile-80\%ile	20\%ile-80\%ile	NA	NA	NA	15-35	NA	**	20.12	28.78
Turbidity	NTU	50	25	NA	NA	NA	NA	5°	50	75.8	1618
Total dissolved solids	mg/L	-	-	-	$400{ }^{\text {f }}$	-	1000	$<500{ }^{\text {m/o }}$	<500		
Total suspended solids	mg/L	10	-	NA	NA	NA	1000	NA	10		
Ammonia (as N)	$\mu \mathrm{g} / \mathrm{L}$	20	10	900	NA	NA	NA	500	20		
Chlorophyll-a	$\mu \mathrm{g} / \mathrm{L}$	5	n/a	NA	NA	NA	NA	NA	5		
Nitrate	mg/L	-	-	-	400	-	-	$50^{\text {n/0 }}$	50		
Oxidised nitrogen (NOx)	$\mu \mathrm{g} / \mathrm{L}$	60	15	NA	400,000 ${ }^{\text {k }}$	NA	NA	NA	60		
Total nitrogen	$\mu \mathrm{g} / \mathrm{L}$	500	250	NA	NA	5000	NA	NA	500		
Total phosphorous	$\mu \mathrm{g} / \mathrm{L}$	50	30	NA	NA	50	NA	NA	50		
Calcium	mg/L	-	-	-	1000	-	-	-	1000		
Chloride	mg/L	-	-	-	-	$<175^{\text {e }}$	400	250°	<175		
Fluoride	mg/L	-	-	-	2^{9}	1	-	1.5	1		
Sodium	mg/L	-	-	-	-	$<115^{\text {e }}$	300	180°	<115		
Sulphate	mg/L	-	-	-	<1000		400	500	400		
Arsenic	$\mu \mathrm{g} / \mathrm{L}$	-	-	24/13	500^{9}	100	50	7	7		
Boron	$\mu \mathrm{g} / \mathrm{L}$	-	-	370	$5000^{\text {i }}$	500	1000	4000	370		
Cadmium	$\mu \mathrm{g} / \mathrm{L}$	-	-	0.2	10^{9}	10	5	2	0.2		
Chromium	$\mu \mathrm{g} / \mathrm{L}$	-	-	1.0 (CrVI)	$1000{ }^{9}$	100	50	50 (CrVI)	1		

Water Quality Guidelines
Section 3

WQ Parameter	Units	QWQG 2006 ${ }^{\text {a }}$		ANZECC GUIDELINES 2000				Drinking Water	MTV	Local Data ${ }^{\text {\# }}$	
		Lowland	Upland	Aquatic Ecosystems ${ }^{\text {b }}$	Stockwater	Irrigation ${ }^{\text {c }}$	Recreation			20\%ile	80\%ile
Copper	$\mu \mathrm{g} / \mathrm{L}$	-	-	1.4	$1000{ }^{\text {g }}$	200	1000	2000	1.4		
Iron	$\mu \mathrm{g} / \mathrm{L}$	-	-	300 (interim)	-	200	300	300°	200		
Lead	$\mu \mathrm{g} / \mathrm{L}$	-	-	3.4	100^{9}	2000	50	10	3.4		
Mercury	$\mu \mathrm{g} / \mathrm{L}$	-	-	0.6	$2^{\text {h }}$	2	1	1	0.6		
Nickel	$\mu \mathrm{g} / \mathrm{L}$	-	-	11	$1000{ }^{\text {g }}$	200	100	20	11		
Zinc	$\mu \mathrm{g} / \mathrm{L}$	-	-	8	<20000	2000	5000	$3000{ }^{\circ}$	8		

NOTES

a Guideline physico-chemical indicator values for Central Coast Region
b Values for 95% protection of aquatic ecosystems
c Values for long term irrigation trigger chosen at most conservative
d 75th percentile of EC in relevant salinity zone (Fitzroy Central). Source EPA (2006)
e For sensitive crops
f Suitable for beef cattle and horses
g May be hazardous to animal health if exceeded
h Mercury may accumulate in edible animal tissues $>2 \mu \mathrm{~g} / \mathrm{L}$ and may therefore pose a human health risk
i Higher concentrations of Boron ($>5000 \mu \mathrm{~g} / \mathrm{L}$) may be tolerated for short periods of time.
j AsIII/AsV respectively

I For nitrate
m Drinking water aesthetics: $<500 \mathrm{mg} / \mathrm{L}$ regarded as good drinking water based on taste, $500-1000 \mathrm{mg} / \mathrm{L}$ acceptable based on taste, $>1000 \mathrm{mg} / \mathrm{L}$ may be associated with excessive scaling, corrosion and unsatisfactory taste.
$\mathrm{n} \quad$ Drinking water guideline value will protect bottle-fed infants under 3 months from methaemoglobinaemia. Adults and children over 3 months can safely drink water with up to $100 \mathrm{mg} / \mathrm{L}$ nitrate.
o Aesthetic Value
NA indicates not applicable as QWQG take precedence
Most conservative parameter values to satisfy all environmental values
Relevant water quality objectives for streams in the Comet Ridge Catchment
n/a Not available
^ MTV - minimum trigger value
\# Based on analysis of data from Comet River at Comet Weir DO in mg/L converted to \% saturation assuming observed temperatures for samples with DO similar to percentiles. It is also assumed that the stream is at sea level.
k For nitrate
*The QWQG recommend temperature guidelines for protection of aquatic ecosystems such that median discharge temperature lies within the 20th and 80th percentiles of observed temperature variation. Significant diel and seasonal variation in temperature are evident within river systems. Ensuring an appropriate data set from which to identify these percentiles is problematic since samples are often collected in particular seasons and during daylight hours. Continuous records of temperature are available from Dawson R at Utopia and Dawson R at Taroom stream gauging stations.

Water Quality Guidelines

3.4 Application of Water Quality Guideline Trigger Values

The guideline trigger values can be used as a benchmark against which potential developments or discharges can be assessed. In assessing the impacts of any discharge to the environment the guidelines should not be used on a pass or fail basis, but rather as trigger values for further investigation within a risk assessment framework (s3.1.1.3, ANZECC \& ARMCANZ, 2000).

The in-stream dynamics of water flow and quality, as well as the interactions between contaminants, make it difficult to make definitive statements regarding the environmental effects of particular levels of water quality. QWQG and AWQG suggest the use of aquatic health measures in preference to physico-chemical measures since ecological systems reflect the full range of conditions encountered including droughts, floods, and episodic changes in water quality.

Setting water quality guideline values for ephemeral streams is problematic and is not dealt with definitively by either by the QWQG or the AWQG. Notes within the QWQG recognise that ephemeral streams and residual pools will have poorer water quality (particularly dissolved oxygen and nutrients) than flowing streams. Due to evaporative concentration of salts within pools, it can be expected that salinity would also be marginally poorer in such systems when compared with flowing waters.

Associated water quality can also be compared against the MTV. Consideration then must be given to cumulative affects when occur once discharged to the environment. In some instances dilution of water quality parameters present at high levels in the existing environment may occur, while for other parameters an increase is likely. Furthermore from international studies undertaken for CSG operations around the world there is evidence to suggest that the chemistry of associated water changes upon exposure to the surface water environment. Therefore care must be taken in interpreting the guideline trigger values as a benchmark.

Data Sources and Water Quality Monitoring

Events

Section 4

Prior to commencement or expansion of CSG operations it is important to gain an understanding of the existing environment with respect to surface water quality. This provides a benchmark by which the effects of any future potential discharges to grade can be assessed.

A detailed review of existing water quality information was undertaken and data gaps identified. The quantity and quality of existing information available varies substantially between each catchment. Very little information is available for the Condamine-Balonne in the vicinity of the Roma field area. More extensive records exist for the Upper Dawson River and Comet-Brown River, though spatial replication is poor. To supplement existing data URS undertook a series of water quality monitoring rounds over a short period of time (January - May 2008) to provide greater coverage of the catchments encompassing the GLNG field area.

In addition to the broad sampling program, targeted data collection was undertaken in the Fairview area where associated water from CSG operations has historically and is currently being discharged, and around the Roma field area where limited flow or water quality information is available.

4.1 Data Sources

Water quality data sets are available from a range of sources, as outlined below.

Condamine-Balonne

- Historical data (1972 - 2006 varying on a site to site basis) provided by DNRW.
- Stream gauging sites installed on behalf of URS during August 2008 to collect continuous water quality and height/flow data in Bungil Creek and Wallumbilla Creek.
- URS water quality monitoring undertaken January 2008 through May 2008
- Unpublished data collected through the QMDC community monitoring program. This data has not been included in this report but has been used as verification for URS data.

Figure 2 (attached) shows the locations of URS and DNRW water quality sites, and stream gauging sites in the Condamine-Balonne Catchment.

Upper Dawson

- Monitoring data provided by Santos (from 1998 to 2002);
- River Health Assessments undertaken for Santos (from 2003 to 2007);
- Department of Natural Resources and Water (DNRW);
- URS water quality monitoring undertaken January 2008 through August 2008;
- URS water quality depth profiling September 2008;
- Data loggers installed by URS in Upper Dawson Catchment June through September 2008; and
- Spring flow assessment undertaken on behalf of URS, March 2008.

Figure 3 (attached) shows the locations of URS and DNRW water quality sites in the Upper Dawson catchment.

Comet-Brown

- DNRW (1967 - 2007 varying on a site to site basis).

Data Sources and Water Quality Monitoring
 Events

Section 4

- URS water quality monitoring undertaken January 2008 through May 2008

The location of URS and DNRW spot and continuous water quality sites are shown in Figure 4 (attached).

4.2 URS Water Quality Monitoring Events

From January through May 2008 URS conducted three water quality monitoring rounds from select sites across all catchments. Beyond this period insufficient water was available in the catchment to justify additional sampling. Data was collected to validate and supplement the limited existing information and to provide greater spatial replication across the region.

Sample locations are provided in Figures 1 through 4 (attached). Findings are discussed in Sections 5, 6 and 7.

4.2.1 Site Selection

Sample sites were selected to provide maximum spatial coverage across the region. An initial reconnaissance to identify sites was undertaken from 29 January through 5 February 2008, with a further two monitoring rounds conducted 4-6 March 2008 and 13-16 May 2008.

As the location of future potential associated water discharge is not currently known, an attempt was made to provide coverage of the entire field area to ensure suitable reference sites for future monitoring programs. However, sampling was predominantly restricted to public road crossings due to difficulties in obtaining access to private property. This limited the number of samples that could be collected particularly during the drier months, as many of the road crossings were dry and it was not possible to access pools up or downstream on private property. Where access was possible, samples were also collected from DNRW monitoring sites in order to validate existing data sets.

Access to streamlines within the Comet-Brown Catchment in particular was very limited due to restrictions on entering private property. The single arterial road running through the basin provided the only publically available access point, and sampling was confined predominantly to Arcadia Creek. Across the northern portion of the basin encompassing Arcadia Valley there are many streamlines that could not be characterised. Furthermore due to the ephemeral nature of the streams, many sites were dry during March through May 08.

Details of surface water sample locations ${ }^{3}$ are provided in Table 4-1, Table 4-2 and Table 4-3 below.
Table 4-1 Condamine-Balonne Water Quality Monitoring Sites

Site No.	Site Name	Easting	Northing
$R 001$	Bungil Ck @ Warrego Hwy	680890	7059369
$R 002$	Bungil Creek @ Burton Rd	680577	7066480
$R 003$	Mooga Mooga Creek @ Roma-Taroom Rd	679597	7077707
$R 004$	Bungil Creek @ Carnarvon Hwy	678771	7075239
$R 005$	Eumamurrin Creek @ Carnarvon Hwy	671135	7100103
$R 006$	Bungil Creek @ Euminah Rd	671080	7092693
$R 007$	Spring Creek @ Orallo Rd	650329	7096779
$R 008$	Bungeworgorai Creek @ Orallo Rd	657682	7085288

[^10]
Data Sources and Water Quality Monitoring

Events

Site No.	Site Name	Easting	Northing
R009	Bungeworgorai Creek @ Dargal Rd	669360	7062575
R010	Dargal Creek @ Hodgsons Lane North	661372	7064490
R011	Blyth Creek @ Carnarvon Hwy	689156	7042122
R012	Bungil Creek @ Dunkeld Rd	696803	7023509
R013	Bungil Creek @ Maranoa Rd	701026	6998157
R014	Wallumbilla Creek @ Roma Condamine Rd	720885	7020424
R015	Blyth Creek @ Warrego Hwy	662430	7058811
R016	Wallumbilla Creek @ Yarrawonga Rd	721290	7051707
R017	Wallumbilla Creek @ Donnabar	718048	7040403
R018	Pickanjinnie Creek @ Wallumbilla to Roma Condamine Rd	715152	7039284
R019	Yuleba Creek @ Roma Condamine Rd	743164	7023590
R020	Yuleba Creek @ Forestry Rd	745136	7029642
R021	Yuleba Creek @ Warrego Hwy	737891	7054339
R021	Yuleba Creek @ Warrego Hwy	737890	7054335
R022	Kangaroo Creek @ Wallumbilla North Rd	723601	7067184
R023	Cattle Creek @ Cattle Creek Rd	728837	7086154
R024	Bungeworgorai Creek @ Six Mile Rd	681841	7043181
R025	Blyth Creek @ Nth Pickanjinee Rd	666942	7444952
R026	Blyth Creek @ Coxon Creek Rd \#1	710336	7082560
R027	Coxon Creek @ Coxon Creek Rd	711305	7081102
R028	Bungil Creek @ Tabers	677439	7077965

Table 4-2 Upper Dawson Catchment Water Monitoring Sites

Site No.	Site Name	Easting	Northing
D001	Dawsons Bend	710193	7152667
D002	Dawson River @ Yebna Crossing	722278	7156525
D003	Pine Creek @ Phelps Rd	736832	7157232
D004	Dawson River @ Taroom-Roma Rd	756620	7144264
D005	Eurombah @ Hornet Bank Rd	753202	7142854
D006	Bridge/Ram Creek @ Roma Rd	760434	7143811
D007	Paddys Creek @ Roma Rd	768265	7145045
D008	Middle Creek @ Roma Rd	775918	7150415
D009	Juandah Creek @ Roma Rd	781471	7156690
D010	Dawson River @ Old Taroom Bridge	780296	7160820
D011	Kinnoul Creek @ Taroom Rd	764200	7158700
D012	Hutton Creek @ Carnarvon Hwy	666569	7151826
D013	Dawson River @ Arcadia Valley Rd	684020	7179844
D016	Dawson River @ Carnavon Hwy	664406	7187427

Data Sources and Water Quality Monitoring Events

Table 4-3 Comet-Brown Catchment Water Quality Monitoring Sites

Site No.	Site Name	Easting	Northing
C001	Arcadia Creek @ Arcadia Valley Rd \#1	686766	7186920
C002	Basin Creek @ Arcadia Valley Rd	685789	7191402
C003	Arcadia Creek @ Arcadia Valley Rd \#2	683500	7205300
C004	Arcadia Creek @ Arcadia Valley Rd \#3	678335	7230900
C005	Spring Creek @ Arcadia Rd	675360.5	7213353.7
C006	Moolayember Creek @ Carnarvon Hwy	659023	7228350
C007	Carnarvon Creek @ Carnarvon Hwy	675337	7213367
C008	Carnavon Creek @ Rewan (Plane Crash)	640225	7236901
C009	Comet River @ Rolleston	664205	7293319
C010	Comet River @ Comet Weir	-	-
C011	Triumph Creek @ Rolleston Rd	-	-
C013	Arcadia Ck @ Castle Hill	687425	7194820
C014	Arcadia Ck @ Towrie	684495	7197953

4.2.2 Analytical Program

Water quality indicators were selected based on parameters of potential concern known to be present in associated water (discussed further in Section 8). In addition analysis was undertaken for parameters for which levels are likely to be altered through the introduction of associated water, such as turbidity, major ions and nutrients.

Where sufficient water was present the following was undertaken:

- In-situ measurements of physical parameters including electrical conductivity (EC), dissolved oxygen (DO), pH , Turbidity and temperature.
- Grab samples were collected during the latter two sampling events and submitted for laboratory analysis of:
- Total metals (arsenic, boron, cadmium, chromium, copper, iron, lead, nickel, zinc).
- Total nitrogen (TN) and total phosphorous (TP).
- Major cations/anions (calcium, chloride, fluoride, magnesium, potassium, sodium, sulphate, alkalinity).
- Biochemical demand (BOD) ${ }^{4}$, chemical oxygen demand (COD), total organic carbon (TOC).
- Total suspended solids (TSS).

[^11]
Data Sources and Water Quality Monitoring

Events
Section 4

4.2.3 Methodology and QAQC

Water quality measurements and samples were collected in general accordance with the Australian Guidelines for Water Quality Monitoring and Reporting (ANZECC \& ARMCANZ, 2000), and the Queensland EPA Water Quality Sampling Manual (1999).

In-situ measurements of physico-chemical parameters were taken using a calibrated multiprobe TPS90FLT water quality meter or Hydrolab ${ }^{\text {TM }}$ DS5X. Calibration certificates are presented in Appendix D.

Grab samples were collected in laboratory prepared sample bottles containing appropriate preservative as required. Disposable gloves were used during sample collection. Samples were stored in eskies on ice, and transported to ALS Brisbane ${ }^{5}$ under Chain of Custody (COC) documentation.

Field duplicate quality control samples were collected at an approximate frequency of 1 in 20 samples. A review of the analytical data, methodologies and laboratory QAQC was undertaken. Overall the data is considered representative of field conditions and is suitable for interpretive use. However, the following should be noted:

- Samples collected from the Roma field area on 4 March 2008 exceeded the recommended storage temperature. However, samples were preserved which acts to limit biological activity that may otherwise affect results. Furthermore the temperature of samples upon delivery to the lab did not exceed the temperature of the water body. Therefore the results are considered representative of conditions encountered.
- Samples collected between 4 through 6 March 2008 and submitted for analysis of one or more of TSS and pH were extracted after the recommended holding time due to laboratory error. Discussion with the laboratory indicates the results for TSS are unlikely to be compromised due to the relatively low TSS and BOD concentrations present in the surface waters. pH results obtained are comparable to previous results and therefore considered representative.

4.3 Targeted Data Collection - Condamine - Balonne Continuous Stream Gauging Sites

To enable collection of future continuous flow and water quality information, three permanent stream gauging sites were installed during the dry season (July 2008) across the Roma field (Table 4-4).

Table 4-4 Stream gauging site details

Site	Coordinates (Easting Northing, GDA 94)	Parameters Monitored
Bungil Creek @ Burtons Road	6805777066480	Height, EC, temperature
Bungil Creek @ Dunkeld Road	6968037023509	Height, flow, EC, temperature
Wallumbilla Creek @ Roma- Condamine Road	7208857020424	Height, flow, EC, temperature

[^12]
Data Sources and Water Quality Monitoring
 Events

Section 4

Data is measured continually at each site and transmitted via a telemetry system to a central database maintained by Hydro Tasmania Consulting (HTC). On a weekly basis data is verified for quality control purposes and transferred to a secure web-based portal for viewing.

The information collected from these sites will provide an indication of existing conditions prior to discharge of associated water. Should associated water then be discharged into either creek these sites will provide an indication of any resultant changes in water quality and flow. Note at the time of writing there was no water at any of the sites.

Condamine-Balonne Water Quality

5.1 Review of Water Quality Data

Overall there is limited water quality data available for the Condamine-Balonne catchment. URS data provides a reasonable degree of spatial replication albeit over a short time frame, whilst DNRW data provides temporal replication.

QMDC manages an ongoing community monitoring program whereby measures of river health and physical parameters are collected at sites across the catchment. This data is in draft form and has not been subjected to any form of quality control review. However, it does provide a useful point of comparison for other data sets. Generally results obtained are comparable across all data sets.

Bungil, Yuleba and Wallumbilla Creeks and tributaries are generally characterised by levels of EC, turbidity, TSS, various metals (cadmium, chromium, copper, zinc) and nutrients (total N and P) above the guideline trigger values for protection of aquatic ecosystems. When considering the potential affects of discharging associated water to grade, parameters of concern also include temperature, pH and major ions (including sodium, magnesium, potassium and alkalinity).

Summaries of all available water quality data from the Condamine-Balonne River Catchment are provided in Appendix A. Water quality data collected by URS is presented in full in Tables A1 through A3 (attached). DNRW data is presented Tables A4 through A7 (attached). Sites in these tables are ordered from upstream to downstream along the major streams. Results collected by URS and DNRW from the same location and similar time are generally comparable unless otherwise noted. Table 5-1 and Table 5-2 below summarise water quality indicators of interest, discussed further in the following sections.

Table 5-1 Condamine-Balonne Physico-chemical Results Summary

Stream	Parameter	$\mathrm{EC}(\mu \mathrm{S} / \mathrm{cm})$	DO (mg/L)	pH	Turbidity (NTU)	Temp (${ }^{\circ} \mathrm{C}$)
	MTV	325	na	6.5-8.0	50	na
Bungil Creek \& Tributaries	n	55	46	49	45	65
	Min	65	2.2	6.35	5	9
	Med	238	6.1	7	112	23
	Max	1647	14.2	9	1645	28
Bungeworgorai Creek \& Tributaries	n	12	12	12	13	12
	Min	3	2.3	6.48	27	17
	Med	318	6.1	7	98	26
	Max	535	11.8	8	>1000	29
Wallumbilla Creek \& Tributaries	n	10	10	10	10	10
	Min	123	1.9	5.99	71	16
	Med	204	6.2	7	142	23
	Max	376	7.0	7	700	177
Yuleba Creek \& Tributaries	n	10	10	10	10	10
	Min	92	1.9	6.12	78	16
	Med	128	3.7	7	181	21
	Max	989	7.7	7	471	28
Blyth Creek \& Tributaries	n	6	6	6	5	6
	Min	156	5.3	6.17	72	18
	Med	263	6.6	7	83	27
	Max	397	8.5	9	3268	33
NOTES						
Bold	Includes URS and DNRW data for Bungil Creek and Yuleba Creek. For consistency DNRW field data has been used in preference to laboratory data where available					

Condamine-Balonne Water Quality

Section 5
Table 5-2 Condamine-Balonne surface water chemistry

Water Quality Indicator		Units	MTV	Bungil Creek \& Tributaries				Bungeworgorai Creek \& Tributaries				Wallumbilla Creek \& Tributaries				Yuleba Creek \& Tributaries				
		n		Min	Med	Max	n	Med	Median	Max	n	Min	Med	Max	n	Min	Med	Max		
	BOD		mg/L	na	8	<2	37	41	7	<2	33	41	10	<2	31	49	6	<2	27	69
	COD	mg/L	na	11	<5	18.5	95	8	6	9	81	10	<5	8	18	9	7	17	109	
	TOC	mg/L	na	6	<1	7	12	4	6	6	7	4	7	10.5	12	5	<1	9	50	
	TSS	mg/L	10	53	5	86	1500	8	16	50	178	9	37	60	131	17	10	84	360	
	Arsenic	mg/L	0.007	11	0.001	0.002	0.003	6	<0.001	0.00125	0.005	8	<0.001	0.00075	0.004	11	0.001	0.003	0.005	
	Boron	mg / L	0.37	45	0.01	0.05	0.14	6	0.05	0.05	<0.1	8	0.05	0.05	<0.1	18	<0.1	0.05	0.82	
	Cadmium	mg/L	0.0002	11	<0.0001	0.0002	0.0014	6	<0.0001	<0.0001	<0.0001	8	<0.0001	0.0001	0.0003	11	<0.0001	<0.0001	0.0003	
	Chromium	mg / L	0.001	11	<0.001	0.002	0.006	6	<0.001	0.002	0.012	8	<0.001	0.001	0.008	11	<0.001	0.003	0.007	
	Copper	mg / L	0.0014	38	0.001	0.006	0.07	5	<0.002	0.0025	0.008	8	0.002	0.002	0.004	15	<0.001	0.003	0.01	
	Iron	mg/L	0.2	4	0.14	0.53	0.98	3	0.13	0.5	17.1	5	0.31	1.02	3.01	14	0.2	3.35	5.7	
	Lead	mg/L	0.0034	7	0.002	0.002	0.003	3	<0.001	0.0013	0.006	8	<0.001	0.0015	0.004	11	0.002	0.002	0.004	
	Nickel	mg/L	0.011	11	0.002	0.004	0.006	6	<0.001	0.003	0.006	8	0.002	0.004	0.007	11	0.002	0.004	0.006	
	Zinc	mg / L	0.008	11	0.006	0.017	0.022	6	<0.005	0.013	0.034	8	0.006	0.012	0.021	16	0.006	0.015	0.05	
$$	Nitrate and Nitrite (as N)	mg/L	na	11	<0.01	0.027	0.057	7	<0.01	0.041	0.132	9	0.01	0.03	0.058	10	0.01	0.058	0.109	
	Total Phosphorus as P	mg / L	0.05	37	0.01	0.13	1.36	6	0.05	0.07	0.28	9	<0.01	0.08	0.17	19	0.05	0.26	0.55	
	Total Nitrogen as N	mg / L	0.5	27	0.4	1.00	2.51	6	0.7	0.85	2	8	0.6	0.7	1.2	15	0.5	1.5	3	
$\begin{aligned} & \text { n } \\ & \text { 은 } \\ & \stackrel{\overline{0}}{\pi} \end{aligned}$	Calcium	mg / L	1000	51	4.3	19.2	130	7	18	34	49	9	4	16	29	22	4	9	25	
	Chloride	mg/L	175	48	2.6	11.2	350	6	2	22.5	34	8	7	12.5	28	22	<1	11	77	
	Fluoride	mg/L	1	47	0.02	0.1	0.5	6	<0.1	0.2	0.3	9	<0.1	0.1	0.4	19	<0.1	0.1	0.8	
	Magnesium	mg / L	na	50	1.1	4	22	7	4	8	13	9	2	6	9	22	1.8	4	11	
	Potassium	mg/L	na	50	2.2	5.3	11	7	5	6	9	9	6	7	8	22	3.4	6	8.1	

Condamine-Balonne Water Quality

Water Quality Indicator		Units	MTV	Bungil Creek \& Tributaries				Bungeworgorai Creek \& Tributaries				Wallumbilla Creek \& Tributaries				Yuleba Creek \& Tributaries				
		n		Min	Med	Max	n	Med	Median	Max	n	Min	Med	Max	n	Min	Med	Max		
	Sodium		mg/L	115	48	5.6	22.6	320.1	4	18	23.5	33	4	20	23	38	18	9	18	8.1
	Sulphate	mg/L	400	47	1	8	558	7	5	31	50	9	3	22	29	23	1	7.52	230	
		mg/L	na	47	25	90.85	422.2	3	65	159	165	4	70	72.5	75	20	20	55	124	

NOTES Includes URS and DNRW data for Bungil Creek and Yuleba Creek.
For consistency DNRW field data has been used in preference to laboratory data where available
Where result is less than the laboratory limit of reporting (LOR) a value of half the LOR has been adopted for the purposes of calculating the median
BOLD Greater than adopted MTV

Condamine-Balonne Water Quality

5.1.1 Physico-Chemical Parameters

Dissolved Oxygen (DO)

DO concentrations vary within each stream and across the field area, with many of the reported DO values lower than the typical range of 6-10 mg/L (QLD EPA, 1999). Concentrations less than $5 \mathrm{mg} / \mathrm{L}$ may adversely affect biological functioning of a water body and below $2 \mathrm{mg} / \mathrm{L}$ may cause fish deaths (Chapman, 1998). DO levels vary in response to fluctuating organic matter, water temperature, nutrients, hydrodynamics, pH and biological processes, and are subject to daily and seasonal variation. DO generally decreases with increasing temperature and salinity. Biological respiration also decreases DO concentrations (Chapman, 1998). Intermittent or ephemeral streams with slow flowing or pooled water may demonstrate naturally low and variable DO concentrations due to thermal stratification and organic loading (ANZECC 2000). This may be a factor in the larger pools in Bungil Creek, with DNRW recording a range of $3.7-14.2 \mathrm{mg} / \mathrm{L}$ at the Tabers site. URS data tended to be slightly lower for Bungil Creek, in the range of $2-7 \mathrm{mg} / \mathrm{L}$.

Similar variability was observed across the catchment with concentrations as low as $1.9 \mathrm{mg} / \mathrm{L}$ detected in Wallumbilla Creek, ranging to a maximum of $11.8 \mathrm{mg} / \mathrm{L}$ at Bungeworgorai Ck @ Orallo Road.

Based on observations made during sampling events, the URS data does not appear to show any trends in DO associated with flowing/non-flowing water.

Electrical Conductivity (EC)

Measurements of EC ${ }^{6}$ vary markedly across the catchment, within streamlines, and temporally at some locations. EC levels in Bungil Creek fluctuate greatly over time, ranging from $65 \mu \mathrm{~S} / \mathrm{cm}$ to a maximum of $1,890 \mu \mathrm{~S} / \mathrm{cm}$ at the DNRW Tabers site. During the May 08 sampling event URS found similarly elevated concentrations downstream Bungil Creek at Carnarvon Highway ($1,418 \mu \mathrm{~S} / \mathrm{cm}$). QMDC has reported increasing EC concentrations from February through May 08 at Mooga Mooga Creek, which discharges to Bungil Creek downstream of the Tabers site.

EC fluctuates across the remainder of the catchment. Concentrations in Bungil Creek north of Carnarvon Highway and Bungeworgorai Creek are often higher than the MTV of $325 \mu \mathrm{~S} / \mathrm{cm}$. Large fluctuations have also been observed by QMDC in Yuleba Creek ($<100 \mu \mathrm{~S} / \mathrm{cm}$ to approximately $1900 \mu \mathrm{~S} / \mathrm{cm}$).

EC levels in Wallumbilla, Blythe and Wallumbilla Creeks were predominantly found to be below the MTV at all URS and DNRW sites.

While the higher salinity levels might be attributed to ponding and evaporation of ephemeral streams, this is not observed in all streamlines across the rest of the catchment. High EC levels have been recorded during both wet and dry seasons. Furthermore all URS samples collected in March 2008 and May 2008 were from pools as none of the streamlines were flowing, yet EC results are not necessarily higher during these sampling events. This suggests the possibility of local groundwater - surface water interactions, or point source inputs across the catchment.

Relative EC concentrations across the catchment are presented in Figure 5 (attached).

[^13]
Condamine-Balonne Water Quality

pH

Surface waters of the Condamine-Balonne Catchment are typically neutral to slightly alkaline, with pH generally falling within the MTV range. DNRW results from Bungil Creek at Tabers range from 6.5 to 8.5 , levels supported by URS data (6.4-8). Similar variability was noted in DRNW data from Yuleba Creek and Balonne River, with slightly lower maximum values (<8). URS data showed similar variability, with the exception of a low pH (6) observed in Wallumbilla Creek at Donnabar and a maximum at Blythe Creek at Coxon Creek Road (8.5).

Suspended Solids (TSS) and Turbidity

Turbidity is the reduction of clarity in water due to the presence of suspended or colloidal particles, measured by the amount of light reflected by the particles. Total suspended solids (TSS) is a measure of suspended solids in water which will not settle out by gravity. It is closely related to turbidity; however turbidity also includes plankton and other organisms. Turbidity is affected by a number of factors such as high flow rates and heavy rain, soil erosion, decaying plants/animals and algal blooms, and does not always correlate directly with TSS concentrations as the properties of suspended soils in different water samples may vary causing different effects on light transmission.

Turbidity levels vary considerably across the catchment and between sampling events, influenced by rainfall events and stock access. Frequently higher levels were detected in January/February following heavy rainfall and flooding. Elevated levels were also detected in pools showing evidence of recent stock access (such as Blyth Creek at Coxon Creek Road). Results obtained by DNRW ranged across several orders of magnitude, tending to be higher in the Balonne River (583-3620 NTU) than Bungil and Yuleba Creeks (1.1 to 700 NTU and 80 to 802 NTU respectively ${ }^{7}$). URS found similar variability in results across the catchment, as expected in regions of variable flow. Turbidity in the catchment is naturally high and generally increases with distance downstream (QMDC, 2003; CBWC, 1999).

The majority of turbidity results are greater than the MTV, suggesting a less conservative trigger value would be more appropriate for these ephemeral streamlines.

TSS concentrations were similarly variable across all sites, with concentrations greater than the MTV (10 mg/L) at the majority of sites.

5.1.2 Metals

Results reported are for total metals (unfiltered) ${ }^{8}$.

Aluminium

Limited information is available for aluminium concentrations across the catchment. DNRW data indicates intermittent marginal exceedances of the MTV at DNRW Bungil Creek at Tabers and Balonne River at Surat (maximum $0.24 \mathrm{mg} / \mathrm{L}$ and $0.8 \mathrm{mg} / \mathrm{L}$ respectively). A slightly higher concentration was detected at Yuleba $(1.8 \mathrm{mg} / \mathrm{L})$, however there is only one result available.

[^14]
Condamine-Balonne Water Quality

Aluminium is the most abundant metallic element in the lithosphere, but has little or no known biological function. Toxicity to fish and invertebrates is increased at low and high pH (<5.5 and >9.0), which is outside of the current pH range observed at all sites. Increased temperature may increase aluminium toxicity. Toxicity is reduced with increases in humic substances (ANZECC \& ARMCANZ 2000).

Copper

Copper concentrations are consistently greater than the MTV across all streamlines and tributaries, up to a maximum concentration of $0.07 \mathrm{mg} / \mathrm{L}$ recorded by DNRW at Bungil Creek at Tabers. It should be noted that toxicity decrease with increasing hardness and alkalinity of water and therefore trigger values should be altered accordingly. In accordance with the AWQG (Vol 1, Table 3.4.4), based on the hardness of the water in Bungil Creek a factor of up to $x 5.2$ (hardness as CaCO_{3} of $150 \mathrm{mg} / \mathrm{L}$) can be applied in many instances to results, which gives a less conservative trigger value of $0.007 \mathrm{mg} / \mathrm{L}$.

Copper is found at low concentrations in river systems and is an essential trace element for aquatic organisms. Toxicity decreases with increasing hardness and alkalinity. Levels of dissolved organic matter in most river waters are sufficient to remove copper toxicity. Copper is also strongly adsorbed by suspended material (ANZECC \& ARMCANZ 2000).

Cadmium

Cadmium concentrations were found to be marginally higher than the MTV throughout the catchment. With the exception of one high result from Bungil Creek at Dunkeld Road ($0.0014 \mathrm{mg} / \mathrm{L}$) concentrations were within the expected error margin of laboratory reporting, and are not considered significant. Furthermore, the toxicity of cadmium reduces with increasing hardness thereby increasing the guideline trigger value. There is no DNRW information available for cadmium.

Chromium

Concentrations of chromium in URS samples were higher than the MTV ($0.0002 \mathrm{mg} / \mathrm{L}$) across the catchment, though generally within the same order of magnitude. A maximum concentration of $0.012 \mathrm{mg} / \mathrm{L}$ was recorded at Dargal Creek at Hodgsons Lane North. There is no DRNW data for chromium.

Lead

Concentrations of lead were generally below the MTV with the exception of marginally elevated concentrations in samples collected from Dargal Creek at Hodgsons Lane North, Wallumbilla Creek at Donnabar and Cattle Creek at Cattle Creek Road. These results are within the expected range of laboratory error and are not considered to represent a significant water quality issue.

Zinc

Concentrations of zinc were consistently higher than the MTV ($0.008 \mathrm{mg} / \mathrm{L}$) across the catchment. Limited DNRW data from Yuleba Creek at Forestry is similar to levels detected in URS samples.

Zinc is an essential trace element that adsorbs to suspended material. Toxicity of zinc can increase with low dissolved oxygen (ANZECC \& ARMCANZ, 2000). However, levels of organic matter found in most freshwater streams are generally sufficient to remove zinc toxicity. Given the amount of suspended sediment and relatively low zinc concentrations found in these streams it is unlikely that zinc would present a significant water quality issue.

Condamine-Balonne Water Quality

Iron

Limited information is available regarding iron concentrations across the catchment. Generally concentrations in URS samples were higher than the MTV ($0.2 \mathrm{mg} / \mathrm{L}$) in all streamlines, with a maximum of $17.1 \mathrm{mg} / \mathrm{L}$ recorded at Dargal Creek at Hodgsons Creek Lane North. Slightly lower concentrations of iron were noted in the Yuleba Creek and tributaries ($3.2-5.38 \mathrm{mg} / \mathrm{L}$) and in Wallumbilla Creek and tributaries ($0.31-3.01 \mathrm{mg} / \mathrm{L}$). DNRW data is only available for Yuleba Creek, where detected concentrations are of a similar magnitude to URS data (0.6$5 \mathrm{mg} / \mathrm{L})$.

Boron

Concentrations of boron across the catchment are generally below the MTV ($0.37 \mathrm{mg} / \mathrm{L}$) with the exception of one URS result from Yuleba Creek @ Roma Condamine Road ($0.87 \mathrm{mg} / \mathrm{L}$). Boron is not considered to be a water quality issue; however it is potentially a contaminant of concern in associated water.

5.1.3 Nutrients

Concentrations of Total $\mathrm{N}(\mathrm{TN})$, nitrate as NO_{3} and total $\mathrm{P}(\mathrm{TP})$ were consistently above MTV at all DNRW sites: Bungil Creek at Tabers, Balonne River at Surat and Yuleba Creek at Forestry. Similarly URS data indicated TP and TN above the MTV at all sites. Maximum TP concentrations were observed in Bungil Creek ($1.36 \mathrm{mg} / \mathrm{L}$), whereas maximum TN was recorded in Yuleba Creek ($3 \mathrm{mg} / \mathrm{L}$ at Warrego Hwy).

Land uses such as grazing and cropping which are extensive in the vicinity of the monitoring sites are likely to contribute substantially to nutrient and sediment concentrations in the waterways. Run-off from urban sewage and homestead septic systems also contribute to nutrient loads.

5.1.4 Major Ions

Concentrations of chloride were detected above the MTV in DNRW data from Bungil Creek at Tabers. The elevated results occurred concurrently with a period of high salinity, suggesting chloride salts are significant contributors to EC levels. All other concentrations reported for chloride and other major ions are well below the MTVMTV.

5.1.5 Organic Indicators

Levels of total organic carbon (TOC) are generally less than $10 \mathrm{mg} / \mathrm{L}$, which is within the expected range for unpolluted surface waters (Chapman, 1998), with the exception of Kangaroo Creek ($50 \mathrm{mg} / \mathrm{L}$). Levels of chemical oxygen demand COD) and biochemical oxygen demand (BOD) are variable. COD in unpolluted surface waters is generally less than $20 \mathrm{mg} / \mathrm{L}$ (Chapman, 1998). Results obtained from Yuleba Creek are of a magnitude that suggests effluent impacts. Levels of BOD for unpolluted surface water are generally less than $2 \mathrm{mg} / \mathrm{L}$ (Chapman, 1998). However, median concentrations of BOD were approximately $30 \mathrm{mg} / \mathrm{L}$ across the catchment. The elevated results suggest point source influences possible relating to cattle access, homestead septic systems and surface runoff. The elevated levels of organic indicators are likely also attributed to the stagnant ponding at many of the sample locations.

Condamine-Balonne Water Quality

5.2 Summary

Streams in the Condamine-Balonne catchment relevant to the development of the Roma Field are generally characterised by the following:

- $\quad \mathrm{pH}$ in the range 6.5 to 9.0 which is wider than the recommended MTV pH range (6.5-8.0).
- Very low dissolved oxygen levels have been identified (as low as $1.9 \mathrm{mg} / \mathrm{L}$) and correlate with relatively high chemical and biological oxygen demand results. For Yuleba Creek the levels of BOD suggest point source impacts.
- Wide fluctuations in electrical conductivity are evident in the streams with Bungil Creek range 65-1647 $\mu \mathrm{S} / \mathrm{cm}$, Wallumbilla $123-376 \mu \mathrm{~S} / \mathrm{cm}$, Yuleba $92-989 \mu \mathrm{~S} / \mathrm{cm}$ and Blyth $156-397 \mu \mathrm{~S} / \mathrm{cm}$. Bungil Creek is near the west of the Roma Field, and Yuleba lies to the East.
- Sodium concentrations below the MTV, with a maximum observed concentration of $38 \mathrm{mg} / \mathrm{L}$.
- Chloride concentrations predominantly below the MTV.
- Fluoride concentrations below the MTV (1 mg/L).
- Boron concentrations below the MTV, with the exception of a single result in Yuleba Creek.
- Waters are often nutrient enriched with total phosphorus often well above the MTV (maximum observed concentration $1.36 \mathrm{mg} / \mathrm{L}$) and total nitrogen often exceeding the MTV by a factor of two. Ammonia-N (by calculation) is around $0.02-0.04 \mathrm{mg} / \mathrm{L}$ compared with trigger values of $0.02 \mathrm{mg} / \mathrm{L}$ (QWQG) and $0.9 \mathrm{mg} / \mathrm{L}$ (ANZECC \& AMRCANZ (2000)).
- Turbidity and total suspended solids samples are extremely high in comparison with relevant MTV.
- Copper concentrations are consistently higher than the MTV ($0.0014 \mathrm{mg} / \mathrm{L}$) for all streamlines. Application of the AWQG suggests a revised WQO should be $0.007 \mathrm{mg} / \mathrm{L}$ when the hardness of the water is accounted for.
- Iron is elevated with widespread exceedance of the recommended WQO ($0.2 \mathrm{mg} / \mathrm{L}$). The maximum observed concentration is $17.1 \mathrm{mg} / \mathrm{L}$.
- Zinc regularly exceeds the MTV $(0.008 \mathrm{mg} / \mathrm{L})$. The maximum observed concentration is $0.034 \mathrm{mg} / \mathrm{L}$.
- In approximately 50\% of samples, lead concentrations exceed the MTV. The maximum observed concentration is $0.006 \mathrm{mg} / \mathrm{L}$.

Upper Dawson Catchment Existing Environment

Section 6

6.1 Review of Water Quality Data

Tributaries of the Dawson River, Baffle Creek and Hutton Creek, currently receive associated water discharge from CSG operations at Fairview. This section provides an outline of water quality in streams upstream of any associated water discharge.

The Upper Baffle Creek, Upper Hutton Creek and Upper Dawson River water quality monitoring sites lie above any influence from associated water discharge. Tributaries flowing into Dawson River are similarly unaffected. A comparison of water quality results within waters not receiving associated water discharge with the MTVs (Table $6-1$) is provided below.

Summaries of all available water quality data from the Upper Dawson River Catchment are provided in Appendix B. Water quality data collected by URS is presented in full in Tables B1 through B2 (attached). DNRW data is presented Tables B3 through B9 (attached). Results collected by URS and DNRW from the same location and similar time are generally comparable unless otherwise noted.

Upper Dawson Catchment Existing Environment

Table 6-1 Water quality in the Upper Dawson Catchment

Water Quality Indicator		Units	MTV	Upper Dawson River				Dawson R at Yebna Crossing				Dawson R at Utopia				Dawson R at Taroom				
		Min		Med	Max	n	Min	Med	Max	n	Min	Med	Max	n	Min	Med	Max	n		
PhysicoChemical Parameters	Electrical Conductivity		$\mu \mathrm{S} / \mathrm{cm}$ at 25 C	340	50	215	1702	12	110	247	435	46	78	289	551	139	87	260	525	288
	pH	Stand	6.5-8.0	6.6	7	7.1	5	7.2	7.75	8	6	7	7.81	8.5	138	6.5	7.6	8.5	228	
	Temperature	C		15.4	25.5	28	12	12	24	28	43	8	22	77	122	9	23.1	31	182	
	Total dissolved solids	mg/L	1000	46	146	194	12	75	168	296	46	58	160	317	130	60	152	306	173	
	TSS	mg/L	10	52	75	125	4	2	8	142	5	0	14.5	2460	114	2	50	4900	126	
Inorganic NonMetallic Parameters	Bicarbonate Alkalinity	mg/L - CaCO3	-	28	95	151	5	87	113.5	130	6	24	134	289	130					
	Chloride	mg/L	175	3	8	12	5	19	20.5	22	6	3	25	70	130	4	20.6	59.9	140	
	Fluoride	mg/L	1	0.1	0.1	0.24	5	<0.1	0.13	0.23	6	0.06	0.11	0.4	126	0.08	0.13	0.7	132	
	Sulphate	mg/L	400	<1	5	<10	5	<1	7.5	<10	6	0	2	13	97	0	2	11	116	
Cations	Calcium	mg/L	1000	1	6	18	5	7	10.8	17	6	5.2	17	40	130	4.3	18	44	140	
	Magnesium	mg/L		1	5	6.1	5	4	5.5	6.2	6	1.5	6.5	15	130	1.4	5.2	11.8	140	
	Potassium	mg / L		<1	6	10.7	5	3	3.2	6	6	2.2	4	7.7	121	2.4	5.1	7.5	130	
	Sodium	mg/L	115	3	11	22	5	27	28	33	6	7.5	32.7	112	130	7.7	28	65.8	140	
Nutrients	Ammonia-Nitrogen	$\mu \mathrm{g} / \mathrm{L}$	20	10		590	3	<10	10	14	3	0	20.1	150	56	4.3	31.8	163	53	
	Nitrate as ($\mathrm{NO}_{3}{ }^{\text {) }}$	mg/L			128		1		<44		1	2	192	7724	81	160	1080	10000	102	
	Total Phosphorous	$\mathrm{mg} / \mathrm{L}-\mathrm{P}$	50	<10	125	1900	4	<10	40	280	5	3	55	550	59	4	157	1387	71	
Metals	Boron	$\mu \mathrm{g} / \mathrm{L}$	370	<0.1	23	500	5	<0.1	8	600	6	0	0.02	100	73	10	50	1000	73	
	Iron	$\mu \mathrm{g} / \mathrm{L}$	200	4407		5100	2	76		390	3	1	165	460	3	10	60	4800	93	
	Lead	$\mu \mathrm{g} / \mathrm{L}$	3.4	<1		3	2		<1		2		<1		3					
	Zinc	$\mu \mathrm{g} / \mathrm{L}$	8	<1		14	2	<1		<10	2	<1		<10	2	10	20	700	60	

NOTES: BOLD Greater than MTV
Refer Section 3.3.2 regarding use of data for Dawson River downstream of associated water discharges

Upper Dawson Catchment Existing

 Environment
Section 6

6.1.1 Physico-Chemical Parameters

Dissolved Oxygen (DO)

Many of the reported DO values are lower than the typical range for surface waters of 6-10mg/L (QLD EPA, 1999). Intermittent or ephemeral streams with slow flowing or pooled water may demonstrate naturally low and variable DO concentrations due to thermal stratification and organic loading (ANZECC 2000). This may be a factor in a large pool monitored in Upper Baffle Creek, where DO measurements range from approximately $2 \mathrm{mg} / \mathrm{L}$ to $11 \mathrm{mg} / \mathrm{L}$. Less variability was observed in continuous data obtained from a smaller pool in Upper Hutton Creek (approximately 4-10 mg/L).

Electrical Conductivity

Electrical conductivity measurements from streams that do not receive associated water discharge range from less than $100 \mu \mathrm{~S} / \mathrm{cm}$ to approximately $1,800 \mu \mathrm{~S} / \mathrm{cm}$ in sites in Upper Baffle Creek (Santos, various). The results at the upper end of the range are higher than would be reasonable expected based on EC levels across the catchment. It is noted the range of EC reported in Upper Baffle Creek is substantial, with results either well above $1000 \mu \mathrm{~S} / \mathrm{cm}$ or less than $200 \mu \mathrm{~S} / \mathrm{cm}$. There is insufficient information to ascertain the likely cause of the elevated results.

EC in upstream waters fluctuates as expected likely in response to rainfall events, erosion caused by cattle access and agricultural practices. Figure 6-1 below shows continuous EC levels at Upper Hutton Creek over a period of approximately six weeks.

Figure 6-1 Hutton Creek at Moonah continuous EC and relative depth

pH

Waters in the Upper Dawson catchment are typically neutral to slightly alkaline ($\mathrm{pH} \sim 8$). Recent field sampling shows some of the smaller tributaries of the Dawson River naturally have pH circa 8.5. Continuous monitoring at Upper Hutton Creek during May through September 2008 indicated typically neutral conditions ($\mathrm{pH} \sim 6.8-7.8$), whereas waters at Upper Baffle Creek are slightly more alkaline ($\mathrm{pH} \sim 7-8.2$).

Upper Dawson Catchment Existing Environment

Section 6

High Suspended Solids (TSS) and High Turbidity

Turbidity levels vary considerably across the catchment and between sampling events, influenced by rainfall events and stock access. Levels are frequently above the MTV. The soils and slopes in the area are susceptible to erosion, which has been exacerbated by the removal of vegetation in agricultural areas, and unrestricted stock access to streams. The nature of flooding in the area is a major factor driving suspended solids transport and erosion processes.

Figure 6-2 shows a typical increase in turbidity levels at Upper Baffle Creek (Waterview) following a rainfall event.

NOTE: relative depth measurement for comparison purposes does not represent true depth
Figure 6-2 Baffle Creek at Waterview - turbidity

6.1.2 Metals

Boron

Concentrations of Boron were predominantly below the MTV upstream of associated discharges with the exception of two slightly elevated concentrations in Dawson waterhole and Upper Baffle Creek.

Cadmium

Cadmium concentrations were found to be intermittently marginally higher than the MTV throughout the catchment. However, concentrations were within the expected error margin of laboratory reporting, and are not considered to present a significant water quality issue.

Copper

There are limited results for copper from upstream tributaries. However samples collected from other tributaries across the catchment indicate copper concentrations greater than the MTV.

Upper Dawson Catchment Existing

Environment

Section 6

Iron

There are a number of iron concentrations above the MTV observed at sites in Baffle and Hutton Creeks and Dawson River upstream of associated water discharges. Iron does not present a risk to livestock or ecosystem health at the concentrations detected.

Lead

Concentrations of lead marginally higher than the MTV were detected at the majority of locations sampled by URS. It is noted there is limited data available. Lead is generally present in very low concentrations in natural waters and is readily adsorbed to suspended matter.

Zinc

Several concentrations of zinc marginally greater than the MTV were detected at sites upstream of associated water discharges in both DNRW and URS data. Toxicity of zinc can increase with low dissolved oxygen (ANZECC \& ARMCANZ, 2000). However, levels of organic matter found in most freshwater streams are generally sufficient to remove zinc toxicity. Given the amount of suspended sediment and relatively low zinc concentrations found in these streams it is unlikely that zinc would present a significant water quality issue.

6.1.3 Nutrients

Limited results for total nitrogen (TN), total phosphorous (TP) and ammonia from streams that do not receive associated water discharges indicate that nutrients are generally higher than the MTV. Elevated nutrient levels are associated with high turbidity, high TSS and high Chlorophyll. The levels exhibited are possibly due to the general erosive nature of soils and the extensive land clearing and grazing activities in the catchment.

6.1.4 Organic Indicators

Levels of total organic carbon (TOC) are less than $10 \mathrm{mg} / \mathrm{L}$, which is within the expected range for unpolluted surface waters (Chapman, 1998). Levels of chemical oxygen demand (COD) and biochemical oxygen demand (BOD) are variable. COD in unpolluted surface waters is generally less than $20 \mathrm{mg} / \mathrm{L}$, however results of up to circa $80 \mathrm{mg} / \mathrm{L}$ were obtained in some tributaries of the Dawson River. Levels of BOD for unpolluted surface water are generally less than $2 \mathrm{mg} / \mathrm{L}$ (Chapman, 1998). However, median concentrations of BOD were approximately $14 \mathrm{mg} / \mathrm{L}$ across the catchment. The elevated results suggest point source influences possibly relating to cattle access, homestead septic systems and surface runoff. The elevated levels of organic indicators are likely also attributed to the stagnant ponding at many of the sample locations.

6.2 Summary

Streams in the Upper Dawson River catchment unaffected by associated water discharges and relevant to the development of the Fairview Field are typically characterised by the following:

- pH in the range 6.5 to 8.5 which is slightly wider than the recommended pH range (MTV range $6.5-8.0$).
- Very low dissolved oxygen levels have been identified (as low as $2 \mathrm{mg} / \mathrm{L}$) and support records of relatively high chemical and biological oxygen demands.
- Wide fluctuations in electrical conductivity are evident in the streams with Baffle Creek (100-1800 $\mu \mathrm{S} / \mathrm{cm}$), in Upper Hutton Creek EC range of $150-650 \mu \mathrm{~S} / \mathrm{cm}$ has been observed in one small rainfall event, and in

Upper Dawson Catchment Existing Environment

Section 6

Dawson River at Utopia EC has been recorded as high as $800 \mu \mathrm{~S} / \mathrm{cm}$. Typical EC under low flow conditions is circa $300 \mu \mathrm{~S} / \mathrm{cm}$.

- Sodium concentrations are all well below the MTV with typical range $20-30 \mathrm{mg} / \mathrm{L}$.
- Most chloride concentrations are below the MTV with observed range 1 - $39 \mathrm{mg} / \mathrm{L}$.
- Fluoride concentrations are all below the MTV with a range of $0.1-0.4 \mathrm{mg} / \mathrm{L}$.
- Boron concentrations are below the recommended WQO with a range of $0.05-<0.1 \mathrm{mg} / \mathrm{L}$.
- There is evidence of eutrophication in-stream with elevated nutrients, turbidity, suspended solids and chlorophyll-a. Ammonia (by calculation from nutrient data) lies in the range $0.02-0.05 \mathrm{mg} / \mathrm{L}$ compared to QWQG trigger for protection of aquatic ecosystems ($0.02 \mathrm{mg} / \mathrm{L}$) and ANZECC \& ARMCANZ (2000) $0.9 \mathrm{mg} / \mathrm{L}$. Turbidity and total suspended solids samples exhibit a large range of readings with typical turbidity circa 50 NTU (well above recommended the MTV).
- Phosphorus concentrations are higher than the MTV ($0.05 \mathrm{mg} / \mathrm{L}$) and is found in the range $<0.01-0.56$ mg / L.
- Copper concentrations are consistently higher than the MTV ($0.0014 \mathrm{mg} / \mathrm{L})$ for most streamlines.
- Iron concentrations are elevated and are often above the recommended MTV ($0.2 \mathrm{mg} / \mathrm{L}$).
- Zinc is often found to exceed the MTV $(0.008 \mathrm{mg} / \mathrm{L})$ with a maximum observed concentration of 0.034 mg / L.
- Lead is often found to be higher than recommended MTV $(0.0034 \mathrm{mg} / \mathrm{L})$, with maximum concentration 0.007 mg/L.

Comet-Brown Catchment Water Quality

Section 7

7.1 Review of Water Quality Data

Limited information is available regarding water quality across the Comet-Brown catchment, particularly in southern Arcadia. DNRW sites provide spot water quality data from major tributaries and the Comet-Brown river, primarily north of Rolleston. DNRW also maintain continuous flow and water quality monitoring sites on Carnarvon Creek and the Comet-Brown River (Figure 7-1). URS collected limited data from Arcadia Creek though this is limited due to access restrictions.

The following provides a discussion of parameters exhibiting concentrations great than the MTVs (Table 3-4), as well as parameters of concern identified in associated water. Water quality data collected by URS is presented in Tables C1 and C2 (attached). DNRW data is summarised in Table C3, and presented in full in Tables C3 through C11 (attached).

Figure 7-1 Water quality and flow sites Comet-Brown River catchment

Comet-Brown Catchment Water Quality

7.1.1 Physico-Chemical Parameters

pH

pH is observed in the range $5.5-9.0$ which is wider than the recommended WQO. Streams in the Arcadia Creek area tend to be acidic to circumneutral ($\mathrm{pH} 5.5-7.5$) while streams lower down the catchment are circumneutral to alkaline ($\mathrm{pH} 6.5-9.0$).

Dissolved Oxygen (DO)

DO levels vary considerably across all sites as expected, influenced by fluctuating organic matter, water temperature, nutrients, hydrodynamics, pH and biological processes. DO levels are also subject to daily and seasonal variation. Intermittent or ephemeral streams with slow flowing or pooled water may demonstrate naturally low and variable DO concentrations due to thermal stratification and organic loading (ANZECC 2000).

Fairly low DO levels (as low as $2 \mathrm{mg} / \mathrm{L}$) have been observed across the catchment, likely resulting from the ephemeral nature of the streams. The highest level recorded ($17.5 \mathrm{mg} / \mathrm{L}$ at Brown River u/s Rolleston) is unlikely to be representative of actual conditions. It is noted there is limited data available for water bodies other than Brown/Comet River and Carnarvon Creek.

Electrical Conductivity (EC)

Continuous data is available for electrical conductivity and temperature as shown in Figure 7-2. Graphs presented in this figure also depict flow (discharge) conditions to aid interpretation. Significant issues with the data are apparent at each site. For example high EC variability from the Brown River at Lake Brown suggests no correction for temperature. Most sites have substantial periods of missing data. Missing data may be associated with drying of waterways as instruments are left high and dry, but detailed further investigation is needed to validate the data prior to use. There are also a number of significant shifts in EC without apparent reason.

It is also notable that excursions to high EC level appear to be event based (they peak quickly and show a slower recovery to normal conditions) but seem to be unrelated to flow conditions. This may suggest low flow point source discharges of some kind.

A review of spot EC measurements collected by DNRW and URS from upstream to downstream indicates:

- Brown River upstream of Rolleston and Comet River at Rolleston EC levels are generally less than the MTV.
- Levels at Carnarvon Creek, flowing into the Comet River from the west tended to be marginally higher than the MTV (median $434 \mu \mathrm{~S} / \mathrm{cm}$).
- Creeks entering Comet River from the east, downstream of Rolleston including Meteor Creek and Planet Creek exhibit consistently elevated EC levels above the MTV (medians $615 \mu \mathrm{~S} / \mathrm{cm}$ and $690 \mu \mathrm{~S} / \mathrm{cm}$, maximums $810 \mu \mathrm{~S} / \mathrm{cm}$ and $1080 \mu \mathrm{~S} / \mathrm{cm}$ respectively). It is noted these this is based on historical data collected between 1973 and 1993. It is not known whether the methodology used at this time has any implications on the higher ECs recorded.
- Comet River downstream of Rolleston and Meteor/Planet Creeks exhibits levels intermittently above the WQO, though median concentrations are circa $240 \mu \mathrm{~S} / \mathrm{cm}$. Similar readings are recorded downstream at Comet Weir. The highest results were generally recorded from 1972 to 1991, in keeping with elevated

Comet-Brown Catchment Water Quality

Section 7

readings noted in upstream Meteor/Planet Creeks. It was not possible to access these creeks and collect validation measurements during the field programs.

- EC levels within Humboldt Creek are historically less than the MTV. However, there are a limited number of measurements available.

Relative EC levels (from spot water quality monitoring) across the catchment are shown in Figure 7 (attached).

Figure 7-2 DNRW continuous water quality data Comet-Brown river catchment

Comet-Brown Catchment Water Quality

Total Suspended Solids (TSS) and High Turbidity

The soils and slopes in the area are susceptible to erosion. This has been exacerbated by the removal of vegetation in agricultural areas, and unrestricted stock access to streams. The nature of flooding in the area is a major factor driving suspended solids transport and erosion processes.

Observations relating to turbidity and TSS measurements from upstream to downstream in the catchment are as follows:

- Turbidity in Arcadia Creek, Basin Creek and Brown Creek is variable, at times greater than the MTV but generally less than 300 NTU.
- Tributaries Carnarvon Creek, Meteor Creek and Planet Creek exhibit low turbidity with occasional spikes to above the MTV.
- Turbidity in the Comet River at Rolleston is moderate (median circa 150 NTU), but increases substantially downstream to a median turbidity around 800 NTU. The two available data points from Humboldt and Rockand Creeks are of similar magnitude (median 650 NTU).
- Downstream Comet River towards the outflow turbidity is extremely variable, with a median of 690 NTU, reaching a maximum of approximately 9000 NTU.
- There are inconsistencies between field and lab measurements of turbidity in DNRW data, with at times an order of magnitude difference between results. Storage of samples for turbidity analysis can lead to settling and precipitation due to pH changes, resulting in altered turbidity results.
- TSS concentrations are greater than the MTV across much of the catchment. Generally TSS results mirror the turbidity results. It is noted the MTV for TSS appears to provide a more sensitive measure of water quality than the MTV for turbidity, with a great number of samples exceeding the TSS MTV.

7.1.2 Metals

Samples collected by URS were submitted for analysis of total metals (unfiltered). Similarly DNRW samples were unfiltered for total metal analysis ${ }^{9}$.

Aluminium

Based on the limited aluminium concentration data recorded, it is difficult to draw conclusions about the elevated levels compared with MTVs measured at various sites. Reported concentrations of aluminium were intermittently higher than the MTVs across the catchment. Results were reasonably consistent, with minimum and maximum concentrations within one order of magnitude.

Copper

Copper concentrations were greater than the MTV at all sampling sites and during the majority of sampling events, across the Comet Catchment. There are limited data points available for all tributaries; the most samples were taken from Brown and Comet Rivers. It appears the laboratory limit of reporting for copper

[^15]
Comet-Brown Catchment Water Quality

analysis in the DNRW is an order of magnitude higher than the MTV, therefore making comparisons unreliable. However the limited URS results indicate concentrations in Arcadia and Carnarvon Creeks are marginally but consistently above the MTV.

Cadmium, Chromium and Lead

There is limited data for cadmium, chromium and lead concentrations in the catchment. Two DNRW samples from Comet Weir returned concentrations of cadmium and chromium above the MTV. Samples collected by URS from southern Arcadia contained concentrations of cadmium and/or chromium marginally above the MTV at Basin Creek, Arcadia Creek and Carnarvon Creek. There is no information for the central portion of the catchment.

Nickel, Zinc and Lead

URS samples from Arcadia Creek (Arcadia Valley Rd \#2) and Basin Creek contained concentrations of nickel, zinc and lead above the MTVs. Other samples from southern Arcadia (including Arcadia Creek and Carnarvon Creek) were below the MTVs. There is no DNRW data available for these metals.

Iron Content

Of the five samples from southern Arcadia analysed for iron, four returned concentrations great the MTV (Basin Creek and Arcadia Creek). There is insufficient data to draw any conclusions. Iron does not present a risk to livestock or ecosystem health at the concentrations detected (ANZECC \& ARMCANZ, 2000).

Boron

Concentrations of Boron are below the MTV across the catchment, with a maximum concentration of circa $0.1 \mathrm{mg} / \mathrm{L}$. Boron is a potential contaminant of concern in associated water.

7.1.3 Nutrients

Nutrient enrichment, high ammonia, total nitrogen (TN) and total phosphorus (TP) levels at sites in the Comet/Brown Catchment suggest that these water quality issues are likely to be due to the general erosive nature of soils and existing grazing activities in the catchment. Concentrations of TN/TP increase in the Comet River at, and downstream of Rolleston, with all results greater than the MTV. Concentrations of ammonia are also intermittently above the QWQG trigger for protection of aquatic ecosystems. There is limited or no information is available for tributaries. Limited data points from Carnarvon Creek are at or below the MTVs.

The recorded phosphorus levels of up to $2.8 \mathrm{mg} / \mathrm{L}$ in the lower Comet River are similar to levels present in raw sewage. It is noted that Rolleston is un-sewered and relies on an ageing septic system. Elevated phosphorous, nitrate and ammonia concentrations may also be attributed to runoff from agricultural practices and stock access.

7.1.4 Organic Indicators

Limited data is available for the Comet-Brown Catchment. Levels of TOC in Carnarvon and Arcadia Creeks are all less then $1 \mathrm{mg} / \mathrm{L}$, which is within the expected range for unpolluted surface waters (Chapman, 1998). Levels of chemical oxygen demand COD) and biochemical oxygen demand (BOD) are variable. COD in unpolluted surface waters is generally less than $20 \mathrm{mg} / \mathrm{L}$, however results obtained from Arcadic Creek reach a maximum of $85 \mathrm{mg} / \mathrm{L}$. Similarly whilst levels of BOD for unpolluted surface water are generally less than $2 \mathrm{mg} / \mathrm{L}$

Comet-Brown Catchment Water Quality

(Chapman, 1998), however median concentrations of BOD were approximately $40 \mathrm{mg} / \mathrm{L}$ across the catchment. The elevated results suggest point source influences possible relating to cattle access, homestead septic systems and surface runoff. The elevated levels of organic indicators are likely also attributed to the stagnant ponding at many of the sample locations.

7.2 Summary

Streams in the Comet-Brown River catchment are relevant to the development of the Arcadia Field. They typically have:

- $\quad \mathrm{pH}$ in the range 6.5 to 9.0 which is outside the recommended MTV pH range (6.5-8.0).
- Very low dissolved oxygen levels have been identified (as low as $2 \mathrm{mg} / \mathrm{L}$) with high BOD across the catchment and elevated COD circa Arcadia Creek.
- Wide fluctuations in electrical conductivity are evident instream regardless of location in the catchment. Low EC is recorded in the upper catchment (Arcadia Creek is typically $200-250 \mu \mathrm{~S} / \mathrm{cm}$), and similar median EC readings are observed on the main river at Rolleston and Comet Weir. Median EC is higher in streams on the eastern side of the catchment and elevated in Carnarvon Creek to the west.
- Sodium is almost always below the MTV with a typical concentration of $\sim 40 \mathrm{mg} / \mathrm{L}$.
- Most chloride concentrations are below the MTV. However, there appears to be some input from Planet Creek lower in the catchment.
- Fluoride concentrations are all below the MTV (1 mg/L).
- Boron concentrations are all below the recommended MTV.
- Waters are often eutrophic with ammonia and phosphorus regularly recorded above the recommended MTVs. Total nitrogen often exceeds the MTV by a factor of at least two. Turbidity and total suspended solids samples are extremely high in comparison with recommended MTVs.
- Copper concentrations are consistently higher than the MTV ($0.0014 \mathrm{mg} / \mathrm{L})$ for all streamlines and often appear to be approximately three times higher.
- Iron concentrations are greater than the MTV ($0.2 \mathrm{mg} / \mathrm{L}$), with a maximum observed concentration of 0.98 mg / L. A limited number (5) samples are available.
- Very few records of zinc concentrations are available. In some cases concentrations exceed the MTV ($0.008 \mathrm{mg} / \mathrm{L}$) by a factor of 4 .
- Lead exceedances of MTV are evident in approximately 50% of limited samples taken for this project.

The Quality of Associated Water

8.1 Water Quality of Associated Water at Fairview and Roma

There is currently no information available regarding the chemistry of associated water likely to be produced in the Arcadia Field (Comet-Brown catchment). However, there are a significant number of samples at Fairview Field and just over 100 samples from Roma Field. Fairview samples cover a much wider range of parameters than is available at Roma.

Table 8-2 and Table 8-3 show the quartiles ${ }^{10}$ of water quality parameters for the Fairview and Roma samples and their relationship to water quality guidelines. Shaded quartiles with bold text indicate exceedance of the MTV. Bold text only indicates equivalence to the MTV. Only those water quality parameters of general interest or exceedance are shown. Full descriptive statistics are provided in Appendix E.

It should be noted that these tables utilise the limit of reporting in the calculation of statistics rather than adopting a zero concentration or $1 / 2$ the limit of reporting. Thus they are inherently conservative. For example, some parameters such as cadmium and silver are unlikely to be a problem since the range of values is effectively always below the limit of reporting although these limits are higher than the corresponding MTV.

A number of water quality parameters exceed guidelines in 75% of wells, some exceed guidelines in 50% of wells and some exceed guidelines at the majority of wells.

The following parameters were identified as exceeding trigger values and warrant further investigation:
Table 8-1 Associated water quality parameters for further review

- Dissolved oxygen
- Temperature*
- pH
- Electrical conductivity (and TDS)
- Chloride
- Sodium
- Ammonia
- Aluminium
- Boron
- Cadmium
- Cobalt
- Copper
- Cyanide
- Fluoride

[^16]The Quality of Associated Water
Section 8
Table 8-2 Fairview field wellhead water quality -parameters for further investigation

					QWQG 2006		ANZECC GUIDELINES 2000				Drinking Water	MTV
Variable	Units	Q1	Median	Q3	Lowland	Upland	Aquatic Ecosystems	Stockwater	Irrigation	Recreation		
pH		8.3	8.6	8.76	6.5-8.0	6.5-7.5	n/a	n/a	6-9	6.5-8.5	n/a	6.5-8.0
Conductivity	uS/cm	1419	1840	2458	$340{ }^{\text {d }}$	$340{ }^{\text {d }}$	n/a	n/a	$650{ }^{\text {e }}$	n/a	n/a	$340^{\text {a }}$
Total Dissolved Solids	mg/L	1420	2000	2985	-	-	-	$4000^{\text {f }}$	-	1000	n/a	1000
Dissolved O2	mg/L (\%)	3.4 (55)	4.1 (66)	5 (80)	(85-110)	(90-110)	n/a	n/a	n/a	>80	n/a	(85-110)
Turbidity	NTU	0.225	0.8	2.05	50	25	n/a	n/a	n/a	n/a	n/a	50
Chemical Oxygen Demand	mg/L	23	72	546							n/a	
Suspended Solids	mg / L	5	10	209	10	-	n/a	n/a	n/a	1000	n/a	10
Tot Alkalinity	mg / L	750.8	861.5	1040							n/a	
Bicarbonate Alkalinity	mg/L	691	788	958.8							n/a	-
Ammonia N	mg / L	0.32	0.4125	0.5845	0.02	0.01	0.9	n/a	n/a	n/a	n/a	0.02
Total Organic Carbon	mg / L	7.6	21	61							n/a	
Aluminium	mg/L	0.02	0.09	0.22			0.055	5	5		n/a	0.055
Boron as B	mg / L	0.516	0.711	1.019	-	-	0.37	5^{i}	0.5	1	n/a	0.37
Cadmium	mg / L	0.001	0.001	0.005	-	-	0.0002	$0.01{ }^{\text {g }}$	0.01	0.005	n/a	0.0002
Calcium	mg / L	1	1.2	2.46	-	-		1000	-	-	n/a	1000
Chloride	mg / L	20	55	125	-	-	-	-	$175^{\text {e }}$	400	n/a	175
Chromium	mg / L	0.001	0.001	0.01	-	-	0.001 (CrVI)	1^{9}	0.1	0.05	n/a	0.001
Cobalt	mg/L	0.002	0.002	0.01			0.001	1	0.05	1	n/a	0.001
Copper	mg/L	0.002	0.005	0.02	-	-	0.0014	1^{9}	0.2	1	n/a	0.0014
Fluoride by ISE	mg / L	1.4	1.9	2.71	-	-		2^{9}	1		n/a	1
Iron	mg / L	0.1	0.27	0.81	-	-			0.2	0.3	n/a	0.2
Iron (Soluble)	mg/L	0.091	0.226	0.647					0.2	0.3	n/a	0.2
Lead	mg / L	0.005	0.009	0.04	-	-	0.0034	$0.1^{\text {g }}$	0.2	0.05	n/a	0.0034
Mercury	mg/L	0.0001	0.0006	0.1	-	-	0.0006	0.002	0.002	0.001	n/a	0.0006
Molybdenum	mg / L	0.005	0.005	0.01	-	-	-	0.15	0.01	-	n/a	0.01
Phosphorous	mg/L	0.02	0.04	0.06	0.05	0.03	n/a	n/a	0.05	n/a	n/a	0.05

The Quality of Associated Water Section 8

					QWQG 2006		ANZECC GUIDELINES 2000				Drinking Water	MTV
Variable	Units	Q1	Median	Q3	Lowland	Upland	Aquatic Ecosystems	Stockwater	Irrigation	Recreation		
Potassium	mg / L	2	2.4	4.6	-	-	-	-	-	-	n/a	-
Silica	mg/L	23.64	37.67	80.73							n/a	
Silver	mg / L	0.001	0.001	0.001			0.00005				n/a	0.00005
Sodium	mg / L	366	466	657	-	-	-	-	$115^{\text {e }}$	300	n/a	115
Sodium Adsorption Ratio	mg/L	84.6	106	122							n/a	
Sulphate	mg/L	1	1	2.5	-	-		<1000		400	n/a	400
Cyanide	mg/L	0.01	0.01	0.01			0.007				n/a	0.007
Zinc	mg/L	0.006	0.018	0.06	-	-	0.008	20	2	5	n/a	0.008

Table 8-3 Roma field wellhead water quality -parameters for further investigation

Variable	Units	Q1	Median	Q3	QWQG 2006		ANZECC GUIDELINES 2000				Drinking Water	MTV
					Lowland	Upland	Aquatic Ecosystems	Stockwater	Irrigation	Recreation		
Barium	mg/L	0.223	0.246	0.309	-	-	-	-	-	-	0.7	0.7
Bicarbonate (HCO3)	mg/L	651	821	991	-	-	-	-	-	-	-	-
Calcium	mg / L	3	10.1	73.4	-	-	-	1000	-	-	-	1000
Chloride	mg / L	555	701	1130	-	-	-	-	175	400	250	175
Conductivity	$\begin{gathered} \text { uS/cm @25 } \\ \mathrm{C} \end{gathered}$	3200	3610	6200	340	340	n/a	n/a	650	n/a	n/a	340
Fluoride	mg / L	1.2	2	2.8	-	-	-	2	1	-	1.5	1
Iron	mg/L	0.1	3	117.5	-	-	0.3 (interim)	-	0.2	0.3	0.3	0.2
Potassium	mg/L	4	47	769	-	-	-	-	-	-	-	-
pH	pH units	8.4	8.7	8.9	6.5-8.0	6.5-7.5	n/a	n/a	6.0-9.0	6.5-8.5	6.5-8.5	6.5-8.0
Sodium	mg / L	630	792	950	-	-	-	-	115	300	180	115
Sulphate	mg/L	1.66	4	18	-	-	-	<1000		400	250	250
TDS(EC)	mg / L	1918	2300	4040	-	-	-	4000	-	1000	500	500

The Quality of Associated Water

8.2 Investigation of Associated Water Quality - Roma and Fairview Fields

The water quality data for individual parameters is often significantly skewed with a few large outliers, though parameters such as pH , bicarbonate, total alkalinity and dissolved oxygen are symmetrically distributed. Distributions of relevant water quality parameters are shown in Figure 8-1 and Figure 8-2 for the Roma Field, and in Figure 8-3 to Figure 8-5 for the Fairview Field. Histograms have been truncated to highlight the majority of samples and to allow cross-comparison between CSG fields.

8.2.1 pH

pH ranges are similar between the two fields with median $\mathrm{pH} \sim 8.5$. It is likely to be buffered by the level of bicarbonate in the water and will tend to remain in the observed range as acids or bases are added to aqueous solution. The range of pH encountered can exceed 9 which would limit the direct use of the water for all uses (ANZECC \& ARMCANZ, 2000).

8.2.2 Conductivity

Roma Field associated water is typically more saline and hence has a higher EC than Fairview Field data. A significant proportion of Fairview data lies below $1500 \mu \mathrm{~S} / \mathrm{cm}$ though very low readings (below $340 \mu \mathrm{~S} / \mathrm{cm}$) are possibly due to incorrect readings such as the use of deciSiemens/cm instead of microSiemens/cm. However, there is a known strong gradient in EC at Fairview from fresher in the northwest of the field to more saline in the southeast. ARMCANZ \& ANZECC (2000) recommend guideline values for lowland aquatic ecosystems in the range $125-2200 \mu \mathrm{~S} / \mathrm{cm}$ but defer to local data. The trigger value for long term irrigation use is $650 \mu \mathrm{~S} / \mathrm{cm}$.

8.2.3 Sodium

Sodium ion concentrations have a similar range and distribution at both fields. However, typical concentrations appear to be 2-300 mg/L more at Roma than at Fairview. The majority of wells discharge water with sodium concentrations greater than the relevant trigger levels for irrigation ($115 \mathrm{mg} / \mathrm{L}$), recreation ($300 \mathrm{mg} / \mathrm{L}$) and drinking water supply ($180 \mathrm{mg} / \mathrm{L}$). There are no trigger values for sodium for the protection of aquatic ecosystems.

8.2.4 Chloride

The distributions of chloride ion concentrations are quite different at the two fields. Roma Field associated water contains much more chloride with almost all readings well above the trigger levels for irrigation ($175 \mathrm{mg} / \mathrm{L}$), drinking water supply ($250 \mathrm{mg} / \mathrm{L}$) and recreation ($400 \mathrm{mg} / \mathrm{L}$). No trigger levels exist for aquatic ecosystems or stock water.

At Fairview, almost all samples demonstrate chloride at levels below the trigger level for irrigation, drinking water supply and recreation.

8.2.5 Bicarbonate

Bicarbonate ion concentrations are similarly distributed with similar range at both well fields. However, the most frequent concentrations at Roma lie approximately $100-200 \mathrm{mg} / \mathrm{L}$ above those at Fairview.

The Quality of Associated Water

Figure 8-1 Roma field - associated water quality distributions

The Quality of Associated Water

Figure 8-2 Roma field - associated water quality distributions (continued)

The Quality of Associated Water

Figure 8-3 Fairview field - associated water quality distributions

The Quality of Associated Water

Figure 8-4 Fairview field - associated water quality distributions (ctd)

The Quality of Associated Water

Figure 8-5 Fairview field - associated water quality distributions (ctd)

8.2.6 Fluoride

Fluoride concentrations are distributed differently at each field with an asymmetric bell curve at Fairview and a relatively uniform distribution at Roma. The range of observations is similar at both sites. At both fields, approximately 75% of all samples lie above the trigger level for irrigation use ($1 \mathrm{mg} / \mathrm{L}$). Approximately 50% of samples lie above the trigger level for stock watering ($2 \mathrm{mg} / \mathrm{L}$) and regular exceedances of the trigger level for drinking water supply ($1.5 \mathrm{mg} / \mathrm{L}$) are also experienced. There are no trigger levels for the protection of aquatic ecosystems or for recreation.

8.2.7 Iron

Observations of iron concentrations at both fields indicate that associated water is typically below the relevant trigger level for irrigation ($0.2 \mathrm{mg} / \mathrm{L}$) and therefore suitable for other less sensitive uses including recreation and drinking water supply. There are significant spikes in each of the two histograms thought to be consistent with the limit of reporting of the tests undertaken. However, the range of iron concentration observations is quite large often exceeding trigger values for irrigation, recreation ($0.3 \mathrm{mg} / \mathrm{L}$) and drinking water supply ($0.3 \mathrm{mg} / \mathrm{L}$). This indicates that instead of discharge to grade, alternative water management options are required for some wells.

Dissolved iron in the ferrous state in CSG environments oxidizes with atmospheric air upon contact and precipitates iron oxides readily, creating TSS issues that can lead to fouling of re-injection formations and scaling of pipeline and vessel surfaces. Total Iron is not present in CSG associated water in Queensland at concentrations of environmental concern, but is of concern to operating practices at CSG petroleum facilities.

8.3 Investigation of Other Water Quality Parameters - Fairview Field

Other water quality parameters available for Fairview Field but not the Roma Field are discussed below:

8.3.1 Dissolved Oxygen

Dissolved oxygen demonstrates a symmetric distribution of sample values with the range from near zero to approximately $8 \mathrm{mg} / \mathrm{L}$ possibly explained by the range of conditions (including exposure to air) under which samples of associated water are taken. Approximately 75% of samples have less than $5 \mathrm{mg} / \mathrm{L}$ DO which is

The Quality of Associated Water

considered low for the maintenance of aquatic biota and below recommended ranges for recreation or drinking water supply.

8.3.2 Boron

Boron concentrations in associated water at Fairview Field are often well above the trigger value for aquatic ecosystems ($0.37 \mathrm{mg} / \mathrm{L}$) but almost always below $2 \mathrm{mg} / \mathrm{L}$. Direct use of associated water for stock watering is appropriate (trigger value $5 \mathrm{mg} / \mathrm{L}$), and for raw drinking water supply ($<4 \mathrm{mg} / \mathrm{L}$ trigger), but concentrations of Boron above $0.5 \mathrm{mg} / \mathrm{L}$ would not be recommended for irrigation. Concentrations above $1 \mathrm{mg} / \mathrm{L}$ are not recommended for (primary) recreation.

8.3.3 Ammonia

Almost all samples of associated water exceed the Central Queensland trigger value for the protection of aquatic ecosystems, but are all well below the national trigger value - of $0.9 \mathrm{mg} / \mathrm{L}$ (ANZECC \& ARMCANZ, 2000 - see the footnote on page 12) Ammonia levels almost always exceed the trigger level for recreation and exceed the trigger level for raw drinking water supply approximately 50% of the time. No trigger values exist for stock watering or irrigation.

8.3.4 Aluminium

Aluminium concentrations are predominantly below the laboratory limits of reporting ($0.1 \mathrm{mg} / \mathrm{L}$). However it should be noted the LOR is well above the WQO $(0.055 \mathrm{mg} / \mathrm{L})$. It is concluded that there is no evidence of elevated aluminium in the water samples. Aluminium concentrations in associated water are unlikely to affect stock watering, irrigation, recreation or drinking water supply for the vast majority of wells.

8.3.5 Cadmium

Cadmium level distribution shows two clear peaks representing the limits of reporting adopted for the tests (0.001 and $0.005 \mathrm{mg} / \mathrm{L}$). Unfortunately both of these limits are well above the WQO for protection of aquatic ecosystems $(0.0002 \mathrm{mg} / \mathrm{L})$. Provided there is no confusion in units of reporting, it is concluded that there is insufficient information to decide whether there is elevated cadmium in the water samples.

8.3.6 Copper

Approximately 25% of copper concentration readings are at the limits of reporting ($0.001 \mathrm{mg} / \mathrm{L}$ or $0.01 \mathrm{mg} / \mathrm{L}$). Of the remainder, most exceed the trigger value for the protection of aquatic ecosystems ($0.0014 \mathrm{mg} / \mathrm{L}$). However, ANZECC \& ARMCANZ (2000) suggest that the trigger level should be modified upwards to $\sim 0.0126 \mathrm{mg} / \mathrm{L}$ due to the high alkalinity and hardness of associated water. Almost all samples have concentrations of copper below this modified trigger value. Comparison with stock irrigation, recreation and drinking water triggers suggest that most wells produce water with copper concentrations suitable for these uses.

8.3.7 Zinc

The majority of samples have zinc levels at or above the MTV ($0.008 \mathrm{mg} / \mathrm{L}$). However, the toxicity of zinc degreases with increasing hardness, therefore in accordance with ANZECC \& ARMCANZ (2000) the trigger value may be modified to approximately $0.07 \mathrm{mg} / \mathrm{L}$. The majority of samples have zinc concentrations below this level. Comparison with trigger values for stock watering, irrigation, recreation and drinking water supply indicate most associated water could be used for these purposes.

The Quality of Associated Water

8.3.8 Lead

The majority of associated water samples have lead concentrations above the MTV ($0.0034 \mathrm{mg} / \mathrm{L}$). However, ANZECC \& ARMCANZ (2000) suggest this trigger level be modified due to the hardness of the water (to approximately $0.08 \mathrm{mg} / \mathrm{L}$). Lead concentrations are generally below this modified value. Comparison with stockwatering, irrigation and recreation triggers suggest that most wells produce water with lead concentrations suitable for these uses.

8.3.9 Additional Ungraphed Parameters

Other parameters of interest that have not been graphed include mercury, molybdenum, chromium, cobalt, cyanide and phosphorus.

Mercury, Molybdenum, Chromium, Cobalt, and Cyanide

Further investigation of data for these parameters indicates that all samples (cyanide) or the vast majority of samples (Mo, $\mathrm{Hg}, \mathrm{Cr}, \mathrm{Co}$) are reported at the limit of reporting which is variously at, above or below the MTV. No significant variance from the relevant MTVs is identified.

Phosphorus

Phosphorus data also suffers from the various limits of reporting used. However, there appears to be some evidence that about 25% of phosphorus samples exceed the trigger value for aquatic ecosystems and irrigation ($0.05 \mathrm{mg} / \mathrm{L}$). No trigger values are available for other uses.

8.3.10 Notes on Other Parameters

Coliforms

Microbiological sampling indicates that associated water is very low in coliforms (1 count per 100 mL).

Nitrogen

Results for nitrate and nitrite have not been included in the above discussion and have been separated from the remainder of the statistics in Appendix E due to concerns regarding units, limits of reporting, analysis types and database entry. The statistics (nitrate and nitrite only) indicate that associated water is always well below guideline values with the exception of one very large reading (thought to be an error) for nitrate. Apart from ammonia and phosphorus (discussed above) associated waters are very low in nutrients.

Petroleum Hydrocarbons

Characterization of Queensland CSG associated water indicates that volatile hydrocarbons are not present, and a narrow band of hydrocarbon compounds in the C10 to C36 range are the only detected hydrocarbons in one or two samples (Appendix E). These may represent native hydrocarbons in the coal seams, or more likely they represent residual hydrocarbons used in the manufacture of drilling pipe, drilling fluids, or a number of related petroleum well field activities that become dissolved in associated water.

Release of hydrocarbons dissolved in associated water to the environment may cause nuisance oil sheens or aquatic toxicity. Hydrocarbons at low concentrations in associated water may also present operational difficulties, requiring oil/water separation.

The Quality of Associated Water

Section 8

8.4 Summary

Associated water produced at the Fairview and Roma CSG fields is characterised by:

- Relatively high pH, low dissolved oxygen, and low to moderate salinity.
- Elevated sodium, fluoride and boron concentrations.
- No hydrocarbons
- No coliforms.
- Low chloride concentrations at Fairview.
- Elevated chloride concentrations at Roma.
- Elevated ammonia concentrations (compared with Queensland guidelines but well below national guidelines).
- Elevated copper or zinc concentrations for some wells.
- Low phosphorus and iron concentrations for most wells.
- Low nutrients (with the exception of ammonia and phosphorus).

In addition, data from the Fairview field indicates that typically associated water has a temperature in the order of 40 degrees Celsius.

The relevance of these findings is discussed in terms of surface water environments in the next Section.

Discussion and Conclusions

9.1 Comparison of Surface and Associated Water Quality

9.1.1 Surface Water Quality

In Sections 5, 6 and 7 the water quality of existing pre-development surface waters was investigated and it was found that these waters are:

- \quad Subject to a greater range of pH than MTVs.
- Subject to significant depletions of dissolved oxygen corresponding to elevated chemical oxygen demand and very high biological oxygen demand. The DO sags are below the levels where fish mortality is likely.
- Subject to a wide range of variability in EC with some areas experiencing $\sim 1500 \mu \mathrm{~S} / \mathrm{cm}$ regularly, but most streams have EC circa $300 \mu \mathrm{~S} / \mathrm{cm}$ consistent with the guideline trigger value for protection of aquatic ecosystems of $340 \mu \mathrm{~S} / \mathrm{cm}$.
- Sodium is normally well below the MTV $(115 \mathrm{mg} / \mathrm{L})$ with observed concentrations typically in the range 30 $40 \mathrm{mg} / \mathrm{L}$.
- Most chloride concentrations are below the MTV ($175 \mathrm{mg} / \mathrm{L}$) with observed concentrations typically in the range $1-40 \mathrm{mg} / \mathrm{L}$ circa Roma, and typically $10-20 \mathrm{mg} / \mathrm{L}$ in the Upper Dawson and Comet-Brown catchments.
- Fluoride concentrations are all below the MTV (1 mg/L).
- Boron is generally below the recommended MTV, and always below this level for the Upper Dawson and Comet-Brown catchments. However, the maximum recorded concentration in Yuleba Creek (Roma Field) is 2.5 times the MTV.
- Waters are typically nutrient enriched with elevated ammonia, phosphorus, turbidity, suspended solids and nitrogen levels.
- Copper concentrations are consistently higher than the guideline trigger value for protection of aquatic ecosystems ($0.0014 \mathrm{mg} / \mathrm{L}$) for almost all streamlines. Application of the AWQG suggests a revised WQO should be $0.007 \mathrm{mg} / \mathrm{L}$.
- Iron is elevated with widespread exceedance of the recommended MTV ($0.2 \mathrm{mg} / \mathrm{L}$).
- Zinc regularly exceeds the MTV ($0.008 \mathrm{mg} / \mathrm{L}$) across all catchments with maximum observed concentration $0.034 \mathrm{mg} / \mathrm{L}$.
- Lead exceedances of MTV are evident in approximately 50% of all sites across all catchment. Maximum observed concentration is $0.007 \mathrm{mg} / \mathrm{L}$.

Discussion and Conclusions

9.1.2 Associated Water Quality and Likely Impacts of Discharge

Table 9-1 contrasts the median quality of associated water from Fairview and Roma with surface waters.
Table 9-1 Associated water quality compared with existing environments

Water Quality Parameter	Units	Median WQ Fairview Assoc Water	Median WQ Roma Assoc Water	CondamineBalonne Median WQ ${ }^{1}$	Upper Dawson Median WQ	CometBrown Median WQ ${ }^{2}$
pH	units	8.6	8.7	7	7	7.8
Temperature	${ }^{\circ} \mathrm{C}$	38	-	23	25.5	23.0
Dissolved Oxygen	mg/L	4.1	-	6.1	-	7.9
Electrical Conductivity (EC)	$\mu \mathrm{S} / \mathrm{cm}$	1840	3610	238	215	164.3
Total Dissolved Solids (TDS)	mg/L	975	2300	152	146	167
Total Suspended Solids (TSS)	mg/L	10	-	86	75	612
Sodium	mg/L	466	792	22.6	11	16.8
Chloride	mg/L	55	701	11.2	8	13.6
Fluoride	mg / L	1.9	2.0	0.1	0.1	0.1
Boron (total)	mg/L	0.7	-	0.05	0.023	0.032
Ammonia as N	mg / L	0.41	-	0.002	0.380	0.018
Iron (total)	mg/L	0.27	-	0.53	-	-
Bicarbonate Alkalinity	mg/L	788	821	101.5	70	140
Sodium Absorption Ratio $(\mathrm{SAR})^{3}$	-	438	$600(75)^{4}$	<2	1.2	<1

NOTES
1 Bungil Creek
2 Comet River d/s Rolleston
3 By calculation
4 Roma water quality data has two SAR peaks one near 600 and the other near 75

pH

The pH of associated water is typically more alkaline than surface waters but well within the range of natural variability. No significant impacts are expected.

Dissolved Oxygen

Median dissolved oxygen levels of associated water are lower than surface waters but will equilibrate quickly upon exposure to the atmosphere and land surface. Investigations at Fairview (URS, 2008) indicate that waters equilibrate within approximately 500 m of discharge point.

Temperature

The temperature of associated water is significantly higher than surface waters particularly during the dry season. Investigations of small discharges at Fairview suggest that temperatures equilibrate within approximately 500 m of the discharge point (URS, 2008).

Discussion and Conclusions

Electrical Conductivity

The electrical conductivity of associated water is typically well above the background levels instream and significant dilution or treatment will be required to maintain a low risk of discharge to grade.

Sodium

Sodium concentrations are much higher in associated water and since there is little calcium or magnesium the Sodium Adsorption Ratios (SARs) are much higher than in surface waters. High SAR has the potential to degrade soil structure by breaking down clay aggregates, making soils more erodible, reducing water infiltration, and affecting plant growth (ARMCANZ \& ANZECC, 2000).

Chloride

Chloride levels from Fairview are well within the recommended water quality objective and the range of observed concentrations in natural streams. No dilution of associated water is required at Fairview Field.

At Roma, chloride concentrations in associated water are much higher than the MTV and the surrounding streams. While no particular toxic effects are associated directly with chloride, its contributions to salinity and ionic balance in water can produce indirect effects including increasing the toxicity of some parameters. High chloride concentrations ($25-40 \mathrm{mg} / \mathrm{L}$) can lead to foliar damage on irrigated tobacco, but most crops appear to be less sensitive and can entertain concentrations between 0 and $350 \mathrm{mg} / \mathrm{L}$ with a low risk of damage (ARMCANZ \& ANZECC, 2000). Only $\sim 25 \%$ of Roma associated water samples fit into this category.

Significant dilution or treatment of associated water is required at Roma Field.

Fluoride

Fluoride occurs naturally usually in the form of the mineral fluorspar. The main environmental impacts related to fluoride compounds are in respect of hydrogen fluoride, which immediately converts to hydrofluoric acid on contact with moisture. Under normal ranges of pH in surface waters reaction to hydrofluoric acid is very unlikely to occur.

Elevated levels of fluoride (> $2 \mathrm{mg} / \mathrm{L}$) can cause mottling of tooth enamel in humans and animals (Chapman, 1996).

Approximately 50% of associated water samples contain much higher concentrations of fluoride compared with guidelines or surrounding streams. The vast majority of samples lie below $5 \mathrm{mg} / \mathrm{L}$ but this is substantially higher than national trigger values for irrigation ($1 \mathrm{mg} / \mathrm{L}$), stock watering ($2 \mathrm{mg} / \mathrm{L}$) and recreation ($1.5 \mathrm{mg} / \mathrm{L}$). As a result dilution or mixing of at least 50% of associated waters will be necessary to meet guideline values.

Boron

Boron is a widespread naturally occurring trace element of igneous rocks and is commonly found in sedimentary rocks of marine origin (ANZECC \& ARMCANZ, 2000). Associated water is typically high in boron compared with background and guideline concentrations. Almost all samples of associated water contain boron at less than $2 \mathrm{mg} / \mathrm{L}$ but this is an order of magnitude higher than guidelines ($0.37 \mathrm{mg} / \mathrm{L}$). Guideline values are based on examination of toxicity tests on fish, crustacean, macrophytes and algae. Some fish and algae may be subject to lethal effects below around $1 \mathrm{mg} / \mathrm{L}$. Some macrophytes experience toxic effects at around $1 \mathrm{mg} / \mathrm{L}$.

Discussion and Conclusions

Section 9

The main forms of boron in freshwater are borates and the main mechanism for removal is adsorption onto suspended sediments and clays. Due to the turbidity of surface waters in the project area it is likely that toxicity will be reduced, but significant dilution of this parameter is required for conservative management.

Nutrients

Ammonia levels in associated water are above guideline values but certainly within the range of observed concentrations in the surface waters. Free ammonia is of concern due to aquatic toxicity. However, since the oxidized forms of nitrogen (nitrite and nitrate) are not present at significant concentrations it is clear that a low redox environment is likely to exist in coal seams at the source of CSG associated water. Free ammonia in CSG associated water, if present due to the typically alkaline pH of associated water, is readily removed by air stripping upon atmospheric contact or by shifts in pH towards neutral conditions which shift the free ammonia equilibrium to the dissolved ammonium ion. Johnson (2007) investigated the toxicity of ammonia in associated waters and found that increased pH reduced ammonia toxicity.

Copper

Approximately 75\% of associated water contains copper at levels higher than trigger values. Similarly, surface waters regularly exhibit concentrations well in excess of the MTV. The laboratory limit of reporting for copper $(0.01 \mathrm{mg} / \mathrm{L})$ is greater than the guideline trigger value.

ANZECC \& ARMCANZ (2000) indicates that the toxicity of copper is significantly reduced by hardness and for the hardness evident in associated water an adjusted MTV of $0.126 \mathrm{mg} / \mathrm{L}$ is appropriate. Almost all associated water samples lie under this concentration suggesting there is a small risk of toxic effects from the observed copper concentrations.

Iron

Iron concentrations in associated water are similar in range to those observed at the surface. Both of these sets of data exceed recommended water quality guidelines. Most observations of iron in associated water are less than $1 \mathrm{mg} / \mathrm{L}$. Iron does not present a risk to livestock or ecosystem health at the concentrations detected. The main issues associated with high levels of iron are precipitation and biofouling resulting in blockages of irrigation equipment (ANZECC \& ARMCANZ, 2000).

Zinc

The water quality objective for zinc is regularly exceeded across all surface waters and catchments. Most concentrations in associated water are well below this level. No significant increased in toxic effects from zinc are expected with associated water discharge, especially with the increased hardness (ANZECC \& ARMCANZ, 2000 suggest raising the trigger value from $0.008 \mathrm{mg} / \mathrm{L}$ to around $0.07 \mathrm{mg} / \mathrm{L}$ for the high level of alkalinity observed in associated water).

Zinc is an essential trace element that adsorbs to suspended material. Toxicity of zinc can increase with low dissolved oxygen (ANZECC \& ARMCANZ, 2000). However, levels of organic matter found in most freshwater streams are generally sufficient to remove zinc toxicity. Given the amount of suspended sediment and relatively low zinc concentrations found in these streams it is unlikely that zinc would present a significant water quality issue.

Discussion and Conclusions

Section 9

Lead

The majority of associated water contains lead concentrations at or below those observed at surface and below $0.01 \mathrm{mg} / \mathrm{L}$, although some exceptions are evident up to $1 \mathrm{mg} / \mathrm{L}$ (and these need to be checked for units). ANZECC(2000) suggests modification of lead toxicity by a factor of approximately 23 for very hard water consistent with the alkalinity observed in associated water. This would bring the relevant guideline value up from $0.034 \mathrm{mg} / \mathrm{L}$ to approximately $0.08 \mathrm{mg} / \mathrm{L}$. It is concluded that there is unlikely to be lead toxicity arising from associated water discharges.

9.2 Conclusions

There is a wide degree of variation in the quality of associated water across fields and between wells. It is necessary to undertake water quality "finger printing" in order to understand the characteristics of the water that is proposed to be discharged in the context of the local surface water environments. Where necessary alternative forms of management will be required possibly including dilution and treatment.

Adequate management of water quality variability is required to ensure appropriate management of discharge to grade. In the USA, many wells discharge to ponds where water is mixed and held for an undefined period of time. Discharges to grade are made from these holding ponds.

The key parameters of concern in associated water in the GLNG are:

- Salinity (electrical conductivity)
- Sodium
- Chloride
- Fluoride
- Boron

In addition, due care needs to be taken to manage pH , dissolved oxygen, suspended solids and temperature.

GLNG Project environmental values and associated	
Limitations	Section 10

URS Australia Pty Ltd (URS) has prepared this report in accordance with the usual care and thoroughness of the consulting profession for the use of Santos Ltd and only those third parties who have been authorised in writing by URS to rely on the report. It is based on generally accepted practices and standards at the time it was prepared. No other warranty, expressed or implied, is made as to the professional advice included in this report. It is prepared in accordance with the scope of work and for the purpose outlined in the Proposal dated 12 October 2007.

The methodology adopted and sources of information used by URS are outlined in this report. URS has made no independent verification of this information beyond the agreed scope of works and URS assumes no responsibility for any inaccuracies or omissions. No indications were found during our investigations that information contained in this report as provided to URS was false.

This report was prepared between October 2007 and January 2009 and is based on the conditions encountered and information reviewed at the time of preparation. URS disclaims responsibility for any changes that may have occurred after this time.

This report should be read in full. No responsibility is accepted for use of any part of this report in any other context or for any other purpose or by third parties. This report does not purport to give legal advice. Legal advice can only be given by qualified legal practitioners.

ANZECC \& ARMCANZ (1994). National Water Quality Management Strategy, Environment Australia
ANZECC \& ARMCANZ (2000). Australian and New Zealand Guidelines for Fresh and Marine Water Quality, National Water Quality Management Strategy No. 4, Environment Australia.

Chapman D. (1998). Water Quality Assessments A guide to the use of biota, sediments and water in environmental monitoring, Second Edition, UNESCO, WHO, UNEP, Published by E \& FN Spon, ISBN 0-419-21590-6

Department of Natural Resources and Water (July 2007), Condamine and Balonne draft resource operations plan, http://www.nrw.qld.gov.au/wrp/pdf/condamine/con balonne draft rop amended 1.pdf, viewed 7 October 2008

DNRM (2006), Fitzroy Basin Resource Operations Plan, Department of Natural Resources and Mines, April 2006

EnviroTest (2003), Biological monitoring of macroinvertebrate communities in the Upper Dawson River September 2003, Consultants report to Tipperary Oil and Gas Australia, November 2003

EnviroTest (2004a), Biological monitoring of macroinvertebrate communities in the Upper Dawson River April 2004, Consultants report to Tipperary Oil and Gas Australia, June 2004

EnviroTest (2005a), River Health Assessment of the Upper Dawson River November 2004, Consultants report to Tipperary Oil and Gas Australia, March 2005

EnviroTest (2005b), River Health Assessment of the Upper Dawson River May 2005, Consultants report to Tipperary Oil and Gas Australia, August 2005

EnviroTest (2006a), River Health Assessment of the Upper Dawson River May 2006, Consultants report to Santos Ltd, June 2006

EnviroTest (2006b), River Health Assessment of the Upper Dawson River October 2006, Consultants report to Santos Ltd, December 2006

Henderson C (2000). State of the Rivers. Comet, Nogoa and Mackenzie Rivers. An Ecological and Physical Assessment of the Condition of Streams in the Comet, Nogoa and Mackenzie River Catchments. Department of Natural Resources, Brisbane, June 2000

Johnson LA, 2007. Longitudinal Changes in Potential Toxicity of Coalbed Natural Gas Produced Water Along Beaver Creek in the Powder River Basin, Thesis presented in completion of a Master of Science Degree University of Wyoming, November 2007, Pages i-165.

Queensland EPA (2005). Establishing Draft Environmental Values and Water Quality Objectives, Resource Assessment Guideline, Queensland EPA 02/05 Version 1.1

Queensland EPA (December 1999) Water Quality Sampling Manual, third edition, http://www.epa.qld.gov.au/publications/p00330aa.pdf/Water quality sampling manual for use in testing for compliance with the Environmental Protection Act 1994.pdf, viewed 8 October 2008

Simmons and Bristow (2007). River Health Assessment of the Upper Dawson River April 2007, Consultancy report to Santos TOGA Pty Ltd, June 2007.

Simmons and Bristow (2007b). Field Survey, Proposed FV77 Discharge Streamline, December 2007
Simmons and Bristow (2008). River Health Assessment of the Upper Dawson River November 2007, Consultancy report to Santos TOGA Pty Ltd, March 2008.

Telfer D. (1995). State of the Rivers. Dawson River and Major Tributaries. An Ecological and Physical Assessment of the Condition of Streams in the Dawson River Catchment. Department of Primary Industries, Resource Management, Brisbane.

Figures

Condamine-Balonne Catchment Water Quality

Table A1
Table A2 Condamine-Balonne Catchment URS Analytical Results Summary
Table A3 Condamine-Balonne Catchment URS Analytical Results
Table A4 Condamine-Balonne Catchment DNRW Water Quality Results Summary
Table A5 Condamine-Balonne Catchment DNRW Water Quality Results Bungil Creek at Tabers
Table A6 Condamine-Balonne Catchment DNRW Water Quality Results Balonne River at Surat
Table A7 Condamine-Balonne Catchment DNRW Water Quality Results Yuleba Creek at Forestry

Table A1
Upper Balonne Catchment - URS Water Quality Parameters
GLNG CSG Surface Water

Site ID		Date/Time	Water Quality Parameters					
Number	Name	Date	$\begin{aligned} & \text { Time } \\ & \text { (EST) } \end{aligned}$	EC ($\mu \mathrm{S} / \mathrm{cm}$)	$\begin{gathered} \mathrm{DO} \\ (\mathrm{mg} / \mathrm{L}) \end{gathered}$	pH	Turbidity (NTU)	Temp (${ }^{\circ} \mathrm{C}$)
			WQO	325	na	6.5-8.0	50	na
Bungil Creek \& Tributaries								
R005	Eumamurrin Ck @ Carnarvon Hwy	31-Jan-08	10:00	244	4.35	6.97	24	24.3
R005	Eumamurrin Ck @ Carnarvon Hwy	04-Mar-08	11:00	135	3.8	6.8	145	23.6
R005	Eumamurrin Ck @ Carnarvon Hwy	14-May-08	11:26	198	4.64	7.58	150	16.9
R006	Bungil Ck @ Euminah Rd	31-Jan-08	10:25	225	4.22	6.8	38	25.7
R006	Bungil Ck @ Euminah Rd	04-Mar-08	10:00	105	2.64	6.7	212	22.8
R006	Bungil Ck @ Euminah Rd	14-May-08	10:52	-	-	-	-	
R028	Bungil Ck @ Tabers	04-Mar-08	17:40	232	6.93	6.93	307	24.1
R028	Bungil Ck @ Tabers	14-May-08	10:01	1287	6.37	8.19	27	15.7
R003	Mooga Mooga Ck @ Roma-Taroom Rd	31-Jan-08	9:00	285	2.3	6.64	66	26.3
R003	Mooga Mooga Ck @ Roma-Taroom Rd	04-Mar-08	9:30	500	2.24	6.6	47	23.4
R003	Mooga Mooga Ck @ Roma-Taroom Rd	14-May-08	9:34		-	-	-	
R002	Bungil Ck @ Burton Rd	31-Jan-08	8:30	744	6.12	7.35	10	24
R002	Bungil Ck @ Burton Rd	04-Mar-08	8:10	275	5.2	7.2	280	20.5
R004	Bungil Ck @ Carnarvon Hwy	31-Jan-08	-	568	6.65	7.25	10	24.9
R004	Bungil Ck @ Carnarvon Hwy	04-Mar-08	15:00	148	6.3	7.8	223	24.5
R004	Bungil Ck@ Carnarvon Hwy	14-May-08	9:22	1418	3.05	7.32		14.9
R001	Bungil Ck @ Warrego Hwy	31-Jan-08	7:29	367	2.4	6.9	116	24
R001	Bungil Ck @ Warrego Hwy	04-Mar-08	-	193	4.32	7.39	151	23.9
R001	Bungil Ck @ Warrego Hwy	15-May-08	8:45	350	3.37	6.72	58	15.9
R012	Bungil Ck @ Dunkeld Rd	31-Jan-08	15:05	201	5.73	7.35	1122	27
R012	Bungil Ck @ Dunkeld Rd	05-Mar-08	12:00	288	6.31	7.12	218	21.5
R012	Bungil Ck @ Dunkeld Rd	14-May-08	16:17	305	2.9	6.35	108	18.7
R013	Bungil Ck @ Maranoa Rd	31-Jan-08	16:00	172	5.42	6.97	1645	27.7
R013	Bungil Ck @ Maranoa Rd	05-Mar-08	12:40	201	6.65	7.32	429	22.6
R013	Bungil Ck @ Maranoa Rd	15-May-08	14:03	327	7.44	6.96	117	19.2
Bungeworgorai Creek \& Tributaries								
R007	Spring Ck @ Orallo Rd	31-Jan-08	11:20	199	5.14	7.2	278	27.5
R007	Spring Ck @ Orallo Rd	04-Mar-08	12:00	301	5.8	7.9	98	28.7
R007	Spring Ck @ Orallo Rd	14-May-08	12:05	-	-	-	-	-
R008	Bungeworgorai Ck @ Orallo Rd	04-Mar-08	12:20	446	5.7	8	76	26.8
R008	Bungeworgorai Ck@ Orallo Rd	31-Jan-08	11:45	283	6.74	7.2	62	27.5
R008	Bungeworgorai Ck @ Orallo Rd	00-Jan-00	12:25	467	11.84	8.03	30	20.5
R024	Bungeworgorai Ck @ Six Mile Rd	01-Feb-08	18:43	363	6.2	7.21	228	28.2
R024	Bungeworgorai Ck@ Six Mile Rd	05-Mar-08	10:20	348	7.9	7.48	119	20.6
R024	Bungeworgorai Ck @ Six Mile Rd	14-May-08	15:12	535	7.22	6.7	27	21.2
R010	Dargal Ck @ Hodgsons Lane North	31-Jan-08		205	3.12	6.48	671	26.8
R010	Dargal Ck @ Hodgsons Lane North	04-Mar-08	13:15	3	2.6	6.9	535	24.3
R010	Dargal Ck @ Hodgsons Lane North	14-May-08	13:30	292	2.32	6.5	>1000	16.5
R009	Bungeworgorai Ck @ Dargal Rd	31-Jan-08	12:33	334	6.15	7.2	98	26.8
R009	Bungeworgorai Ck@ Dargal Rd	04-Mar-08	14:15	251	6.02	7.76	51	24
R009	Bungeworgorai Ck @ Dargal Rd	14-May-08	14:05	-	-	-	-	-
Wallumbilla Creek \& Tributaries								
R014	Wallumbilla Ck @ Roma Condamine Rd	31-Jan-08	17:30	178	4.73	6.85	282	27.7
R014	Wallumbilla Ck @ Roma Condamine Rd	04-Mar-08	12:40	202	1.92	7.13	282	19.8
R014	Wallumbilla Ck @ Roma Condamine Rd	15-May-08	12:00	321	3.53	6.6	187	16.3
R016	Wallumbilla Ck @ Yarrawonga Rd	01-Feb-08	10:00	206	6.22	6.91	164	28.3
R016	Wallumbilla Ck@ Yarrawonga Rd	04-Mar-08	11:30	261	6.64	7.23	71	22.6
R016	Wallumbilla Ck @ Yarrawonga Rd	15-May-08	9:45	376	6.63	6.25	277	177
R017	Wallumbilla Ck @ Donnabar	04-Mar-08	15:05	156	3.58	6.66	86	23
R017	Wallumbilla Ck @ Donnabar	01-Feb-08		-	-	-	-	-
R017	Wallumbilla Ck @ Donnabar	15-May-08	10:40	188	6.51	5.99	119	18.8
R018	Pickanjinnie Ck @ Wallumbilla to Roma Condamine Rd	01-Feb-08	10:41	123	2.98	6.39	700	25.3
R018	Pickanjinnie Ck @ Wallumbilla to Roma Condamine Rd	04-Mar-08	11:50	192	6.2	7.27	102	24.4
R018	Pickanjinnie Ck @ Wallumbilla to Roma Condamine Rd	15-May-08	11:15	308	7.03	6.67	77	18.6
Yuleba Creek \& Tributaries								
R023	Cattle Ck @ Cattle Ck Rd	01-Feb-08	15:25	112	5.09	6.51	84	29
R023	Cattle Ck @ Cattle Ck Rd	05-Mar-08	15:45	112	7.7	7.29	78	25.7
R023	Cattle Ck @ Cattle Ck Rd	15-May-08	11:50	92	6.95	6.61	250	18.7
R022	Kangaroo Ck @ Wallumbilla North Rd	01-Feb-08	15:00	130	2.8	6.58	160	28.2
R022	Kangaroo Ck @ Wallumbilla North Rd	05-Mar-08	15:00	114	1.92	6.98	124	22.5
R022	Kangaroo Ck @ Wallumbilla North Rd	15-May-08	11:20	162	7.04	7	92	18.8
R021	Yuleba Ck @ Warrego Hwy	01-Feb-08		-	-	-	-	-
R021	Yuleba Ck @ Warrego Hwy	06-Mar-08	9:20	126	3.77	6.3	202	19.2
R021	Yuleba Ck @ Warrego Hwy	13-May-08		178	2.66	6.12	108	15.8
R019	Yuleba Ck @ Roma Condamine Rd	01-Feb-08	11:32	124	3.61	6.5	434	25.1
R019	Yuleba Ck @ Roma Condamine Rd	04-Mar-08	13:20	213	4	7.22	366	23.6
R019	Yuleba Ck @ Roma Condamine Rd	15-May-08	12:45	989	2.53	7.2	471	18.4
Blyth Creek \& Tributaries								
R026	Blyth Ck @ Coxon Ck Rd\#1	05-Feb-08	17:15	333	10.58	8.55	88	31
R026	Blyth Ck @ Coxon Ck Rd \#1	05-Mar-08	17:15	397	7.03	7.83	3268	26.8
R026	Blyth Ck @ Coxon Ck Rd \#2	05-Feb-08	17:15	259	8.35	8.55	83	32.1
R026	Blyth Ck @ Coxon Ck Rd\#1-2	15-May-08	10:40	-	-	-	-	-
R027	Coxon Ck @ Coxon Ck Rd	05-Feb-08		-	-	-	-	-
R027	Coxon Ck @ Coxon Ck Rd	15-May-08	10:05	-	-	-	-	-
R025	Blyth Ck @ Nth Pickanjinee Rd	05-Feb-08	9:30	267	5.29	7.83	-	32.5
R025	Blyth Ck @ Nth Pickanjinee Rd	05-Mar-08	16:50	-	-	-	-	-
R025	Blyth Ck @ Nth Pickanjinee Rd	15-May-08	10:20	-	-	-	-	-
R015	Blyth Ck @ Warrego Hwy	01-Feb-08	9:00					
R015	Blyth Ck @ Warrego Hwy	04-Mar-08	10:00	193	6.65	6.78	72	21.4
R015	Blyth Ck @ Warrego Hwy	15-May-08	9:15	-	-	-	-	-
R011	Blyth Ck @ Carnarvon Hwy	31-Jan-08	14:36	156	5.45	6.76	227	28.1
R011	Blyth Ck @ Carnarvon Hwy	14-May-08	16:50	280	8.47	6.17	78	18.2

Notes:
Parameters not taken, creek dry or no access possible
Bold Greater than relevant WQO (refer table xx)

Table A2
Roma - URS Surface Water Anaiytical Results Summary

Max
$\frac{\text { NOTES }}{}$

For the purposes of calcula
MTV - minimum trigger value

Table A3
Roma - URS Surface Water Analytical Results

NOTES
CHK-Lab Dupicate sample
LOR- Limito of reporting
LOR- Linit of reporting
MTV - minimum triger value

Table A4
GLNG CSG Surface Water
Roma - DNRW Surface Water Analytical Results Summary

Parameter	Physico-Chemical Parameters												Nutrients									
	Colour True	Conductivity @ 25C	Conductivity @ 25C FLD	Dissolved Oxygen FLD	pH	pH FLD	Air Temp	Water Temp	Turbidity	Turbidity FLD	Total Diss. Solids	Total Suspended Solids	Chlorophyll- a	Nitrate as NO3	Nitrate + nitrite as N - total	$\begin{gathered} \text { Ammonia } \\ \text { as } N- \\ \text { soluble } \end{gathered}$	Faecal Coliform	Kjeldahl Nitrogen	Total Nitrogen	Nitrate + nitrite as N - soluble	Total React P sol	Total Phosphorus as P
Units	Hazen units	$u 5 / \mathrm{cm}$	uS/cm	mg/L	pH units	pH units	${ }^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{C}$	NTU	NTU	mg/L	mg/L	ug/L	mg/L	mg/L	mg/L	$\begin{gathered} \hline \text { CFU/100 } \\ \mathrm{ml} \end{gathered}$	mg/L	mg/L	mg/L	mg/L	mg/L
WQO	325	325	325		6.5-8.0	6.5-8.0		$\begin{array}{\|c\|} \hline \text { 20\%ile- } \\ 80 \% \text { ile } \\ \hline \end{array}$	50	50	500	10	5	0.05		0.01			0.5			0.05
Bungil Creek Tabers																						
Number	31	41	30	21	40	24	21	40	34	21	41	42	0	30	1	2	0	10	17	2	2	27
Minimum	4.00	66.30	65	3.70	6.80	6.60	8.50	8.70	1.10	4.70	41	5	0	0.27	0.34	0.002	0	0.39	0.43	0.002	0.06	0.01
Median	30	160.3	227	6.9	7.5	7.8	23.8	22.15	100	58.05	110	96.5		1.9	0.3356	0.002		0.83	1.212	0.002	0.0615	0.2
Maximum	200	1890	1647	14.20	8.50	8.70	34.50	28.40	700	>1000	1306	1500	0	4.20	0.34	0.002	0	2.93	2.51	0.002	0.06	0.68
Balonne River Surat																						
Number	6	6	0	0	6	0	0	0	6	0	6	6	0	6	0	1	0	0	9	1	1	9
Minimum	2	74	\#REF!	\#REF!	6.81	\#REF!	\#REF!	0	583		53	148		1.40		0.01			0.92	0.39	0.04	0.32
Median	9	95			6.88				1295		67	857.5		2.35		0.009			1.7	0.39	0.0355	0.62
Maximum	14	154	\#REF!	\#REF!	7.24	\#REF!	\#REF!	0	3620		97	2810		3.80		0.01			3.60	0.39	0.04	1.60
Yuleba Creek Forestry																						
Number	5	21	1	1	17	1	5	20	15	1	11	14	2	10	1	3	3	2	3	3	3	5
Minimum	16	72	\#REF!	\#REF!	6.6	\#REF!	22.1	12	80		54	10	9	0.5		0.018	18	1.255	1.6	0.037	0.008	0.27
Median	70	164			7.4		29.4	24.95	245		107	107	18.5	1.475		0.02	70	1.4915	1.9	0.07	0.014	0.39
Maximum	92	455	\#REF!	\#REF!	7.9	\#REF!	38.9	29.5	802		250	360	28	4		0.037	110	1.728	2.1	0.25	0.03	0.55

Table A4
GLNG CSG
Roma - DNF

	Major Ions								Metals								Alkalinity					
Parameter	Calcium as Ca soluble	Chloride as Cl	Hydrogen as H	Magnesium as Mg soluble	Potassium as K	$\left\lvert\, \begin{gathered} \text { Sodium as } \\ \mathrm{Na} \end{gathered}\right.$	Sulphate as SO4	Total Diss. Ions	$\begin{gathered} \text { Aluminium } \\ \text { as AI } \\ \text { soluble } \end{gathered}$	$\begin{aligned} & \text { Boron } \\ & \text { as B } \end{aligned}$	Copper as Cu soluble	Flouride as F	Iron as Fe soluble	$\begin{array}{\|c\|} \hline \text { Manganese } \\ \text { as Mn soluble } \\ (\mathrm{mg} / \mathrm{L}) \end{array}$	$=\begin{gathered} \text { Silica as } \\ \mathrm{SiO}_{2} \\ \text { soluble } \end{gathered}$	Zinc as Zn soluble	Total Alkalinity as CaCO 3	Total Alkalinity as CaCO3 FLD	Hydroxide as OH	Carbonate as CO3	Bicarbonate as HCO 3	Hardness as CaCO 3
Units	mg/L	mg / L	mg / L	mg/L	mg / L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L											
WQO	1000	175				115	400		0.055	0.37	0.0014	1	0.2			0.008						
Bungil Creel Number	41	38	2	40	40	41	37	41	22	23	16	34	0	0	0	0	41	2	11	32	41	40
Minimum	4.30	2.55	0.10	1.10	2.2	5.6	1	50.16	0.01	<0.02	<0.01	<0.02	0	0	0	0	25.00	70.80	0.01	0.02	21.50	15.50
Median	14.6	10.65	1.35	3.25	5	19	6.3	132.7	0.05	0.05	0.01	0.1					71.4	134.4	0.01	0.39	86.9	53.2
Maximum	130.2	350	2.60	22	11	320	558	1458.3	0.24	0.14	0.07	0.50	0	0	0	0	422.2	198.0	0.03	15.5	502.9	402.2
Balonne Riv Number	6	6	0	6	6	6	6	6	6	6	6	6	0	0	0	0	6	0	0	1	6	6
Minimum	2.60	<4	0	1.30	3.6	8	4	58	0.05	0.05	<0.03	<0.1					24.00		0	0.10	29	12
Median	2.95	11		1.65	4	12.5	5	72.5	0.05	0.05		0.1					30			0.1	36.5	14.5
Maximum	7.70	11	0	3.70	4.2	15	6	112	0.08	<0.1	<0.03	0.10					52.00		0	0.10	64	35
Yuleba Cree Number	11	11	1	11	11	11	11	11	2	6	2	8	8	5	11	2	13	1	1	7	11	1
Minimum	4	4.2		1.8	3.4	9	1	57	0	0	0	0.09	0	0	10	0.01	20			0.06	24	
Median	8.2	16.17		.	5.3	18.7	7.52	122.51	0.91	0.03	0.005	0.1	1.95	0.01	20	0.03	52.41			0.1	55	
Maximum	25	64		11	8.1	45	14	318.2	1.81	0.1	0.01	0.13	5.7	0.03	63	0.05	124			0.4	150	

${ }^{\frac{\text { Nouess }}{123}}$ Giaearer han woo

Table A6
GLNG csG Surface Water
Roma - DNRW Surface Water Analytical Results Summary
422220A Balonne River @ Surat

123 Greater than wao

Roma - DN Surface Water
422219 A Yuleba Creek @ Forestry

date					Physico-Chemical Parameters								Nutrients									Major Ions							Metals								Akalinity		
	TIME	$\begin{array}{\|c} \substack{\text { Stream } \\ \text { Water } \\ \text { Level }} \\ \hline \end{array}$	Stream	Depth	Colour Tue	$\begin{gathered} \text { Conductivity } \\ \text { @ } 25 \mathrm{Sc} \end{gathered}$	pH	$\underset{\text { Temp }}{\text { Air }}$	$\underset{\substack{\text { Water } \\ \text { Temp }}}{\text { a }}$	Turbidity	$\begin{gathered} \text { Total } \\ \text { Siss } \\ \text { Solids } \end{gathered}$	$\begin{gathered} \text { Total } \\ \text { Suspended } \\ \text { Solids } \end{gathered}$	Chlorophylla	Nitrate as No3	$\left\|\begin{array}{l} \text { Ammonia } \\ \text { as } \\ \text { soluble } \end{array}\right\|$		(kildan	Nitrogen		$\left\|\begin{array}{c} \text { Total } \\ \text { Reacac } \\ \text { sol } \end{array}\right\|$	$\left\lvert\, \begin{gathered} \text { Toatal } \\ \text { Phosphorus } \\ \text { as P P } \end{gathered}\right.$	$\left.s=\begin{gathered} \text { calcium } \\ \text { saciua } \\ \text { solube } \end{gathered} \right\rvert\,$	Chloride as Cl	$\begin{gathered} \text { Magnesium } \\ \text { as } \mathrm{Mg} \\ \text { soluble } \end{gathered}$	$\underset{\substack{\text { Potassium } \\ \text { as } k}}{ }$	Sodium as Na	Suphate	$\begin{array}{\|c\|c\|c\|c\|c\|} \hline \text { Dotas } \\ \text { iliss } \\ \text { lons } \end{array}$	$\begin{gathered} \text { Aluminum } \\ \text { soliule } \\ \text { solum } \end{gathered}$	${ }_{\text {B }}^{\text {Bron }}$ a	$\begin{gathered} \text { coper } \\ \text { coscu } \\ \text { socoube } \end{gathered}$	(llourde	$\begin{gathered} \text { ron as } \\ \text { soubl } \\ \text { soluble } \end{gathered}$	$\begin{gathered} \text { Manganese } \\ \text { as un } \\ \text { soluble } \\ \text { (maglL } \end{gathered}$		$\left\lvert\, \begin{gathered} \text { Znin as } \\ \text { soluble } \end{gathered}\right.$	$\begin{array}{\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|l\|l\|l\|} \text { as caco } \\ \text { as } \end{array}$	${ }_{\substack{\text { Carbonate } \\ \text { as co3 }}}$	$\begin{array}{\|l\|l\|} \hline \text { Bieatbonate } \\ \text { as HCOO3 } \end{array}$
	Units	m	Cumecs	m	${ }_{\substack{\text { Hazen } \\ \text { units }}}^{\text {and }}$	uScm	${ }_{\substack{\text { pHits } \\ \text { unit }}}$	${ }^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{C}$	ntu	mgh	mg/	ugh	mgL	mgh	$\underset{\substack{\text { cFUT100 } \\ m}}{ }$	mg/	mg/	mg/	mg/	mgh	mg/	mg/	mgh	mgh	mg/	mgh	mgl	mgh	mg/	mg/	mgh	mgh	mgh	mgh	mgL	mgh	mgl	mg/
	wao					325	${ }_{\text {c. }}^{6.5} 8$.		coin	50	<500	10	5	0.05	${ }^{0.01}$			${ }^{0.5}$			0.05	1000	<175			115	400		0.055	0.37	0.0014	1	0.2			0.008			
${ }^{2110191973}$	${ }^{1705}$	1.17	0.089	0.1		164	7				107	252										10	30	${ }_{5} 5$	${ }^{3.4}$	18.7	1	127.7				0.11	5		${ }^{12}$		${ }^{44}$		54
21001973	${ }^{1705}$	1.103	0.007						${ }_{20}^{20}$																														
180111975	1200	1.245	0.309						${ }^{27}$																														
1880111976	${ }^{1240}$	${ }^{1.55}$	${ }^{1.276}$						26		${ }^{7}$			07								55		23		${ }^{12}$	7	${ }^{67}$							15		${ }^{20}$		${ }^{24}$
(130191978	${ }^{11455}$			0.1		105	6.6		14		70	175		0.7								5.5	11	${ }^{2.3}$	4.5	12	7	67							15		${ }^{20}$		${ }^{24}$
(50271982	${ }_{1420}^{1420}$	1.14	0.006	0.1		150	7.7		29	100	110	50		4								8	${ }^{13}$	${ }^{4.3}$	${ }^{5.3}$	17	10	116.8				0.09			${ }^{23}$		45	0.1	55
29055/1983	1430	7.65	125	0.1		72	7.9			100	54	360		4								4	4.2	1.8	4	9	${ }^{3} 7$	57				0.1	0.6	0.01	11		21	0.1	25.5
${ }^{2770711983}$	1550 1550 1	1.28	0.223	0.1		250	7.5		12		200	${ }^{58}$		${ }^{3.3}$								13	31	${ }^{6.3}$	4.9	${ }^{28}$	11	182.4		0.06			${ }^{5.7}$	0.01	${ }^{63}$		${ }^{65}$	${ }^{0.1}$	79
2701711983	${ }^{1550}$	1.31	0.213	0.1	20	455	7.6		12		250	10		0.6								25	${ }^{64}$	11	8.1	45	14	318.2		0.03		0.1			10		124	0.4	150
97111983	${ }^{1515}$								${ }_{27}^{27}$																														
31108/1984	1600	1.35	0.286	0.1	70	205	7.2			${ }^{80}$	140	10		2.2								9	28	4	5.5	26	12	161.8		0.02			2		20		60	0.1	73
$30111 / 1984$ 17111986	${ }^{1700}$	1.04 1.01	0						${ }^{27}$																														
${ }^{1711111986}$	1230 1230 1	1.31	0.379	0.1	70	115 106	7.2		22	100	${ }^{93}$	300		0.5								5.7	7.1	${ }^{2.7}$	5.5	10	7.7	82.8		0.03		0.1	${ }^{3} .5$	0.03	${ }^{34}$		${ }^{33}$		40
${ }^{2110511988}$	1040 1040	1.13	0.008	0.1		115 88 8	6.9		${ }^{13}$	100	${ }^{85}$	154		1.6								5.8	${ }^{7.3}$	${ }^{2.7}$	${ }^{4.3}$	13	6.1	84.3				0.1	1.9		${ }^{24}$		${ }^{34}$		41.5
290551989	1147	1.165	0.061			132			15																														
99011992	${ }^{1115}$	${ }^{1.25}$	${ }^{0.39}$			${ }^{94}$			${ }^{25}$																														
${ }_{\text {10, }}^{19121211995}$	${ }^{11455}$	$\stackrel{1.248}{1.288}$	0.202 0.142			209 202	${ }_{7}^{7.8}$	${ }_{36.3}^{29.4}$	${ }_{26.2}^{24.9}$	189																													
811011996	${ }^{1415}$	${ }^{1.181}$	${ }^{0.021}$			190 112	7.4		$1{ }^{19}$	${ }^{213}$																													
${ }^{\text {27/0551997 }}$	${ }^{1645}$	$\stackrel{1.077}{ }$	${ }^{1.329}$	0.2	16	116	7.4 7.25	28.2		${ }_{323} 8$	105.67	${ }^{51}$		1.35								8.2	16.17	${ }^{3.6}$	${ }^{6.2}$	19	3.98	122.51	0	0.00	0.01	0.13	0.00	0.00	15.60	0.01	52.41	0.06	${ }^{63.82}$
${ }^{272051 / 1997}$	${ }^{1645}$					173	${ }^{2}$	221									1.255				0.268																		
$27 / 11 / 1997$	1405	1.17	0	0.1	92	238	7.21			327	148.05	${ }^{84}$		1.19								11.9	26.26	5.5	7.7	29.4	7.52	167.74	1.81	0.1	0	0.12	1.06	0	20	0.05	64.12	0.07	78.07
$\frac{2771111997}{27 / 111997}$	1405 1405					245	7.4	38.9	29.5	245							1.728				0.39																72		
120011/1999 12011999	${ }_{930}^{930}$											200						2.1			${ }^{0.36}$																		
120111999	930														0.02				0.25	0.03																			
1210111999 120411999	930 1300									680		130				70																							
1200411999	1300																	1.9			0.55																		
120411999 12041999	1300 1300												${ }^{28}$		0.037				0.037	0.014																			
1204111999	1300															110																							
-1071999	0									500		75						1.6			0.48																		
10771999	\bigcirc												9		0.018				0.07	0.008																			
110711999	0															18																							

Notes Bold Greater than wao

Upper Dawson Catchment Water Quality Data

Table B1
Table B2
Table B3 Upper Dawson River Water Quality Data
Table B4 Baffle Creek Water Quality Data
Table B5 Dawson River Downstream Baffle Creek Water Quality Data
Table B6 Hutton Creek Water Quality Data
Table B7 Dawson R - Hutton Creek to Yebna Crossing Water Quality Data
Table B8 Dawson R at Taroom Water Quality Data
Table B9 Dawson R at Utopia Water Quality Data

Table B1
URS Water Quality Parameters Upper Dawson Catchment

Site ID		Date/Time	Water Quality Parameters					
Number	Name	Date	Time (EST)	EC ($\mu \mathrm{S} / \mathrm{cm}$)	$\begin{array}{\|c\|} \hline \mathrm{DO} \\ (\mathrm{mg} / \mathrm{L}) \end{array}$	pH	Turbidity (NTU)	Temp (oC)
			MTV	340		6.5-8	50	
D002	Dawson River @ Yebna Crossing	05-Mar-08	12:00	107	6.2	7.1	270	23.9
D002	Dawson River @ Yebna Crossing	02-Feb-08	10:35	264	5.47	6.76	166	25.4
D002	Dawson River @ Yebna Crossing	14-May-08	16:20	265	11.3	7.5	9	17.3
D003	Pine Creek @ Phelps Rd	05-Mar-08	-	-	-	-	-	-
D003	Pine Creek @ Phelps Rd	02-Feb-08	12:20	227.2	4	6.59	266	29.2
D003	Pine Creek @ Phelps Rd	13-May-08	15:45	-	-	-	-	-
D004	Dawson River @ Taroom-Roma Rd	05-Mar-08	16:40	150	6.01	7.73	555	23.3
D004	Dawson River @ Taroom-Roma Rd	02-Feb-08	13:36	270	5.23	6.82	215	27.3
D004	Dawson River @ Taroom-Roma Rd	13-May-08	10:55	368	9.84	7.78	14	14.6
D005	Eurombah @ Hornet Bank Rd	05-Mar-08	17:10	118	6.15	7.5	492	24.4
D005	Eurombah @ Hornet Bank Rd	02-Feb-08	14:15	317	5.95	7.16	191	28.8
D005	Eurombah @ Hornet Bank Rd	13-May-08	10:00	340	6.22	7.3	13	16.1
D006	Bridge/Ram Creek @ Roma Rd	05-Mar-08	16:30	192	7.43	8.41	111	28.1
D006	Bridge/Ram Creek @ Roma Rd	02-Feb-08	14:43	271	6.18	7.51	32	30.9
D006	Bridge/Ram Creek @ Roma Rd	13-May-08	11:30	-	-	-	-	-
D007	Paddys Creek @ Roma Rd	05-Mar-08	16:05	65.3	8.62	8.41	2	31.2
D007	Paddys Creek @ Roma Rd	02-Feb-08	14:56	232	4.57	8.05	408	30.8
D007	Paddys Creek @ Roma Rd	13-May-08	11:45	265	7.9	7.4	240	17.4
D008	Middle Creek @ Roma Rd	05-Mar-08	15:40	186	6.4	8.5	152	28.6
D008	Middle Creek @ Roma Rd	02-Feb-08	15:30	234	8.58	8.34	54	33.7
D008	Middle Creek @ Roma Rd	13-May-08	12:15	488	11.3	8.5	160	20.7
D009	Juandah Creek @ Roma Rd	05-Mar-08	15:20	120.2	2.26	7.14	473	28.5
D009	Juandah Creek @ Roma Rd	02-Feb-08	15:46	244	6.04	8.06	163	30.4
D009	Juandah Creek @ Roma Rd	13-May-08	12:30	218	6.36	6.8	410	20.5
D010	Dawson River @ Old Taroom Bridge	05-Mar-08	14:50	157.2	5.39	7.42	427	24.2
D010	Dawson River @ Old Taroom Bridge	02-Feb-08	16:23	225.1	4.15	6.98	243	27.8
D010	Dawson River @ Old Taroom Bridge	13-May-08	13:35	420	8.22	7.77		18.9
D011	Kinnoul Creek @ Taroom Rd	05-Mar-08	10:50	104	4.3	7.2	30	25.1
D011	Kinnoul Creek @ Taroom Rd	02-Feb-08	17:00	245	6.48	7.49	28	28.8
D011	Kinnoul Creek @ Taroom Rd	13-May-08	14:10	205	9.5	7.43	28	20.2
D012	Hutton Creek @ Carnarvon Hwy	05-Mar-08	-	-	-	-	-	-
D012	Hutton Creek @ Carnarvon Hwy	03-Feb-08	9:00	485	4.5	7.2	5	26.8
D012	Hutton Creek @ Carnarvon Hwy	13-May-08	9:15	260	6.7	6.98	22	14.9
D013	Dawson River @ Arcadia Valley Rd	06-Mar-08	10:00	136	-	7.1	-	-
D013	Dawson River @ Arcadia Valley Rd	03-Feb-08		222.9	6.33	7	31	25.5
D014	Dawson River @ Hornet Bank Rd	02-Feb-08	14:00	-	-	-	-	-
D015	Dawson River @ Baralaba	04-Feb-08	12:45	132	7.88	6.58	180	27.6
D016	Dawson River @ Carnavon Hwy	03-Feb-08		-	-	-	-	-

[^17]Table B2
Upper Dawson Catchment - URS Surface Water Analytical Results

	Sample ID	$\begin{gathered} \text { Date } \\ \text { Sampled } \end{gathered}$	Analyte	Physico-Chemical Parameters				Metals (Total)									Nutrients				Major Ions										Alkalinity			
			$\begin{gathered} \text { Sample } \\ \text { Type } \end{gathered}$			$\begin{array}{\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|crc:c} \\ \text { Carbon } \end{array}$	(Suspended	Arsenic	3oron	Cadmium	Chromium	Copper	ron	Lead	Nickel	Znc	($\begin{gathered}\text { Nitate and } \\ \text { Nitite as }\end{gathered}$		$\begin{array}{\|c\|} \hline \text { Photal } \\ \text { Phoshorus } \\ \text { as } \mathrm{P} \end{array}$	$\begin{array}{\|c\|} \hline \text { Nitotoane as } \\ \mathrm{N} \end{array}$	alcium	Choride	Fluoride	Magnesium	Potassium	Sodium	Suphate	($\begin{gathered}\text { Total } \\ \text { Anions }\end{gathered}$	(Total	(lonic		$\begin{gathered} \text { Carbonate } \\ \text { Alkaninty } \\ \text { Cacos } \\ \text { ancos } \end{gathered}$	${ }^{\text {Bicartonate }}$	
			Units	mgh	mg/	mg/	mg/	mgl	mgl	mgl	mg/	mg $/$	mg	mgl	mgl	mgl	mg/	mg/	mg	mgl	mg/	mg/	mg/	mg/	mg/	mg/	mg	meq/	meq/	\%	mg/	mg/	mg/	mg/
			LOR		5	1	1	0.001	0.1	0.0001	0.001	0.001	0.05	0.001	0.001	0.005	0.01	0.1	0.01	0.1	1		0.1	1	1		1	0.01	0.01	0.01	1	1	1	1
			MTV	na	na	${ }^{\text {na }}$	10	0.0240 .013	0.37	0.0002	0.05	0.0014	0.2	0.0034	0.011	0.008	na	na	0.05	0.5	1000	175	1	${ }^{\text {na }}$	${ }^{\text {na }}$	115	400	na	na	na	na	na	${ }^{\text {na }}$	${ }^{\text {na }}$
0002	D0020550308	${ }^{510320008}$	Ps		${ }^{31}$	8	${ }_{152}^{146}$	0.002	${ }^{0.1}$	0.0002	0.004	0.005		0.004	0.004	0.016	0.141	1	0.2	1.1	${ }^{12}$	8	${ }^{0.1}$	4	6	${ }^{20}$	$\stackrel{2}{2}$	1.74	1.9		<1	<1	${ }^{73}$	${ }^{73}$
${ }^{0} 002$	D022_05030308CHK	${ }^{5 / 3322008}$	Lo			-	146														${ }^{12}$			4	5	${ }^{22}$	1							
D002	D002_1305098	130512008	Ps	<5	1		,	<0.001	$0^{2} 0.05$	<0.0001	<0.001	<0.001	0.67	<0.001	<0.001	${ }^{0.005}$	<0.01	0.4	0.02	0.4	19	${ }^{25}$	0.1	7	3		31	2.93	2.97					
D004	D004-05030308	510312008	Ps		${ }^{47}$	10	152	0.002	00.1	0.0001	0.006	0.008		0.007	0.008	0.031	0.174	0.9	0.19	1.1	18	16	0.1	5	6	${ }^{28}$	2	2.54	2.68	.	4	<1	102	102
0004		5/33/2008 $5 / 032008$	${ }_{\text {L }}^{\text {LD }}$	-	49	$\stackrel{10}{<1}$	290	0.003	<0.1	0.0018	0.009	0.008		0.007	0.008	0.04	0.149	1.4	0.19	1.6	16	15	0.1	4	${ }_{5}$	${ }^{28}$	2	2.51	2.52		:		102	102
D004	D004_13/5508	13/052008	PS	49	2	.	,	${ }^{<0.001}$	${ }^{2} 0.05$	<0.000	<0.001	${ }^{20.001}$	0.4	<0.001	<0.001	<0.005	$\stackrel{0}{601}$	0.1	${ }_{0}^{0.03}$	0.1	${ }^{27}$	35	<0.1	9	4		${ }^{43}$	${ }_{3.94}$	4.02	1.05				
D004	D004_13050508CHK	130522008	Lo		2												0.012				${ }^{28}$			9	4		49							
0005	D005 05050308	5/0322008	Ps	.	44	<1	270	0.002	0.1	0.0007	0.003	0.009		0.005	0.005	0.028	0.28	0.8	0.21	1.1	16		0.1	3	6	${ }^{20}$	2	1.93	2.05		<1	<1	${ }^{82}$	${ }^{82}$
D005	D005 1310508	13/052008	PS	<5	7	.	5	<0.001	0.08	<0.000	<0.001	<0.001	0.23	<0.001	0.001	<0.005	<0.01	0.8	0.05	0.8	35	19	0.2	6	6		${ }^{33}$	3.69	3.83	1.82	.			
0007	D007_050308	5/0312008	PS		54	<1	74	0.002	0.1	<0.0001	0.003	0.007		0.003	0.004	0.02	<0.01	1.8	0.56	1.8	${ }^{13}$	8	0.1	2	9	20	2	1.84	1.95		<1	${ }^{<1}$	78	78
0007	D0071310508	13/0512008	PS	${ }^{28}$	9	-	119	0.002	0.05	<0.0001	0.002	0.002	2.91	0.001	0.002	<0.005	0.012	1.2	0.22	1.2	${ }^{24}$	14	0.4	5	9		25	2.88	2.92					
0007	D007_131051088CHK	13/052008	LD																0.2			14	0.3											
0009	D009 05010308	5/0312008	PS	.	49	<1	214	0.004	<0.1	0.0002	0.005	0.01		0.006	0.007	0.034	${ }^{0.353}$	1.7	0.42	${ }^{2} .1$	12	6	${ }^{0.1}$	2	${ }^{8}$	${ }^{23}$	3	1.89	2	.	<1	<1	${ }^{83}$	${ }^{83}$
D009	D009 1310508	13/052008	PS	16	7	.	122	0.002	<0.05	<0.000	0.005	0.007	9.62	0.005	0.006	0.025	0.177	1.4	0.37	1.6	17	9	0.2	4	7		26	2.23	2.41	-	.			
0009	D009 131050108CHK $^{\text {a }}$	13/052008	LD	14		-																												
0010	001005030308	5/1322008	PS		42	<1	260	0.002	<0.1	0.0002	0.005	0.007	-	0.006	0.005	0.025	0.182	1.3	0.17	1.5	13	16	0.2	3	6	35	2	2.53	2.63		<1	<1	102	102
0010	D010_05030308CHK	5/0312008	${ }^{\circ}$		${ }^{42}$																	15	0.2								<1	<1	102	102
0010	${ }^{00101013135098}$	${ }_{\text {13052008 }}{ }^{1032008}$	$\stackrel{\text { Ps }}{\text { PS }}$	<5	${ }^{82}$	4	26	${ }^{<0.001}$	${ }^{20.05}$	<0.0001	${ }_{0}^{20.001}$	${ }^{20.001}$	0.28	${ }^{<0.001}$	${ }^{20.001}$	${ }^{<0.005}$	${ }^{<0.01}$	${ }^{0.3}$	${ }^{<0.01}$	0.3	${ }^{28}$	39	0.2	10	5		${ }_{4}^{49}$	4.34	4.45	1.18	-	1		
${ }^{\text {D }} 0011$	Dol1-113030308	${ }^{5 / 13352008}$	${ }^{\text {PS }}$	8	82 7	<1	${ }_{26}^{26}$	0.002 0.001	${ }_{0}^{0.05}$	${ }^{20.0001}$	${ }^{20.001}$	${ }^{0.003}$	0.81	${ }^{20.001}$	${ }^{0.002}$	${ }_{\text {¢ }}{ }_{\text {¢0.005 }}$	${ }_{0}^{0.0015}$	1 0.7	0.3 0.09	1 0.7	${ }_{21}^{14}$	$\stackrel{1}{<1}$	<0.1 0.1	${ }_{4}^{4}$	${ }_{7}^{8}$	17	${ }_{1}^{16}$	1.74 2.02	${ }_{2.92}^{1.22}$		<1	<1		
0012	D012_140508	1410512008	PS	45	10	.	13	${ }^{0.001}$	${ }^{2} 0.05$	0.0001	<0.01	${ }_{0}^{0.003}$	${ }^{0.21}$	<0.01	0.002	${ }^{\text {<0.005 }}$	<0.01	0.9	0.07	0.9	${ }^{26}$	12	0.2	7	8		${ }^{26}$	${ }_{3.09}$	${ }_{3.2}$	1.69				
012	D12 141050808 CH	140512008	LD														<0.01						0.1				25							

NOTES
MTV- minimum triger value
BoLD
greater than MTV
PS - Primary Sample
FD - Field Dupicicate Sample

Upper Dawson Catchment-Upsen

Water Quality Data Summary

Sample CollectionPoint	${ }_{\substack{\text { Sample } \\ \text { Date }}}^{\text {ate }}$	Time	Physical									Cations				Anions				Nutrients				Trace Elements													Physical Appearance	
			$\begin{array}{\|c\|} \hline \text { Teir } \\ \text { Aen } \end{array}$		pH		(mgl) ${ }_{\text {po }}$	$\underset{\text { sat }}{\substack{\text { poot } \\ \text { sat }}}$	${ }_{\substack{\text { ros } \\ \text { (mgl) }}}^{\text {den }}$		(Turbitity	(${ }_{\text {Sodium }}^{\substack{\text { (mgl) }}}$	$\underset{\substack{\text { Potassium } \\ \text { (mgL) }}}{\text { ata }}$	(calcium	$\begin{array}{\|c\|c\|c\|c\|c\|c\|c\|c\|} \\ \text { (mgsium } \end{array}$	Bicarbonate as $\mathrm{HCO}^{(\mathrm{mg} / \mathrm{L})}$ (mg	$\left.\begin{array}{c} \text { chhoride } \\ \text { (mg }(L L L) \end{array}\right)$	(matice	$\begin{gathered} \text { Sulphate } \\ \text { (mgLL } \end{gathered}$	$\underset{\text { (1) }}{\substack{\text { (ug) }}}$	(ugl)	Ammond	$\begin{array}{\|c\|} \hline \text { Nitrate as } \\ \mathrm{NO}_{3} \\ (\mu \mathrm{~g} / \mathrm{L}) \\ \hline \end{array}$		(1) $\begin{gathered}\text { Boron } \\ \text { (ugl) }\end{gathered}$	Cadiomm	$\begin{aligned} & \text { Chromium } \\ & (\mu \mathrm{g} / \mathrm{L}) \end{aligned}$	coper	$\left.\right\|_{\substack{\text { roma } \\(\text { mglu }}}$	$\begin{array}{\|l\|l\|l\|l\|l\|l\|l\|l\|l\|l\|l\|l\|l\|l\|l\|l\|l\|l\|} \end{array}$	${ }_{\text {Mercury }}^{\substack{\text { Magl) }}}$	$\left.\begin{array}{\|c\|c\|c\|c\|ccl} \text { Negll } \end{array}\right)$	(zinc		Level	Velocity		(Data source
		MTV	${ }^{\text {na }}$		6.5.8.0	340	na	85-110	${ }^{\text {na }}$	10	50	115	${ }^{n a}$	1000	${ }^{n 9}$		${ }^{175}$	${ }_{1,2}$	${ }^{400}$	500	${ }^{50}$	${ }^{20}$		${ }^{24173}$	${ }^{370}$	0.2	${ }_{50}$	1.4	200	${ }_{3.4}$	${ }_{0}^{0.6}$	11	${ }^{8}$	${ }^{5}$	${ }^{\text {na }}$	${ }^{\text {na }}$		
Upeer Baffe Creek	40552002	15.40				1585			1078 108 108																												Clear	s
Upper Baffe creek	1017202	10.30		- ${ }_{2}^{24}{ }_{2}$		1570 1570			(10681068 108																												Siligh loudy brown	s
Upper Bafle Creek	10112002	14.35		${ }^{25}$		147			100																												Sot fowing - Yelow Brown	s
Upeer Bafte Criek	10112002	13.35		${ }^{27}$		128			${ }^{87}$																												Slight fow, mudy	s
Upeer Bafte criek	10172022					${ }_{9}^{97}$			${ }_{68}^{66}$																													s
Upper Batfe creek	1012002			${ }_{2}^{29}$		115 114			78 98 98																												Stight fow, muddy	s ${ }_{\text {s }}$
Upper aftere riek	220682001								\bigcirc																												No fow	
Uperer Bafte creek	250562001								0																												$\xrightarrow{\text { Nofow }}$ Noflow	s
Upper Baffec creek	${ }^{2010420001} 8$								\bigcirc																												$\xrightarrow{\text { Nof fow }}$	s
Uperer Baffe creek									0																													s
Upper Baffec creek	${ }^{5} 5$								\bigcirc																												$\frac{\text { No fow }}{\text { No fow }}$	s
Uperer Bafte creek	130772000	14.29		${ }^{24}$		142			97																												Cloud, some sediment	s
Upper Batfe creek	${ }^{1515062000}$	${ }^{14.22} 10$		$\stackrel{24}{19}$		(1296			${ }^{881}{ }^{829}$																												Cloud, some sediment	s
Upper Bafte creek	290422000	10.30		21		1490			1013																												Slight cloudy brown	s
Upper Batfec cieek	${ }^{101042000}$	10.30		${ }^{24}{ }_{24}^{24}$		(1456			${ }_{998}^{998}$																												Stight loudy bown	s
Upeer Batfe criek	300112000	${ }^{1030}$		${ }^{24}$		1856			1262																												Slight cloudy brown	
						${ }_{2}^{200}$			${ }^{136}$																													
Upper baffe cieek	${ }^{290110190999}$	${ }_{15}^{15.72}$		${ }_{2}^{24}$		280 460			${ }_{313}^{190}$																												Not Fowing	s
Uperer Bafte creek	3009919999			${ }^{21}$		${ }^{211}$			${ }^{143}$																												Not Fowing	s
Upper Batif Creek	${ }^{290771999}$			15 19 19		185 191 191			${ }^{126}$																												Nof Fow	s
Uperer Bafte creek	106/1999	14.00		14		162			${ }^{110}$																												Not Fowing	s
		16:00				${ }^{86}$			${ }^{58}$																												Not Fowing	
Upper Batif creek	${ }^{504049999}$			${ }^{27} 17.5$	6.8	${ }_{\text {c }}^{98}$		94	${ }_{43}^{67}$					1	2			0.1	${ }^{<}$						<100					-					Mod		sight fow, muky	
Upeer Bafte Creek	210422004			26.5	6.6	152	12.30	${ }^{155}$	64	${ }^{6}$		${ }^{8}$	6	6	4	77	7	< 1	<10	1350	60				500										Low	Low		
Upeer Bafle Criek	161112004			32.7	7.8	134	8.60	119	${ }^{84}$	49		${ }^{<1}$	7	4	3	${ }^{67}$	7	0.32	<10		1000	100			<100										Low	Low		
Upoer Batif Creek					${ }^{7.4}$	108 212 21			${ }^{114}$	30 48	${ }^{105}$	${ }_{5}^{5}$	${ }_{5}$	11	4	9	${ }_{6}^{6}$	0.43	<10	810	50 40 4	30 40 40			-100				${ }^{1800}$			4			Mod	${ }_{\text {Low }}^{\text {Low }}$		
Upper Saffe creek	${ }^{2204420007}$		27.5	2.9	${ }_{7} 7.6$	${ }_{1} 138$	${ }_{7} 7.23$	${ }_{85}$	${ }_{160}$	${ }_{49}$		${ }^{17}$	12	15	7	${ }_{93}$	5	${ }_{0}^{0.32}$	$\stackrel{\text { < }}{ }$	${ }_{1100}$	$\stackrel{4}{20}$	${ }_{77}$	${ }^{3188^{*}}$	<1	${ }^{25}$	$\stackrel{4}{4}$	$\stackrel{4}{4}$	$\stackrel{1}{<2}$	${ }_{750}$	$\stackrel{1}{4}$	${ }_{<0.5}^{0.1}$	${ }_{<} \times$	${ }_{8.3}$	${ }^{6.5}$				
${ }^{\text {Bafle Creek }}$	70172022					1520			${ }^{1034}$																												Clear	${ }_{s}$
	- ${ }_{\text {5112000 }}^{121202001}$			${ }_{22}^{22}$		(1384			941 109																												Brown tige Brown tinge	s
$\frac{\text { Bafle Creek }}{\text { Bafte }}$	${ }_{\substack{29082001 \\ 1072001}}$			${ }^{23}$		(1484			1009 1040 1																												$\frac{\text { Brown tige }}{\text { Clears Sight brow tinge }}$	s
Batfe Creekeouttow	50041999	11.50		${ }_{23}^{22}$		${ }_{7} 715$			${ }_{527}$																												Stion	
Baffle Creek outtow	405512002								0																												Notested	${ }_{5}$
Baffe Creek outtow	101012002								0																												Not ested	
Baftic Creak outtow	10112002					${ }^{188}$			${ }^{128}$																												Stow fow- muky	${ }_{5}$
	${ }^{101012002}$ 2082001	11:30		${ }_{19}^{27}$					223 887																												${ }_{\text {Might filuow, mudydy }}^{\text {Siown }}$	
	${ }^{250552001}$			23 ${ }_{25}$		1340 1350 1380			${ }^{911}$																												Slighty coudy Brown	s
Batie Creek outiow	${ }^{2004204201} 8$			${ }_{26}^{25}$		(1359			${ }^{918}$																												Slight couay Brown	${ }_{\text {s }}$
Baffle Creak outtow	50992000								0																												No sample	s
Batife Creek outiow	${ }^{\text {230872000 }}$								0																												No sample	s
Baffle Creak outtow	${ }^{15060272000}$								0																												No sample	s
	10420000	13.00		${ }^{21}$		${ }_{1150}$			${ }^{782}$																												${ }_{\text {Slight couxdy brown }}$	s
Bafte Creak outtow	10.4202000	$13: 00$		19		1348			917																												Slight coudy brown	
Bathe Creek outiow	${ }^{20332000}$	13.00		${ }^{24}$		1252			${ }_{851}$																												${ }_{\text {Slight tousted }}^{\text {brown }}$	${ }^{\text {s }}$
Bafte Creak outtow	301211999								0																												Not Fowing	
Bathe Creek outiow	${ }^{29} 291110919999$	${ }^{9} 9$		${ }_{21}^{22}$		${ }_{880}^{880}$			${ }^{585}$																												Not Fowing	s
Batife Creek outiow	3010919999			18		1281			871																												Slow Fow	s
Batfe creek outiow	${ }^{298071999}$			${ }_{13}^{16}$		¢888			${ }^{598}$																												Slow tow- muryy	s
Baffle Creek outtow	10661999	12:13		14		553			${ }^{376}$																												Slow flow- muky	s
Batfe Creek outiow	${ }^{7} 705199999$			${ }_{26}^{19}$		${ }_{649}^{621}$			${ }_{441}^{422}$																												${ }_{\text {Sow-Med. Fow }}^{\text {Slow-med fow }}$	s
Batite Creek outiow	91102003			19		1444	7.30	79	${ }^{225}$			${ }^{347}$	4	1	,	${ }^{2} 26$	${ }_{5} 5$	2	${ }^{<}$						200										Low	Low		${ }_{\text {RH }}$
	22042004			${ }_{20}^{20}$		年 1403	${ }^{5.10}$	56	${ }_{852}^{612}$	${ }^{37}$		(162	${ }_{8}^{5}$	${ }_{5}^{5}$	${ }_{2}$	916 623		1	<10	${ }_{3}^{3900}$	${ }_{350}^{220}$				700 400										Low	Low		${ }_{\text {RH }}^{\text {RH }}$
Batfle Creak outiow	210552005			14		1373	10.10	${ }^{98}$	1030	10		${ }^{34}$	6	<1		664	${ }^{68}$	2	<10	${ }^{720}$	150	${ }^{120}$			500				6013						Low	Low		RH
Bafte Creek outtow	50992006			12		1884	7.90	73	1168	39	154	${ }_{437}^{437}$	6	1	2	${ }^{723}$	${ }^{93}$	2	24	770	<10	<10		9	600	0.1	16	3	${ }^{362}$	${ }^{8}$	80.1	${ }^{3}$	14		Mod	Low		RH

BoLD | Geater than minimum tigger |
| :---: |
| MTV minimum tiggervalue |

TV. minimutrige vaue

Baffle Creen
s- santos

Table 85

Sample Collection Point	Sample	Physical									Cations				Anions				Nutrients				Trace Elements										Eiologica	Physical Appearance	Data
		Time	$\begin{gathered} \text { Air } \\ \text { Temp } \\ \text { ecc) } \end{gathered}$	$\begin{array}{\|c\|c\|c\|c\|c\|c\|} \substack{\text { Tomer } \\ \text { (efoc) } \\ \hline} \\ \hline \end{array}$	pH	$\underset{(H S / m)}{\text { EC }}$	$\begin{gathered} \hline \mathrm{Do} \\ (\mathrm{mglL}) \end{gathered}$	$\begin{array}{\|c} \substack{\text { ooq o } \\ \text { sat }} \end{array}$	$\left\|\begin{array}{c} \mathrm{TDS} \\ (\mathrm{mglL}) \end{array}\right\|$	$\begin{array}{\|c\|} \hline \text { Tss } \\ (\mathrm{mglL}) \end{array}$	$\begin{gathered} \text { Sodium } \\ \text { (mglL) } \end{gathered}$	$\begin{gathered} \text { Potassium } \\ (\text { mg LL }) \end{gathered}$	$\begin{array}{\|c\|} \hline \text { Calcium } \\ (\mathrm{mg} \mathrm{~L}) \end{array}$	$\underset{\substack{\text { Magnesium } \\(\text { mgLL })}}{ }$	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Bicarbonate } \\ \text { as } \mathrm{HCO} \\ (\mathrm{mg} / \mathrm{L}) \end{array} \\ \hline \end{array}$	$\begin{aligned} & \text { Chloride } \\ & (\mathrm{mg} / L) \end{aligned}$	$\begin{array}{\|c} \text { Fluoride } \\ (\mathrm{mg} L) \end{array}$	$\begin{gathered} \text { Sulphate } \\ (\mathrm{mg} / \mathrm{L}) \end{gathered}$	$\begin{array}{\|c\|} \hline \cos _{(\mu \mathrm{g}(\mathrm{~L})} \end{array}$	$\left.\begin{array}{\|c} (\mathrm{Tp} \\ (\mathrm{ggLL} \end{array}\right)$	$\underset{(\mu \mathrm{g} / \mathrm{L})}{\text { Ammana }}$	$\begin{gathered} \begin{array}{c} \text { Nitrate as } \\ \text { No } \\ (n g \mathrm{LLL} \end{array} \\ \hline \end{gathered}$	$\begin{array}{\|c} \hline \begin{array}{c} \text { Arsenic } \\ (\mu \mathrm{g} / \mathrm{L} \end{array} \\ \hline \end{array}$	$\begin{array}{\|c\|c\|c\|c\|c\|c\|} \hline \text { (ugl }) \end{array}$	$\underset{(\mathrm{Cg} / \mathrm{L})}{\text { Cadmium }}$	$\underset{(\mu \mathrm{g} / \mathrm{L})}{\text { Chromium }}$	$\begin{array}{\|l\|l\|} \hline \begin{array}{l} \text { copper } \\ \text { (HggL) } \end{array} \end{array}$	$\begin{array}{\|l\|l\|} \hline \text { Iron } \\ (\text { (HgLL) } \end{array}$	$\begin{array}{\|l\|l\|} \hline \text { Lead } \\ (\text { egLL } \end{array}$	$\begin{array}{\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|} \hline \text { Mecury } \end{array}$	$\begin{array}{\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|} \hline(\mu g L L) \end{array}$	$\begin{aligned} & \text { zinc } \\ & (\operatorname{sigl}) \end{aligned}$	$\begin{aligned} & \text { Chl-a } \\ & (\mu \mathrm{g} / \mathrm{L}) \end{aligned}$		
		MTV	${ }^{\text {na }}$		6.5.8.0	${ }^{340}$	${ }^{\text {na }}$	85-110	na	10	115	na	1000	na	na	${ }^{175}$	1,2	400	500	50	20	700	${ }^{24 / 13}$	370	0.2	50	1.4	200	${ }^{3.4}$	0.6	11	8	5		
Dawson Downstream Bafle	40512002 11012022																																	$\frac{\text { Not tested }}{\text { Not tested }}$	s ${ }_{\text {s }}$
Dawson Downstram Baffe	10112002																																	Not tested	
Dawson Downstream Baftle	${ }^{2206612001}$			${ }_{19}^{19}$		${ }^{1130}$			${ }_{668} 76$																									Silty cloudy Brown	
Dawson Downstream Bafle	${ }_{\text {2505062001 }}^{22001}$	11:00		23 24 24		980 844			666 574 57																									Stity coudy frown	
Davson Dowstream Bafe	${ }^{2220662001}$	${ }_{12}^{12: 15}$		${ }_{26}$		${ }_{853}$			${ }_{580}^{584}$																									Sownow, mudy	
Dawson Downstream Baffle	220612001					182			${ }^{124}$																									Slow fow-lt Brown	
Dasson Downstream Bafte	${ }^{222006272001}$	11:05		${ }_{2}^{26}$		783 83 53			532 240 20																									Stit fow, muddy Mod fow, mudy	
Davson Dowsstram Bate	2200622001			${ }^{28}$		${ }_{673} 6$			${ }_{458}^{240}$																									Sow- med fow	
Dawson Downstram Baftle	200420001			${ }^{24}$		800			544																									Silty cloudy Brown	
Davson Dowstream Batile	80322001 51102000	10:30		${ }_{2}^{25}$		${ }_{1388}^{288}$			196 930 10																									$\frac{\text { Clear, sit brown tinge }}{\text { Cliar, stitsediment }}$	
Dawson Downstream Baffe	50992000	10:00		${ }^{24}$		1498			1019																									Clear, sts sediment	
Dawson Downstream Baftle	${ }^{308212000}$	10:00		20		${ }^{1358}$			${ }^{923}$																									Clear, stst sediment	
Dawson Downstream Bafle Dawson Downstram Bafle	${ }^{2350720000}$																																	$\xrightarrow{\text { No Sample }}$ No Sample	
Dawson Downstream Baffle	20682000																																		
Davson Downstram Baftle	290422000																																		
Dawson Downstream Batile	${ }^{104042000}$	1.00PM		${ }_{24}^{24}$		${ }_{1156}^{1060}$			${ }_{783}^{721}$																									Sily doudy brown	
Dawson Downstream Baffle	300112000																																		
Davson Downstraam Bafle	${ }^{3112111999}$	${ }^{2}$		${ }_{22}^{21}$		${ }_{880}^{1050}$			714 598																									Slow fow- Ltyellow	
Davson Downstream Bafle	2911019999	10.52		${ }^{21}$		910			619																									Slow flow L Lt yelow	
Dawson Dowsstream Batie Dawson Downstram Batie	${ }^{3010911999}$			18 15 15		1402 872			${ }_{593}^{993}$																									Slow fow - murcky	
Dawson Downstream Bafle	2900711999			15		1319			897																									Slow flow - Lt yellow	
Dawson Dowsstream Batife Dawson Downstram Bafte	${ }^{1706519999}$	11:30		13 19 19		556 664			378 452																									Slow fow- - Ltyellow	
Dawson Downstream Baftle	254407		24.6	19.5	8.3	1296	6.05	67.0	990	99.0	280.0	10	10	5.5	820	120	1.4	<1	1600.0	90.0	82.0	305^{*}	3.4	480.0	<1	8.3	$\stackrel{2}{ }$	1700	<1	<0.5	4.2	1.5	15	Slow low-Ltyelow	$\stackrel{\text { RH }}{ }$

Samples collected
s- S.
RHintiver
Healt

ONR - Department of Natural Reso
by calcuation fiom Nitrate as N

$\begin{gathered} \text { Sample Collection } \\ \text { Point } \end{gathered}$	Sample Date	Physical										Cations				Anions				Nutrients				Trace Elements										Biologica	Fow		
		Time		$\begin{array}{\|c} \hline \text { Water } \\ \text { Temp } \\ \left({ }^{\circ} \mathrm{C}\right) \\ \hline \end{array}$	pH	EC ((s/m)	Do (mgl)	D0\% sat	TDS (mgl)		${ }^{\text {a }}$	$\begin{array}{\|c} \begin{array}{c} \text { sodium } \\ \text { (mglL) } \end{array} \\ \hline \end{array}$	$\begin{gathered} \text { Potassium } \\ (\text { mglL }) \\ \hline \end{gathered}$	$\begin{array}{\|l\|l} \hline \begin{array}{c} \text { calcicum } \\ \text { (mad } \end{array} \end{array}$	$\begin{aligned} & \text { Magnesium } \\ & \text { (mg/L) } \end{aligned}$		$\begin{gathered} \substack{\text { chioride } \\ \text { (malL }} \end{gathered}$	$\begin{array}{\|c} \begin{array}{c} \text { Fuboride } \\ \text { (mglu) } \end{array} \end{array}$	$\begin{array}{\|c} \text { Suphate } \\ \text { (masLL) } \end{array}$		$\begin{gathered} \substack{\text { Total } \\ \text { phosphorous } \\ \text { (hglL }} \\ \hline \end{gathered}$	$\begin{gathered} \text { Ammonia } \\ (\text { gelL } \end{gathered}$		$\begin{array}{\|l\|l\|} \hline \text { Arsenic } \\ (\text { egll } \end{array}$	$\begin{array}{\|l\|l} \hline \text { Boron } \\ \text { (uglu) } \end{array}$	$\begin{array}{\|c} \substack{\text { Cadmium } \\ \text { (uglL }} \\ \hline \end{array}$	$\underbrace{}_{\substack{\text { chromium } \\ \text { (egll }}}$	$\begin{gathered} \substack{\text { copper } \\ \text { (egLL }} \\ \hline \end{gathered}$	$\begin{array}{\|l\|l\|} \substack{\text { (egn } \\ \hline} \end{array}$	$\underset{\substack{\text { Lead } \\ \text { (egl) } \\ \hline}}{ }$	$\begin{array}{\|l\|l\|} \hline \text { mercury } \\ \text { (1gLL) } \end{array}$		(ug)	$\underset{\substack{\text { chia } \\ \text { (ugl) }}}{\substack{\text { a }}}$	Level	ty	Dota
Upeer Hutuon Creek	91102003	MTV	na	${ }^{0.880} 0$	$\frac{6.5 .8}{7.9}$	${ }_{\substack{340 \\ 1478}}^{\text {10, }}$	${ }_{\text {n }}^{\text {na }}$	${ }_{85}^{85110} 9$	$\frac{n 9}{1139}$	10	50	${ }_{1}^{135}$	${ }_{9}{ }_{9} 9$	1000 91	${ }^{\text {na }}$	${ }_{31}$	${ }_{275}^{178}$	$\frac{1.2}{0.1}$	400 120 10			20		2413	${ }_{\text {ckion }}^{370}$	0.2	50	1.4	200	3.4	0.6	11	8	5	${ }_{\text {na }}^{\text {Lisaled }}$	na	
Upper tutuon Creek	2504242007		27.7	22.5	${ }^{6.6}$	${ }^{156}$	4.31	49	190	570		${ }^{14}$		${ }^{20}$			${ }^{6}$	0.31	<1	1800	${ }^{170}$	51	${ }^{168^{*}}$	<1	${ }^{32}$	${ }^{4}$	${ }^{4}$	2	1900	4.8	<0.5	${ }^{6.3}$	1.5	13			${ }^{\text {RH }}$
Hutuo Criek Huton Creak	190042004			24.4	7.2	${ }_{358}$	3.60	${ }^{41}$	${ }^{292}$	${ }^{10}$		${ }^{27}$	7.0 100 10	${ }^{27}$	7	${ }_{1}^{171}$	${ }^{28}$	<	<10 <10		70 100				800 8100										Modeate Low Low	${ }_{\text {Low }}^{\text {Low }}$	$\underset{\substack{\text { RH } \\ \text { RH } \\ \hline}}{ }$
${ }_{\substack{\text { Hutto Creek } \\ \text { Huton } \\ \text { creek }}}$				${ }^{23.7}$	$\stackrel{7.6}{7}$	${ }_{195}^{461}$	${ }_{\text {5.60 }}^{5.90}$	- ${ }_{88}^{66}$	${ }_{195}^{284}$	36 170 170		${ }^{39} 18$	10.0 7.0	${ }^{30}$	9	190 87	${ }^{39}$ 12	-	<10	(1300	100 230	${ }^{240}$			${ }_{<100}$				2358						Low	${ }_{\text {Low }}$	${ }_{\text {RH }}^{\text {RH }}$
Hutton Creek	500822006			14.9	${ }^{6.6}$	183	8.00	\%	116	${ }_{123}^{12}$	116	${ }^{24}$	6.0	5	2	${ }_{83}$	${ }^{12}$	0.2	5	680	<10	<10		2	<100	${ }^{0.1}$	5	${ }^{4}$	62	2	<0.1	${ }^{4}$	<10		Mod	Low	${ }_{\text {RH }}$
Hutuon Creek	2110412007		34.3	21.3	7.1	273	3.49	${ }^{39}$	220	${ }_{32}$		59	7.4	12	4	130	20	0.31	${ }^{<1}$	1200	76	${ }^{93}$	101*	1.6	79	$\stackrel{1}{4}$	<	<2	2300	<1	${ }^{0.5}$	<3	${ }^{20}$	${ }^{6.6}$			${ }_{\text {RH }}$
$\pm \begin{aligned} & \text { Hutto Cieek } \\ & \text { Huton } \\ & \text { creek }\end{aligned}$	80881973	${ }^{1350}$		${ }_{31}^{19}$	8.1 7.9	155 300 30			$\begin{array}{r}\text { ¢ } \\ \hline 198 \\ \hline 18\end{array}$	${ }^{116}$		14 30	${ }_{6}^{5.4}$	${ }_{\text {11 }}^{11}$	${ }_{7}$	- 145	10 87	0.14 0.5 0.5	4				1200														${ }_{\text {ONRW }}^{\text {ONRW }}$
	${ }^{\text {cosion }}$	${ }^{1405}$			${ }_{8.2}$	${ }_{2} 215$			${ }^{198}$	10	75		${ }^{6.8}$	${ }^{36}$	4	${ }^{148}$	${ }^{15}$	0.1	${ }_{5}^{4}$				${ }_{4}{ }_{4000}$														${ }_{\text {ONRW }}^{\text {ONT }}$
Hutoon Creek	${ }^{250331982}$	1405		${ }_{2}$	8	160			97	200	100	12	4.2	12	3	77	8		5.4				2100														DNRW
Hutuon Creek	$161 / 21983$	930		24	8.2	${ }^{195}$			${ }_{1} 130$	${ }^{20}$	${ }^{25}$	17	4.6	16	4	${ }_{90}$	${ }^{15}$		${ }^{2.7}$				${ }^{1200}$		20												
Hutto Cieek Huton Creek	200391984	${ }^{1400}$		${ }_{14}^{27}$	${ }_{7}^{7.8}$	250 270			- 150	10 5	12	${ }_{22}^{20}$	4.9 4.8	20 22	5	110 135	25 19	0.1 0.1	6.3 3 1.3						${ }_{20}^{20}$												
Hutton Creek	1910101984	1500		20	7.9	570			${ }^{320}$	5		70	1.6	${ }^{34}$	11	185	${ }_{81}$	0.1	${ }^{12}$				1100		10												${ }_{\text {ONRW }}$
Hutuon Creek	150119895	${ }^{920}$		${ }^{24}$	7.8	${ }^{200}$			${ }^{120}$	445	100	17	5.2	15	4	${ }^{88}$	16	0.1	2				1100		${ }^{20}$												${ }_{\text {ONRW }}$
	${ }^{20010191985}$	1025 1099		20 25	8.2	$\substack{390 \\ 131}$			1010 84	${ }_{630}^{10}$	$\stackrel{1}{100}$	${ }_{9}^{175}$	$\stackrel{4.5}{4.3}$	-85	67	${ }_{6}^{275}$	$\underset{4}{355}$	${ }_{0}^{0.3}$	$\stackrel{170}{12}$				(100 10												

BOLD $\begin{gathered}\text { Greater than minimum trigge value (refer ENviommental Values Table) } \\ \text { MTV minimum }\end{gathered}$
Samples collecected oownstream of xexsining associated waier discharge poins

$s-$ Santos
RH -River tea

RNR- Department of Nawural Resources

\begin{tabular}{|c|}
\hline \multirow[t]{2}{*}{} \& \multirow[b]{2}{*}{Sample ate} \& \multicolumn{10}{|c|}{Physical} \& \multicolumn{4}{|c|}{Cations} \& \multicolumn{4}{|c|}{Anions} \& \multicolumn{4}{|c|}{Nutriens} \& \multicolumn{9}{|l|}{\multirow[t]{2}{*}{}} \& \multicolumn{2}{|r|}{Biological} \& \multicolumn{2}{|c|}{Fow} \& \multirow[b]{2}{*}{Physical Appearance} \& \multirow[b]{2}{*}{Data} \\
\hline \& \& Time \& \& \& pH \& \& (ngl) \& \& (ma) \({ }_{\text {Tos }}^{\text {(n) }}\) \& Tss (mgl) \& \& Sodium \& \(\underbrace{\text { a }}_{\substack{\text { Potassium } \\ \text { (maL) }}}\) \& \(\underset{\substack{\text { calcium } \\ \text { (mal) }}}{\substack{\text { a }}}\) \& \({ }_{\text {Magnesium }}^{\substack{\text { max } \\ \text { mmL) }}}\) \& \[
\begin{array}{|c}
\hline \text { Bicarbonate } \\
\text { as HCO3 } \\
\text { (mg/L) }
\end{array}
\] \& \({ }_{\substack{\text { charide } \\ \text { (mal) }}}^{\text {a }}\) \& \& \({ }_{\substack{\text { sulpate } \\ \text { (mal) }}}^{\text {a }}\) \& TN (Mg) \& TP (mg) \& \({ }_{\substack{\text { Ammonia } \\ \text { (9al) }}}^{\text {a }}\) \& \[
\begin{gathered}
\text { Nitatato as } \\
\text { Nos } \\
\text { (ngol }
\end{gathered}
\] \& \({ }_{\text {A }}^{\substack{\text { Asemic } \\ \text { (ugl) }}}\) \& (e) \begin{tabular}{c}
Bron \\
(egl) \\
\hline
\end{tabular} \& \& chemin \& \({ }_{\substack{\text { copeor } \\ \text { (egul) }}}^{\substack{\text { ata }}}\) \& \& \& \& Nomed \& Zinc (wgl) \& \({ }_{\text {chem }}^{\substack{\text { chata } \\ \text { (ugl) } \\ \hline}}\) \& Level \& Veloctiy \& \& \\
\hline \& \& MTV \& ne \& 0.80\%2040 \& \({ }_{6}^{6.580}\) \& \({ }^{340}\) \& \({ }_{49}{ }^{\text {na }}\) \& \({ }_{85}^{85 \cdot 10}\) \& \({ }_{\text {nas }}^{\text {ne }}\) \& \({ }^{10}\) \& 50 \& \(\frac{115}{20}\) \& \(\stackrel{\text { na }}{ }\) \& \({ }^{1000}\) \& \(\frac{n 9}{6}\) \& \({ }_{\text {na }}^{138}\) \& \(\frac{175}{14}\) \& \(\frac{1,2}{4}\) \& - 400 \& \({ }_{\substack{500 \\ 1050}}\) \& \({ }_{1}^{50}\) \& \({ }^{20}\) \& \& 2413 \& \({ }_{400}^{370}\) \& 0.2 \& 50 \& \({ }^{1.4}\) \& 200 \& 3.4 \& 0.6 \& \({ }^{11}\) \& 8 \& 5 \& \(\frac{n a}{\text { Modeate }}\) \& \(\frac{n a}{\text { Nodeate }}\) \& \& \\
\hline \& 19112004 \& \& \& \({ }_{22,1}^{22,}\) \& 7 \& \({ }^{2129}\) \& \({ }_{7}^{4.00}\) \& 91 \& \({ }_{88}\) \& \({ }_{316}\) \& \& \({ }_{15}^{20}\) \& \({ }_{5}\) \& 1 \& \({ }^{2}\) \& \({ }_{54}\) \& 8 \& \({ }_{\text {- }}^{\substack{\text { < } \\ 0.1 \\ \hline}}\) \& <10 \& 4100 \& \({ }_{\text {cois }}^{\substack{190 \\ \hline 80}}\) \& \& \& \& \({ }_{400}^{400}\) \& \& \& \& \& \& \& \& \& \& \({ }_{\text {Moderale }}^{\text {Moseate }}\) \& \(\frac{\text { Modeale }}{\text { Moderate }}\) \& \& \({ }_{\text {RH }}^{\text {RH }}\) \\
\hline Dinaso dis stuto-1 \& 220552005 \& \& \& \({ }^{9} 3\) \& 7.4 \& 266 \& 13.40 \& 116 \& 180 \& 3 \& \& \({ }^{21}\) \& 3 \& \({ }^{15}\) \& 8 \& \({ }^{111}\) \& \({ }^{14}\) \& 0.21 \& \(<10\) \& 120 \& \({ }^{50}\) \& <10 \& \& \& \(<100\) \& \& \& \& \& \& \& \& \& \& Notow \& \& \& \\
\hline \& \({ }_{\text {2 }}\) \& \& \& \({ }_{1}^{12.4}\) \& \({ }_{7}{ }_{7}{ }^{6}\) \& 265
226 \& \({ }_{7}^{8.20}\) \& \({ }_{70}^{75}\) \& \({ }_{108}^{143}\) \& \begin{tabular}{|c}
3 \\
15 \\
\hline
\end{tabular} \& 6 \& \({ }^{21}\) \& \({ }_{3}^{3}\) \& \({ }^{16}\) \& 9 \& \({ }_{104}^{113}\) \& \begin{tabular}{l}
16 \\
\hline 10
\end{tabular} \& \begin{tabular}{l}
0.2 \\
0.2 \\
\hline
\end{tabular} \& -10 \& 170
80 \& - 500 \& \({ }_{\substack{40 \\<10}}\) \& \& \({ }^{4}\) \& - \& \({ }_{0} 0.1\) \& \({ }^{<}\) \& < \& \({ }^{60}\) \& \({ }_{4}\) \& \({ }^{0.1}\) \& \({ }_{4}\) \& <10 \& \& \({ }_{\text {cosem }}^{\substack{\text { Lom-Mod } \\ \text { Mod }}}\) \& \({ }_{\text {Low }}^{\text {Lod }}\) \& \& \({ }_{\text {RH }}^{\text {RH }}\) \\
\hline Dawsond ds tutuo-1 \& \& \& 3.9 \& 22.5 \& 6.9 \& \({ }^{265}\) \& 4.16 \& 49 \& 160 \& 9 \& \& \({ }^{23}\) \& 3 \& 21 \& 9 \& \({ }^{150}\) \& 11 \& 0.21 \& <1 \& 550 \& <20 \& 30 \& \({ }^{4} 44^{+}\) \& \(<1\) \& 16 \& \(<1\) \& \(<\) \& \(\stackrel{2}{ }\) \& \& \({ }_{4}\) \& C0.5 \& \({ }^{4}\) \& 17 \& \({ }^{4}\) \& \& \& \& \\
\hline Daxson dis sutuon-2 \& \({ }^{330420004}\) \& \& \& \({ }^{25.1}\) \& \({ }^{7} 7\) \& \({ }^{260}\) \& 5.40 \& \({ }^{66}\) \& \({ }^{132}\) \& \({ }^{20}\) \& \& \({ }^{20}\) \& \({ }^{3}\) \& \({ }^{14}\) \& \({ }_{2}^{6}\) \& \({ }_{\substack{138 \\{ }_{5}^{18} \\ \hline}}\) \& \({ }^{14}\) \& <1 \& \({ }_{<10}\) \& \({ }^{290}\) \& \({ }_{\substack{10 \\ 180}}\) \& \& \& \& 400 \& \& \& \& \& \& \& \& \& \& Low \& Mode \& \& \({ }^{\mathrm{RH}}\) \\
\hline Jansond ds tutuo-2 \& \({ }^{1921120204}\) \& \& \& 22.7 \& 7.2 \& \({ }_{29}^{134}\) \& \({ }^{8.00}\) \& \({ }_{93}^{93}\) \& \({ }^{922}\) \& \& \& \({ }^{15}\) \& \({ }^{6}\) \& 16 \& \({ }_{9}\) \& \({ }_{\substack{56 \\ 111}}^{50}\) \& \({ }_{14}^{8}\) \& \({ }_{0}^{0.08}\) \& <10 \& \({ }^{3100} 10\) \& (680 \& <10 \& \& \& c100 \& \& \& \& \({ }^{66}\) \& \& \& \& \& \& \& \& \& \\
\hline Dawsonds thuto-2 \& 24012006 \& \& \& \({ }^{15.4}\) \& 7.6 \& \({ }_{228}^{29}\) \& \({ }_{7}\) \& 71 \& \({ }_{124}\) \& 11 \& 4 \& 19 \& 3 \& 14 \& 7 \& 106 \& 12 \& 0.2 \& 4 \& \({ }_{60}\) \& <10 \& <10 \& \& \({ }^{1}\) \& \(<100\) \& \({ }^{0.1}\) \& \({ }^{<}\) \& \({ }^{1}\) \& \({ }^{97}\) \& \({ }_{4}\) \& 0.1 \& \({ }_{4}\) \& <10 \& \& Mod \& Mod \& \& \({ }_{\text {RH }}\) \\
\hline Davson ds stutuon-2 \& \& \& 3.5 \& 21.8 \& 7 \& 282 \& 5.93 \& \({ }_{68}\) \& 180 \& 3 \& \& \({ }^{28}\) \& \& \({ }^{26}\) \& 11 \& \& \& \& \& \({ }^{560}\) \& 220 \& \({ }_{6} 6\) \& \({ }^{44}\) \& \(<1\) \& 15 \& \({ }^{4}\) \& \(\leq 1\) \& \(\llcorner 2\) \& \& 4 \& \({ }^{0.5}\) \& \({ }_{4}\) \& \({ }^{4}\) \& 4 \& \& \& \& \\
\hline Doavos Bend \& \({ }^{\text {and }}\) \& \& \& \({ }^{19,2}\) \& \({ }_{6}^{6.7}\) \& 2280 \& \({ }_{4.50}^{5.5}\) \& \({ }_{5}^{55}\) \& \({ }_{95}^{95}\) \& \& \& \({ }_{21}^{27}\) \& \({ }_{3}^{2}\) \& \(\stackrel{14}{14}\) \& 7 \& \({ }_{\substack{157 \\ 131}}^{1}\) \& \({ }^{12}\) \& \(\stackrel{0.1}{\substack{\text { ¢ }}}\) \& \(\stackrel{\text { c }}{<10}\) \& 270 \& 60 \& \& \& \& <100 \& \& \& \& \& \& \& \& \& \& \(\frac{\text { Low }}{\text { Low }}\) \& \(\frac{\text { Low }}{\text { Low }}\) \& \& \({ }_{\text {RH }}^{\text {RH }}\) \\
\hline Dawsons Bend \& 191112004 \& \& \& 21.2 \& 6.9 \& \({ }^{136}\) \& \& \({ }_{84}\) \& 136 \& \({ }^{366}\) \& \& 15 \& 5 \& \& 4 \& \({ }_{55}\) \& 9 \& 0.17 \& \(<10\) \& 3400 \& \({ }_{750}\) \& \& \& \& \& \& \& \& \& \& \& \& \& \& Wodeate \& \& \& \\
\hline Davsons Bend \& 244552005 \& \& \& 17.9 \& 7.1 \& \({ }^{244}\) \& 8.40 \& \({ }^{89}\) \& \({ }^{148}\) \& 4 \& \& \({ }^{21}\) \& \({ }^{3}\) \& 14 \& 9 \& \({ }^{106}\) \& 15 \& 0.21 \& \(<10\) \& 40 \& \({ }^{50}\) \& <10 \& \& \& \(<100\) \& \& \& \& \({ }^{62}\) \& \& \& \& \& \& \& \& \& \({ }_{\text {RH }}\) \\
\hline Dansons Eend \& \& \& \& 16.7 \& \({ }^{7.3}\) \& \({ }^{228}\) \& \& \({ }^{2}\) \& 122 \& \({ }^{10}\) \& 2 \& \({ }^{21}\) \& \({ }^{3}\) \& \({ }^{13}\) \& 8 \& \({ }^{102}\) \& \({ }^{13}\) \& \({ }^{0.2}\) \& \(\stackrel{4}{4}\) \& \({ }^{90}\) \& \({ }^{20}\) \& <10 \& \& \(\stackrel{4}{4}\) \& <100 \& \({ }^{0.1}\) \& \(\stackrel{4}{4}\) \& \({ }_{<}\) \& \({ }^{23}\) \& \({ }_{4}\) \& \({ }^{0.1}\) \& \({ }_{4}\) \& \({ }_{\text {c }}^{4}\) \& \& Mod \& Mod \& \& \({ }_{\text {RH }}^{\text {RH }}\) \\
\hline \(\frac{\text { Oavsons end }}{\substack{\text { Yeona cosing }}}\) \& \({ }_{\text {23042007 }}^{\text {310909 } 199}\) \& \& \({ }^{23.1}\) \& \({ }^{24,1}\) \& 6.9 \& \({ }_{430}^{273}\) \& 5.03 \& \({ }^{6}\) \& \({ }^{220}\)\begin{tabular}{l}
292 \\
\hline
\end{tabular} \& 14 \& \& \({ }^{22}\) \& \({ }^{3}\) \& 19 \& 9 \& \({ }^{130}\) \& 14 \& 028 \& \(<1\) \& \({ }_{540}\) \& \({ }_{4}\) \& \({ }^{6}\) \& \({ }^{444^{*}}\) \& \(<1\) \& \& 4 \& \& \(<2\) \& \& <1 \& \& \& \& 4 \& \& \& Slow Fow \& \\
\hline \& \({ }^{\text {a }}\) \& 15.00 \& \& 22 \& \& \({ }^{182}\) \& \& \& \& Slighly coudd brown \& \begin{tabular}{l}
s \\
\hline
\end{tabular} \\
\hline Yebna Cossing \& 110121202 \& 15.00 \& \& \({ }^{25}\) \& \& \({ }^{318}\) \& \& \& 216 \& Vens sight coudy brown \& \({ }^{\text {s }}\) \\
\hline Y Yenac Cossing \& \(\xrightarrow{1011202}\) \& \& \& \({ }_{21}^{25}\) \& \& \({ }_{\text {318 }}^{334}\) \& \& \& \({ }_{159}^{216}\) \& Vey silit colouy biown \& \\
\hline Yenan Crossing \& 1010102001 \& \& \& \& \& \({ }^{234}\) \& \& \& 159 \& Claer \& \\
\hline \& \({ }^{298082001} 10\) \& \& \& \({ }_{21}^{22}\) \& \& \({ }_{2}^{241}\) \& \& \& \& \({ }_{\text {clear }}^{\text {Cliart }}\) \& \\
\hline \({ }^{\text {Veban Cosssig }}\) \& \({ }^{220652000}{ }^{25550201}\) \& \& \& \(\begin{array}{r}18 \\ \hline 18 \\ \hline 2\end{array}\) \& \& \begin{tabular}{l}
215 \\
165 \\
\hline
\end{tabular} \& \& \& 146
14
14 \& \(\underbrace{\text { Slighty Mury }}\) \& \\
\hline Yenon Cososing \& 20042001 \& \& \& \({ }_{24}^{24}\) \& \& 1160 \& \& \& 109 \& Sighy mary \& \\
\hline Y Yeona Cosossing \& \({ }^{\text {8032001 }} 402001\) \& 15.00 \& \& \begin{tabular}{|l}
25 \\
\\
\\
26
\end{tabular} \& \& \({ }_{1}^{1768}\) \& \& \& \({ }_{120}^{120}\) \& \({ }_{\text {Slighly } \text { coudy }}\) \& \\
\hline Yena Cososing \& \({ }^{230112000}\) \& 14.00 \& \& \({ }^{25}\) \& \& \({ }_{151}^{151}\) \& \& \& \({ }^{103}\) \& Stiole \& \\
\hline Y Yenaca crossing \& \({ }^{1912122000}\) \& \({ }_{\substack{1600 \\ 13.00}}^{\text {180 }}\) \& \& \({ }^{25}{ }_{26}^{26}\) \& \& \({ }_{226}^{249}\) \& \& \& +169 \({ }_{181}\) \& \(\frac{\text { Slighty }}{\text { Claur }}\) \& \\
\hline ¢ \& (10102000 \& \& \& \({ }^{25}{ }_{25}^{25}\) \& \& \& \& \& \({ }_{202}^{197}\) \& \(\xrightarrow{\text { Cliear }}\) Cliar \& \\
\hline Yenna cososing \& 3082000 \& \({ }_{1437}\) \& \& \({ }^{25}\) \& \& \({ }_{2}^{257}\) \& \& \& \({ }^{175}\) \& Clear \& \\
\hline \& \({ }^{230772000}\) \& \({ }^{14.32}\) \& \& \({ }^{25}\) \& \& \({ }_{2}^{266}\) \& \& \& \({ }_{\substack{181 \\ 187}}\) \& \({ }_{\text {Cliar }}^{\text {Cliar }}\) \& \\
\hline Yena Cosssis \& \({ }^{1404042000}\) \& \begin{tabular}{|c}
15.50 \\
1200 \\
1200
\end{tabular} \& \& 25

22
22 \& \& ${ }_{205}^{241}$ \& \& \& ${ }^{164}$ \& Vers silit coudy brown \&

\hline Yeona Cosssig \& ${ }^{21406250000} 1$ \& ${ }^{12350} 12$ \& \& ${ }^{22}$ \& \& cis

279 \& \& \& ${ }_{100}^{207}$ \& \&

\hline Yeona Cossing \& \& \& \& ${ }^{24}$ \& \& ${ }^{344}$ \& \& \& \& Vers sight olouy bown \&

\hline Yroba Cossing \& ${ }^{3012012000} 3$ \& ${ }^{12.30} 10.45$ \& \& ${ }_{20}^{25}$ \& \& ${ }^{282}$ \& \& \& +192 \& $\underset{\text { vers sight coury biown }}{\text { flow }}$ \&

\hline Yeona Cossing \& ${ }^{20171999}$ \& ${ }^{16,35}$ \& \& ${ }_{22}^{22}$ \& \& \& \& \& \& ${ }_{\text {fow }}^{\text {fow }}$ \&

\hline Yenona Cosssing \& 290711999 \& \& \& ${ }_{15}$ \& \& ${ }_{348}$ \& \& \& ${ }^{237}$ \& Stow fow -muty \&

\hline Yeena crossing \& $\xrightarrow{2907071999} 1$ \& 8.00 \& \& ${ }_{12}^{17}$ \& \& ${ }^{435}$ \& \& \& ${ }_{107}^{296}$ \& \&

\hline Yenaa corssing \& 88051999 \& 9.30 \& \& ${ }^{18}$ \& \& 194 \& 4.00 \& \& 132 \& Mod fow- muky \&

\hline \& ${ }^{\text {23020219999 }}$ \& ${ }_{\substack{9.500}}^{\substack{\text { a.0. }}}$ \& \& ${ }^{28}$ \& \& ${ }_{1}^{187}$ \& \& \& ${ }^{127} 12$ \& \&

\hline Yeona Cossing \& ${ }^{230211999}$ \& \& \& ${ }_{17}^{26}$ \& \& ${ }^{231}$ \& \& \& ${ }_{1}^{157}$ \& Mod fow, muday \&

\hline Yeona a cosssising \& ${ }^{281111998}$ \& ${ }^{14.30}$ \& \& ${ }_{28}$ \& \& ${ }_{200}^{200}$ \& \& \& \& Wedoflow mumy \&

\hline ${ }_{\text {Veban Cossing }}^{\substack{\text { Vena coissing }}}$ \& ${ }^{28111909}$ \& 15.00 \& \& \& \& \& \& \& ${ }_{89}^{120}$ \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& 4100 \& \& \& \& \& \& \& \& \& \& \& \& Med flow- Brown \&

\hline Yeena Cossing \& \& \& \& ${ }^{20.8}$ \& ${ }_{7}^{72}$ \& ${ }_{2}^{292}$ \& ${ }^{7} 200$ \& ${ }_{81}^{81}$ \& ${ }^{92}$ \& \& \& ${ }_{27}^{27}$ \& ${ }^{3}$ \& 14 \& 6 \& ${ }_{124}^{124}$ \& ${ }^{22}$ \& < ${ }_{5}$ \& $<$ \& ${ }_{500}$ \& ${ }^{40}$ \& \& \& \& ${ }_{600}$ \& \& \& \& \& \& \& \& \& \& Modeaere \& ${ }_{\text {Notear }}^{\text {Low }}$ \& \&

\hline Venoa Cosssing \& ${ }^{1851125000}$ \& \& \& ${ }^{246}$ \& ${ }_{7,7}^{7.3}$ \& ${ }_{2}^{226}$ \& 13000 \& ${ }^{124}$ \& ${ }^{1127}$ \& ${ }^{142}$ \& \& ${ }^{29}$ \& ${ }^{6}$ \& $\stackrel{7}{11}$ \& ${ }^{5}$ \& | 103 |
| :---: |
| 88 |
| 88 | \& ${ }^{19}$ \& - ${ }_{0}^{0.23}$ \& <10 \& ${ }^{1100}$ \& 2200 \& \& \& \& ci100 \& \& \& \& \& \& \& \& \& \& Noctigh \& ¢ \& \&

\hline \& \& \& \& ${ }_{21}^{13.6}$ \& ${ }^{7.8}$ \& ${ }_{242}^{228}$ \& ${ }_{\text {l }}^{14.30}$ \& ${ }^{135}$ \& ${ }_{180}^{134}$ \& ${ }^{8}$ \& 4 \& ${ }^{27}$ \& ${ }_{4}$ \& $\stackrel{9}{17}$ \& \& ${ }^{87}$ \& ${ }^{21}$ \& 0.1
0.22 \& $\stackrel{4}{<1}$ \& (300 \& ¢ <10 \& <10 \& ${ }^{444^{+}}$ \& $\stackrel{4}{4}$ \& <100 \& $\stackrel{\substack{0.1 \\<1}}{ }$ \& $\stackrel{<1}{<1}$ \& $\stackrel{<}{<1}$ \& 76
300 \& ${ }_{<1}$ \& ${ }_{\substack{0.1 \\ 0.5}}$ \& ${ }_{<1}^{<1}$ \& ${ }_{<10}^{<10}$ \& 4 \& Mod \& Mod \& \& $\underset{\text { RH }}{\text { RH }}$

\hline \&

\hline
\end{tabular}

NR - Oenatmento oN Natural Resource

Water Quality Data Summar

Some	Socte						(ect					(ros ${ }^{\text {mos }}$				Potas	${ }^{\substack{\text { caicum } \\ \text { cmal) }}}$	Manesum		${ }_{\text {chen }}^{\substack{\text { chorate } \\ \text { max }}}$		$\underbrace{\substack{\text { sumate } \\ \text { motu }}}_{\text {sumpate }}$	$\xrightarrow{\text { Toank }}$	(oatp					coicce	${ }_{\text {cosen }}^{\substack{\text { Roon } \\ \text { uelt }}}$	${ }_{\text {coin }}^{\substack{\text { coper } \\ \text { (a) }}}$	${ }^{\substack{\text { mon } \\ \text { mon) }}}$		(e)			(tatares		(enter	(tan		${ }_{\substack{\text { Oata }}}^{\text {suace }}$
					urv	${ }^{\text {na }}$	20.8080	${ }_{\text {c }}^{80}$	${ }_{3}^{30}$	${ }^{\text {na }}$	88510	${ }^{\text {na }}$	${ }^{10}$	${ }_{50}$	${ }_{175}$	${ }^{\text {na }}$	1000	${ }^{\text {na }}$	${ }^{\text {na }}$	${ }^{175}$	${ }_{1}, 2$	${ }_{40}$	50	${ }_{50}$		${ }^{20}$	${ }^{200}$	${ }^{5}$		${ }^{371}$	${ }_{1}$	200			\bigcirc							
Onemer		140					${ }^{19}$		${ }_{4}^{45}$			${ }^{\frac{33}{63}}$																														s
demosor Taom	vatanoz	${ }^{1245}$					19		${ }^{257}$			175																														s
Damenon Taomm	Nata202	1800					${ }^{28}$		${ }_{30}$			${ }^{204}$																													Mod toun mouter	
Oamenotaom	$1{ }^{1042}$	1700							${ }^{193}$			${ }^{131}$																														s
Damanomamem	1042020	1:10					${ }^{25}$		${ }^{117}$			${ }^{80}$																													Mod fory, muatey	
Oamontraom	varano	1130					${ }^{27}$		${ }_{140}$			${ }^{95}$																													Mod tomomuxy	s
Damono Troom	varane2						${ }^{27}$		${ }^{258}$			${ }^{175}$																													Wod foum muxy	
Oemen	,	(1800					${ }_{24}^{24}$		$\underbrace{}_{\substack{216 \\ 27 \\ 27}}$																																	
Oeamer foiom		1600					${ }_{2}^{24}$		${ }_{\substack{24 \\ 24 \\ 24}}$																																	
	,						${ }^{22}$					$\underbrace{\substack{16}}_{\substack{165 \\ 140}}$																													come	
							($\underset{\substack { 190 \\ \begin{subarray}{c}{105{ 1 9 0 \\ \begin{subarray} { c } { 1 0 5 } } \\{105}\end{subarray}}{\text { 10, }}$																														
							- ${ }_{\text {24 }}^{24}$																																		come	
		130					28		${ }^{364}$																																	
	${ }^{2020}$						${ }_{\substack{26 \\ 26}}^{\substack{26}}$		${ }_{\substack{231 \\ 208}}$			(in																													coil	
							$c2424$	-	${ }^{\frac{204}{324}}$			$\underbrace{\substack{20}}_{\substack{20 \\ 20}}$																													emar	
Oemen frowe	3020200	20.					24		${ }^{39}$			${ }^{205}$																													Comat	
${ }^{\text {omamonomamm }}$	${ }^{220727200}$	${ }^{1438}$					${ }^{24}$		${ }^{297}$			${ }^{202}$																														
Doamo froum	20068200	${ }_{\substack{14,60}}^{14,0}$					${ }^{24}$		${ }^{294}$																																	s
Somen		${ }^{11.4}$					$\stackrel{22}{21}$		${ }_{4}^{410}$			${ }^{219}$																													$\substack{\text { coer } \\ \text { coer }}$	
Onem		11.4					${ }^{\frac{23}{24}}$					${ }^{256}$																														
Oemen Tosem	${ }_{\text {and }}^{\text {and }}$						${ }^{22}$		${ }^{300}$																																${ }_{\substack{\text { four } \\ \text { fow }}}^{\text {for }}$	
Oameno Traom	23071999						${ }_{16}$		${ }_{36} 3$			${ }_{20}$																														
Ommon Tasom	20871989						17		450			${ }_{30}{ }^{6}$																														
Oamson Tasom	10661998	9.10					${ }^{14}$		${ }^{319}$			${ }^{27}$																													Nomer	s
Doamon Tasom	avelige	${ }^{1100}$					19		${ }^{20}$			${ }_{12}$																														
(1anseat	${ }^{11272763}$	${ }_{\text {l }}^{1285}$	${ }^{0.87}$	O.60	${ }_{0}^{0.10}$			${ }_{\substack{8,0 \\ 8.0}}$	${ }_{\substack{200 \\ 24}}$			${ }_{\substack{200 \\ 148}}^{\substack{18}}$			${ }_{\text {c }}^{\substack{36 \\ 36}}$		${ }^{\frac{2}{210}}$	${ }_{\text {110 }}^{110}$		${ }_{\substack{36 \\ 32}}$	O20	${ }_{20}^{20}$															000			${ }_{\substack{2462 \\ 246.6}}$		
			${ }^{0.65}$	(ent	(0.00				${ }^{\substack{287 \\ 30 \\ 30}}$			${ }_{\substack{188 \\ 184}}^{\substack{19 \\ \hline}}$					(i80	($\underbrace{}_{\substack { 188 \\ \begin{subarray}{c}{195{ 1 8 8 \\ \begin{subarray} { c } { 1 9 5 } } \\{\hline 195}\end{subarray}}$	${ }_{\substack{32 \\ 32}}^{\substack{32}}$	¢0.00 0.00 0.0	${ }^{10}$														(iseo	${ }_{0}^{000}$		${ }_{\substack{68 \\ 10}}^{18}$			(inco
		${ }^{80}$	0.71	020	0.10		${ }^{20}$	820												${ }^{32}$																						
		cosise	${ }_{0}^{088}$	$0_{0.18}^{0.18}$	0.10		${ }^{24}$	${ }_{780}^{280}$	${ }^{1812}$						${ }^{22}$		${ }_{190}^{190}$	${ }_{50}^{50}$	${ }^{93}$	${ }^{12}$	${ }_{0}^{0.15}$	${ }_{40}^{10}$														${ }^{2600}$			${ }_{68}{ }_{68}$			(ind
(10024		${ }^{1065}$	0.88	${ }_{0}^{0.18}$	0.10		17	${ }_{720}{ }^{180}$	${ }_{\text {136 }}^{138}$						${ }^{22}$		${ }^{190}$	${ }^{50}$	${ }^{120}$	${ }^{14}$	${ }_{0}^{0.10}$	4.														8200			${ }_{158}$			(inden
		${ }_{\substack{380}}^{\substack{380}}$	${ }^{\text {0,74 }}$		0.00		${ }^{18}$	${ }_{720}^{20}$	${ }^{35}$						${ }^{35}$		${ }_{3}^{420}$	${ }_{100}^{100}$	${ }^{20} 189$	${ }_{\text {30 }}^{30}$	${ }_{0}^{0.15}$															15550	000		${ }^{121}$			(incon
coser	${ }^{20808989}$	${ }_{\substack{180 \\ \hline 85}}^{185}$			0.0		${ }^{17}$		30						${ }^{5}$		${ }^{32}$	100	${ }^{189}$	${ }^{30}$	0.5																					
			${ }^{0.65}$	${ }^{002}$	0.10			270	${ }^{212}$						${ }^{30}$		${ }^{230}$	60	${ }^{122}$	${ }^{24}$	020															1160	000		${ }^{82}$	${ }^{262}$		(inco
		${ }_{\text {a }}^{885}$	0.68	0.14	0.10		析	720	${ }^{165}$			${ }^{113}$	${ }^{197}$		${ }^{15}$	${ }^{67}$	${ }^{145}$	${ }^{35}$	${ }^{93}$	10	0.9						1000			∞		${ }^{200}$		200		7600			51	${ }_{1332}^{132}$		(incm
		${ }_{\substack{1880}}^{1200}$	${ }^{086}$	${ }^{136}$	0.10		,	${ }^{280}$	${ }^{180}$			${ }^{115}$	2		${ }^{18}$	${ }^{52}$	${ }^{137}$	${ }^{35}$	${ }^{13}$	${ }^{18}$		${ }^{20}$										2200		${ }^{1330}$		800		02	49	${ }^{141.1}$		(incon
		${ }_{\substack{180 \\ 180}}^{\substack{180}}$	0.0	022	0.10		${ }^{29}$	${ }^{7} 8.8$	${ }^{230}$			${ }^{134}$	70		${ }^{18}$	${ }^{6} 1$	220	${ }^{4 .}$	${ }^{116}$	${ }^{16}$	0.17											${ }^{300}$		1000		5000	0.00	04	14	${ }^{188}$		
			0.70	024	0.10		${ }^{25}$	270	30			${ }^{204}$	20		${ }^{36}$	${ }^{68}$	220	${ }^{8.5}$	110	${ }^{28}$	0.3													${ }_{1}^{1400}$		${ }^{12000}$	0.00	0.5	${ }^{102}$	276		
-		${ }_{170}^{170}$	0.78	0.52	0.10		${ }_{15}$	720	${ }^{265}$			${ }^{152}$	${ }^{85}$		${ }^{28}$	${ }^{65}$	200	${ }^{63}$	${ }^{122}$	${ }^{24}$	0.15													${ }^{900}$		1000	000	。	12	${ }^{265}$		
		${ }^{1720} 170$	0.6	021	0.10		${ }^{19}$	780	${ }^{315}$			${ }^{175}$			${ }^{37}$	${ }^{37}$	${ }^{180}$	70	${ }^{146}$	${ }^{34}$	${ }^{027}$													300		${ }^{12000}$	000	\bigcirc				
		${ }^{1088}$	${ }_{\substack{0.89 \\ 0.69}}^{\substack{\text { 0. }}}$	${ }_{0}^{025}$	0.10		2	${ }^{270}$	${ }^{200}$			${ }^{188}$			3	${ }^{33}$	170	6	${ }^{129}$	${ }^{30}$	0.17													200			000	\bigcirc				
		${ }_{\text {a }}^{\substack{1065 \\ 1065}}$	${ }^{0.58}$		0.10		${ }^{30}$	${ }^{230}$	${ }^{310}$			${ }^{192}$	3		32	${ }^{63}$	${ }^{195}$	${ }^{68}$	${ }^{196}$	${ }^{30}$	0^{022}													${ }^{3000}$		11200	${ }^{000}$	-		2208		,
	${ }^{2077495}$	${ }^{1065}$	${ }^{\text {O. }}$		010		${ }_{18}$		20			40	14																													
(10032A		${ }^{1245}$	0.59	${ }^{003}$	0.0		${ }^{16}$	${ }_{720}$	${ }^{261}$			${ }^{100}$	${ }^{20}$		${ }_{31}$	${ }^{36}$	${ }^{120}$	${ }_{5}^{57}$	${ }^{115}$	${ }^{26}$	0.10													${ }^{200}$		\%	000	-	${ }^{69}$	3, ${ }^{3 / 1}$		
		1880	0.58	${ }^{003}$			${ }^{\frac{23}{24}}$																																			owew
		${ }_{\text {cex }}^{1060}$	${ }^{0.85}$	${ }_{\substack{185 \\ 1.85}}$	020		${ }^{27}$	8.15	${ }^{268}$			${ }^{188}$	n		${ }^{23}$	64	${ }^{210}$	${ }^{6}$	${ }^{115}$	${ }^{22}$	${ }^{020}$	30					${ }^{2200}$									\%6000		${ }^{08}$	${ }^{78}$			Sonem
	$\underbrace{13097976}$	$\underbrace{\substack{182}}_{\substack{182 \\ 1820}}$	${ }_{0}^{064}$	${ }_{\text {c, }}^{0.16}$	${ }^{0.10} 0$			${ }^{8.50}$	${ }^{\frac{30}{20}}$			${ }^{\frac{201}{188}}$	130		${ }^{48}$	${ }^{34}{ }^{34}$	${ }^{240}$	${ }^{78}$	${ }^{165}$	${ }^{38}$	0.70	${ }^{20}$					${ }_{\substack{200 \\ 1700}}$							${ }^{120}$			(000	${ }^{\frac{32}{0.1}}$	${ }^{\frac{92}{60}}$			
			0.98	0.40	0.0		${ }^{24}$	800	310			${ }^{12}$	27		${ }^{28}$	${ }^{57}$	${ }^{240}$	${ }^{12}$	${ }^{120}$	${ }^{26}$	0.10	${ }^{60}$					${ }^{200}$							1860		10000		0.	\bigcirc	2714		
		${ }_{\text {2120 }}^{12120}$	0.80	0.12	0.10		${ }^{24}$	820	${ }^{335}$			${ }^{174}$			${ }^{4}$	${ }^{34}$	${ }^{130}$	${ }^{78}$	112	${ }^{33}$	020						${ }^{20}$							${ }_{4.00}$		${ }^{18300}$		${ }^{1.1}$	${ }_{6}$	24.7		Nomen
	${ }^{122049898}$	${ }_{\text {cose }}^{1248}$	0.2	0^{021}	0.10			${ }^{200}$	${ }^{20}$			${ }^{199}$	${ }^{19}$		${ }^{21}$	${ }^{50}$	210	${ }^{58}$	${ }^{128}$	${ }^{18}$	020	25					${ }^{20}$							${ }^{1100}$		1060		0.6	${ }^{76}$	${ }^{203}$		
		${ }_{\text {ces }}^{1205}$	${ }^{0.89}$	$\underbrace{0.48}_{0} 0$			- ${ }^{14}$																																			
	Sill	${ }_{\substack{104 \\ 104 \\ 104}}^{104}$	${ }^{128}$	273	0.10		${ }^{25}$	${ }^{750}$	${ }^{200}$			${ }^{122}$	${ }^{1270}$		${ }^{16}$	74	17.0	4.5	${ }^{95}$	7	0.10	50					500							${ }^{1330}$		${ }^{7800}$		02	${ }^{6}$	1688		(in
		120	${ }^{\text {O.7 }}$	${ }_{0}^{0.4}$	0.0			7.70	30			${ }^{189}$	10	${ }^{13}$	${ }^{34}$	${ }_{42}$	250	${ }^{26}$	${ }^{160}$	${ }^{30}$	0.10	1.0					200							${ }_{60}$		${ }^{13200}$		0.5	${ }^{4}$	${ }^{294}$		Now
		${ }^{1940}$	${ }^{1.19}$	147	0.10		17	${ }^{290}$	${ }^{160}$			101	${ }^{50}$	${ }^{100}$	${ }^{13}$	${ }^{53}$	${ }^{120}$	${ }^{31}$	${ }^{65}$	11	0.10	80					${ }^{4000}$							${ }^{1200}$		4400		$0^{0.3}$	${ }^{43}$	${ }^{121.8}$		
		${ }_{\substack{140 \\ 800}}^{\text {en }}$	${ }^{0.57}$	${ }^{0.25}$	${ }_{0}^{0.0} 0$			200	${ }_{\substack{40 \\ 300}}$			${ }^{\frac{212}{207}}$	${ }^{10} 10$	${ }_{5}^{5}$	${ }_{4}^{41}$	${ }^{\frac{37}{36}}$	${ }_{2}^{230}$	${ }^{\frac{88}{82}}$	${ }^{\frac{188}{17}}$	${ }^{\frac{34}{34}}$	${ }^{0.10} 0$	500					100							- $\begin{aligned} & \text { 300 } \\ & \text { 300 }\end{aligned}$		$\underbrace{\text { cen }}_{\substack{18200 \\ 18600}}$		${ }^{11} 0$	${ }^{108}$	${ }_{\substack{3225 \\ 235}}$		
	${ }^{2}$		${ }^{0.81}$	${ }^{0.22}$			${ }_{23}^{23}$																																			
		${ }^{1285}$	0.78	0.4	0.10		${ }^{15}$	8.50	${ }^{320}$			${ }_{10}$	-	$\stackrel{2}{2}$	${ }^{36}$	${ }^{37}$	${ }^{21.0}$	${ }^{6}$	${ }^{100}$	${ }^{2}$	0.10	30					${ }_{40}$			${ }^{20}$		${ }^{20}$		100								
		${ }^{105}$	${ }^{0}$	0.2	0.10		${ }^{25}$	8.0	30			10	10	${ }^{8}$	39	${ }^{38}$	${ }^{155}$	${ }_{6}^{66}$	${ }^{100}$	${ }^{34}$	${ }_{0}^{020}$	1.0					${ }_{0}$									${ }^{10000}$			${ }^{6}$			
			${ }^{0.98}$	080	0.10		${ }^{26}$	${ }^{270}$				${ }^{200}$	${ }^{20}$		${ }_{5}^{38}$	49	${ }^{220}$	${ }_{9}{ }^{78}$	10	${ }^{25}$	0.10	${ }^{83}$					${ }^{50}$			${ }^{20}$		${ }^{100}$		14.0		${ }^{10000}$						
			${ }_{656}$	${ }_{97688}$	0.10		${ }^{15}$	720	${ }^{485}$			${ }^{180}$	${ }^{1000}$	${ }^{100}$		\%	${ }^{3} 5$.	6	,	0.0	3								10		460		\%00		7800		${ }^{\text {a }}$	12			
			${ }_{652}$	1505099	0.10		${ }^{13}$	600	${ }^{175}$			${ }^{120}$			${ }^{21}$	${ }^{64}$	100	${ }^{23}$	${ }_{85}$	\bigcirc		,					2200						${ }_{100}$	${ }_{1900}$		now			${ }^{34}$	${ }^{14}$		$\xrightarrow{\text { OnNeN }}$
			${ }^{\frac{6,43}{6.3}}$		${ }^{\frac{0.10}{0.0}}$			¢50,	${ }^{120}$					(100		¢00	${ }^{\frac{8.7}{17}}$	-	¢	$\stackrel{6}{6}$													${ }_{\text {O }}^{0.02}$	${ }^{2000}$		cise			${ }^{30}$	(1026		
,					0.10		${ }^{24}$								${ }^{5}$	${ }^{24}$	260	${ }^{89}$	${ }^{188}$		0.0	${ }^{20}$								${ }_{10}$		20		600				${ }^{12}$	${ }^{102}$			(in
		,	${ }^{08}$	0.15	0.0		23					${ }^{180}$	${ }^{10}$,	${ }^{5}$	${ }_{38}$	${ }_{20}^{20}$.	,	${ }_{3}{ }^{23}$	${ }_{0}$,			\ldots		${ }^{20}$,		12700			${ }^{6}$	3201		

Water Quality Data Summax

												${ }_{\text {ras }}^{\text {mos }}$ Tss						Mamasim		choreme		sumpe	（tan）	Tomal									Is／Trace Eleme $\begin{array}{c}\text { Manganese as } \\ \text { Mn soluble }\end{array}$	Silica as SiO2 sol								${ }_{\substack{\text { Oatab }}}^{\text {sumeco }}$
					NV	${ }^{\text {na }}$	22080 \％ut																																			
			1.07	${ }^{107}$	mv			䧶	${ }^{30}$	na	${ }^{85170}$	${ }^{\text {n90 }}$	${ }_{20}^{10}$	${ }^{50}$	${ }_{36}{ }^{175}$	${ }_{36}$	${ }_{1900}^{190}$	${ }_{\substack{n 9 \\ 64}}$	${ }^{145}$	${ }_{35}^{775}$	${ }_{0}^{1,2}$	${ }^{40}$	50	${ }^{50}$			2700 500			${ }^{37}$		${ }^{20}$	${ }_{0}^{001}$	${ }^{100}$				${ }_{0}^{0.7}$	${ }^{74}$	${ }^{264} 4$		
18002a	Hille		0.92	${ }^{0.38}$			${ }^{\frac{23}{23}}$		${ }_{315}$																																	
，103029		${ }^{1100}$	082	0.12	0.10		${ }^{29}$	120	$\underbrace{}_{\substack{235 \\ 134}}$			${ }^{140}$	8	${ }^{2}$	${ }^{22}$	${ }^{57}$	170	50	10	${ }^{18}$	020	20					${ }_{500}$			30		so	00	1500		9100		${ }_{0} .5$	${ }^{63}$	${ }^{181 / 4}$		（onew
，103029at		${ }^{1227}$	${ }^{0.78}$	${ }^{005}$	0.10		${ }^{23}$	820	${ }^{2275}$			${ }^{150}$	${ }^{105}$	2	${ }^{24}$	50	${ }^{230}$	60	${ }^{130}$	${ }^{17}$	020	${ }^{21}$								30		${ }^{\circ}$		800		10900		${ }^{12}$	${ }^{82}$	${ }^{2086}$		
			081	0.11	0.0		15	8.10	${ }^{315}$			${ }^{180}$	${ }^{20}$	$\stackrel{8}{-}$	${ }^{36}$	50	${ }^{240}$	20	${ }^{185}$	${ }^{30}$	0.10									${ }^{20}$		${ }^{30}$		${ }^{100}$		${ }^{12300}$		${ }^{13}$	${ }^{8}$			
${ }^{103022}$			0.95	007	0.10		${ }^{25}$	8	${ }^{300}$			${ }_{160}$	5	7	${ }^{33}$	${ }^{37}$	${ }^{205}$	${ }^{64}$	${ }^{160}$	${ }^{27}$	0.10									10		${ }^{30}$				${ }^{12600}$		0.	${ }^{18}$			
Sosa	为	${ }^{1349}$	${ }^{080}$	${ }^{003}$	0.10		25	\％	${ }_{\substack{20 \\ 206}}^{\substack{26 \\ 206}}$			${ }^{100}$	${ }^{28}$		${ }^{22}$	${ }^{64}$	220	${ }^{50}$	${ }^{125}$	$\stackrel{16}{17}$	020									${ }^{20}$		3		${ }^{1200}$		${ }^{10350}$		${ }^{04}$	${ }^{13}$	${ }^{108}$		
			${ }^{085}$	${ }^{0.088}$	0.10		${ }^{13}$	200	${ }^{3}$			${ }^{100}$	$\stackrel{5}{142}^{1}$	${ }^{3}$	${ }^{33}$	${ }^{46}$	200 150	${ }^{60}$	${ }^{100}$	${ }^{27}$	0.10 0.10						${ }^{100}$			10		${ }^{20}{ }^{30}$		${ }^{100}$		${ }_{\text {ckeo }}$		0.	${ }_{5}$	${ }_{\substack{2129}}^{209}$		
边	\％		${ }^{329}$	${ }^{0.23}$	010		${ }^{26}$	20				${ }^{120}$	${ }^{13}$	${ }_{100}^{100}$	${ }^{26}$	${ }^{68}$	${ }^{200}$	${ }^{33}$	${ }^{105}$	${ }_{5}^{6}$	${ }_{0} 020$	${ }^{26}$					${ }^{300}$			${ }^{20}$		${ }^{30}$		${ }_{1200}^{100}$		$8{ }^{860}$		0.1	${ }^{64}$	${ }^{1671}$		，
，	Sozerse		${ }^{0.85}$	${ }^{\text {3，20 }}$	0.10		${ }^{23}$	${ }_{7}^{10}$	${ }^{\frac{188}{180}}$			${ }_{10}^{10}$	302	100	${ }^{21}$	${ }^{36}$	${ }^{200}$	${ }_{30}$	10	${ }_{14}$	0.10	${ }^{22}$					${ }_{1000}$					${ }_{30}$		${ }_{141400}^{1200}$		\％700		02	${ }_{4}$	${ }_{1632}$		（iven
2024	2as		\％	${ }^{0.3}$			${ }^{18}$																																			
			${ }^{0.80}$	008	0.10		${ }^{21}$	720	${ }_{\substack{200 \\ 295}}$			${ }^{150}$	\bigcirc	${ }^{36}$	${ }^{29}$	32	200	52	${ }^{125}$	${ }^{23}$	0.10											${ }^{40}$		${ }_{300}$		10400		${ }^{06}$	\cdots	${ }^{2061}$		（inco
			${ }^{146}$	${ }^{443}$	0.10		${ }^{26}$	700	${ }_{\substack{125 \\ 185}}^{\text {185 }}$			${ }^{83}$	${ }^{200}$	100	10	${ }_{5}^{53}$	${ }^{89}$	${ }^{24}$	${ }^{56}$	10	0.10						80					${ }^{1300}$		1900		1860			${ }^{32}$	${ }^{342}$		$\underset{\substack{\text { ONSN } \\ \text { DNRW }}}{\text { and }}$
			${ }^{195}$	${ }^{1178}$	0.10			780				${ }^{180}$	${ }^{124}$	${ }^{100}$	${ }^{19}$	${ }^{74}$	${ }^{155}$	${ }^{4.1}$	${ }^{87}$	19		22					4700					190		${ }^{120}$		${ }^{1200}$			${ }^{56}$			
			097	0.88	0.10			7.70				180	${ }^{100}$	100	${ }^{36}$	${ }^{35}$	${ }^{230}$	${ }^{73}$	${ }_{10}{ }^{0}$	${ }^{36}$	0.10	${ }_{4} 4$					50			${ }^{6}$		${ }^{6}$		${ }^{800}$		11500		${ }^{0.4}$	${ }^{8}$	${ }^{232}$		
${ }^{\text {cosema }}$			${ }^{109}$	${ }_{0}^{1045}$	0.0		${ }^{23}$	780	${ }^{\frac{20}{210}}$			${ }^{124}$	14	200	2	${ }^{65}$	${ }^{143}$	4.5	${ }_{87}$	17	0.14	36					1200			${ }^{20}$		${ }^{\circ}$		1220		${ }^{1200}$	001	${ }_{0} 0$	${ }^{54}$	1365		（in
	边		${ }^{103}$	0,83	0.10		${ }^{10}$	${ }_{\substack{820 \\ 80}}$				${ }^{23}$	${ }^{6}$	${ }^{88}$	4	${ }_{4}^{4 .}$	${ }^{28.1}$	${ }^{92}$	160	${ }^{38}$	0.13	60					${ }^{100}$			10		330		${ }^{17,70}$		${ }^{14140}$	${ }_{0}^{003}$	${ }^{15}$	${ }^{107}$	3012		Nown
			${ }^{084}$	0.3	0.10		${ }^{25}$	\％iso	${ }^{525}$			${ }^{205}$	11	${ }^{8}$	6	${ }^{52}$	${ }^{330}$	${ }^{11,8}$	${ }^{21}$	${ }^{6}$	0.19	${ }^{33}$							${ }^{0.05}$	30	40			${ }^{650}$		18200	0.0	1	${ }^{131}$	${ }^{40}$		
		${ }^{12}$	${ }^{0.08}$	$\stackrel{107}{107}$	0.10		${ }^{2}$		${ }^{\frac{204}{20}}$			${ }^{180}$	$\underbrace{}_{\substack{103 \\ 5}}$	${ }^{100}$	${ }^{32}$	${ }_{64}^{46}$	${ }^{240}$	${ }_{5}^{58}$	${ }^{130}$	${ }_{\substack{27 \\ 16}}$	－0．00	${ }_{4}^{4.8}$					$\underbrace{}_{\substack{\text { Inoo } \\ \text { sob }}}$		0.15 0.04 0.	${ }_{10}^{10}$	${ }_{\substack{20 \\ 40}}$	${ }^{20}$	0.1	${ }_{\substack{1800 \\ 1320}}$	${ }^{10} 10$	$\xrightarrow{\text { lumo }}$	00	${ }^{0.5}$	${ }^{\frac{88}{66}}$	${ }_{\text {cke }}^{\substack{200 \\ 1885}}$		
			0.8	0.13	0.0		${ }^{24}$	（ise	${ }_{\substack { \text { as } \\ \begin{subarray}{c}{20 \\ 305{ \text { as } \\ \begin{subarray} { c } { 2 0 \\ 3 0 5 } }\end{subarray}}$			19	10	5	${ }^{12}$	${ }^{6}$	219	${ }^{75}$	${ }_{185}$	${ }_{37}$	0.15								0.9	10				${ }_{130}$		${ }_{12800}$	${ }^{002}$	08	${ }^{85}$	${ }^{2691}$		（incon
			${ }_{\substack{0.45 \\ 088}}^{\substack{\text { a }}}$	${ }_{0}^{0.47}$	0.0			（im0	${ }_{\substack{404 \\ 404}}^{\text {304 }}$			${ }^{251}$		${ }^{\frac{5}{20}}$	${ }_{\substack{52 \\ 19}}$	${ }^{6.8}$	${ }^{301}$	${ }^{10.4} 4$	${ }^{206}$	$\stackrel{44}{9}$	${ }^{0.18} 0$	19							${ }_{\text {O．}}^{0.08}$		${ }_{\substack{20 \\ 10}}$	${ }_{\substack{20 \\ 190}}^{\substack{\text { a }}}$		${ }_{\text {270 }}^{2740}$	10	$\xrightarrow[\substack{\text { IT000 } \\ 8400}]{ }$	${ }_{\text {or }}^{0.000}$	${ }_{0}^{0.5}$	${ }^{\frac{117}{60}}$	（3358		
${ }^{\text {ligasen }}$			0,78	0.09	0.0		19	8.10	${ }_{30}^{204}$			${ }^{139}$	\％		${ }_{34}$	30	195	${ }^{65}$	${ }^{135}$	${ }^{26}$	0.13	${ }^{0} 4$					100		00					0.50		${ }^{\text {п1300 }}$	${ }^{003}$	${ }^{1.1}$	${ }_{75}$	${ }^{2276}$		（iven
${ }^{\text {120302 }}$			1,18	${ }_{588}$			${ }^{\frac{19}{27}}$	${ }_{7,2}$	${ }^{310}$																																	（inew
			${ }_{0}$	${ }_{0}^{0.13}$	0.10			${ }_{7}^{1760}$	${ }^{\frac{385}{35}}$			${ }^{183}$	12	3	${ }^{37}$	56	215	${ }^{82}$	${ }^{184}$	${ }^{28}$	0.14	${ }^{18}$					${ }^{20}$				10	${ }^{10}$		490	10	12800	0.0	${ }_{0} 4$	8	${ }^{2367}$		
${ }^{\text {cosema }}$	${ }^{23}$		${ }^{148}$	${ }^{588}$	0.0		${ }^{5}$	7	${ }^{289}$			${ }^{156}$	${ }^{1}$	${ }_{36}$	${ }^{22}$	${ }_{6}^{67}$	${ }^{210}$	${ }_{5}^{53}$	${ }^{126}$	${ }^{19}$	0.14	${ }^{15}$					${ }^{3200}$				${ }^{20}$	6		${ }^{1100}$		${ }^{12300}$	0.1	${ }^{02}$	${ }^{74}$	${ }^{204}$		
${ }^{\text {cosema }}$	隹		${ }^{1.088}$	${ }_{\substack{\text { 0．90 } \\ 0.9}}$	0．0．0			${ }_{7}^{70}$	${ }^{268}$			${ }_{\substack{100 \\ 100}}^{\text {¢ }}$	${ }_{4}^{46}$	${ }_{\substack{20 \\ 43}}$	${ }^{\frac{14}{27}}$	${ }^{\frac{8}{64}}$	${ }^{122}$	（ ${ }_{\text {32 }}^{54}$	${ }_{\substack{18 \\ 13}}$	${ }_{19}$	${ }_{0}^{0.11}$	${ }^{23}$							${ }_{0} 0.17$		${ }_{\substack{40 \\ 30}}$	${ }^{130}$		${ }_{\substack{1150 \\ 1500}}$		${ }^{\frac{8}{8300} 0}$	${ }^{\frac{001}{0.00}}$		${ }^{\frac{44}{13}}$			，
	30atiom		07	003	0.0		${ }^{20}$	8.0	${ }^{\frac{314}{314}}$			${ }^{194}$		＋	${ }^{37}$	44	${ }^{195}$	${ }^{63}$		${ }^{27}$	${ }^{011}$	04					${ }^{30}$				10			${ }^{030}$		ก530	001	${ }_{0}$	${ }^{14}$	${ }^{234}$		
	为		，																					${ }^{220}$	000																	
${ }^{\text {12002as }}$			120		0.10			${ }^{720}$	${ }^{268}$			${ }^{138}$	${ }^{120}$	${ }^{200}$	${ }^{35}$	${ }^{48}$	${ }^{150}$	${ }^{4 .}$	${ }^{113}$	${ }^{31}$	${ }_{0} 0.4$	1.		3300			${ }^{1000}$		${ }^{0.37}$		40	${ }^{20}$	${ }^{0.01}$	590	10	${ }^{3300}$		0.1	${ }^{6}$	${ }^{2662}$		$\xrightarrow{\text { Onven }}$
																									0.18	${ }_{50}$		${ }^{200}$														（insen
			${ }^{0.89}$	${ }_{\substack{\text { O．0．} \\ \text { O．90 }}}$	（020	${ }^{25}$	${ }^{20}$	${ }_{\text {l }}^{729}$	${ }^{220}$	${ }^{321}$		${ }_{179}$	7	2	${ }^{38}$	${ }_{60}$	${ }^{202}$	${ }_{6}{ }^{5}$	${ }_{151}$	${ }^{29}$	0.15	0		${ }^{657}$			${ }_{50}$		${ }_{0} 000$			10	${ }^{0.00}$	4.30		${ }^{12480}$	0.0	0.38	n， 13	${ }^{25188}$		（in
${ }^{\text {cosema }}$			${ }_{\substack{083 \\ 800}}^{\substack{\text { a }}}$		（0．00		${ }^{27}$	$\xrightarrow{7,74}$	${ }^{\frac{342}{148}}$			${ }^{8}$	$4{ }^{41}$	${ }^{20}$	14	${ }^{55}$	10.1	${ }^{21}$	${ }^{62}$	8	0.11	${ }^{21}$					400		${ }^{027}$			${ }^{10}$	000	${ }^{1140}$		5150	000	${ }_{0}^{0.05}$	उ383	1085		
																								504	0.16	${ }^{67}$																$\xrightarrow{\text { OnNeN }}$
${ }^{\text {cosem }}$			${ }^{600}$	5000	${ }^{0.20}$		${ }^{23}$	\％	${ }^{136}$					18														${ }^{200}$														
（1anora												${ }^{133}$	${ }_{6}$	${ }^{18}$	${ }^{2}$	${ }^{6} 1$	${ }^{174}$	${ }^{60}$	10	${ }^{14}$	0.13	${ }^{13}$		1134	0.2	${ }^{350}$	1010		0.3		${ }^{50}$	${ }^{8}$	0.02	${ }_{1220}$		9，00	0.02	0.67	${ }^{339}$			（in
${ }^{\text {cosen }}$	$\underbrace{20808989}$		${ }^{0.78}$	028	${ }^{0.30}$		${ }^{27}$	${ }_{\substack{688 \\ 888}}$	${ }^{228}$	${ }^{\frac{378}{3,8}}$																																
			${ }_{0}^{0.44}$		0，30			${ }_{7}^{\text {PTin }}$	${ }^{37}$			${ }^{189}$	15	${ }^{12}$	${ }^{35}$	${ }_{56}$	${ }^{24} 3$	72	${ }^{186}$	${ }^{28}$	0.13	15		${ }^{245}$			${ }^{180}$		0.0		10		0	920	10	${ }^{12900}$	0.0	0.51	${ }^{0023}$	2992		（in
隹			${ }^{0.74}$	${ }^{0.06}$	020		${ }^{21}$	780	$3{ }^{32}$	440				${ }^{15}$											0.	\％																
，	$\underbrace{20}$		${ }_{0}^{0.6}$	${ }_{0}^{0.1}$	（020			${ }_{178}^{178}$	${ }^{\frac{31}{303}}$			$1{ }^{168}$	＂	${ }_{6}^{6}$	${ }^{3}$	${ }^{37}$	${ }_{188}$	59	${ }^{138}$	${ }^{29}$	0.14	0.5		40					${ }_{0} 001$		30		000	${ }^{120}$	10	${ }^{11360}$	001	0.46	n， 17	${ }^{2443}$		（incoum
		${ }_{\text {130 }} 1$	0.73	0.46	020			${ }^{7,7}$	${ }^{288}$			${ }_{18}{ }^{18}$	${ }^{17}$	1	${ }^{37}$	${ }^{37}$	${ }^{203}$	${ }^{64}$	${ }^{141}$	${ }^{29}$	0.12	0		${ }^{4}$	000	${ }^{27.4}$	${ }^{20}$		${ }^{000}$		${ }^{30}$	${ }^{120}$	${ }^{001}$	000		11650	0.0	0.42	${ }_{8680}$	${ }^{2891}$		
																								${ }^{126}$	000	${ }^{303}$																（inco
	${ }_{\text {and }}^{\text {3ntinaes }}$	${ }^{1200}$	${ }^{0.13}$		20， 0.0	${ }^{25}$	${ }^{20}$	${ }_{7}^{780}$	${ }^{\frac{317}{180}}$	${ }^{620}$		${ }^{92}$	${ }^{30}$	${ }_{40}^{11}$	14	${ }^{50}$	${ }^{120}$	${ }_{3} 1$	10	。	0.11	${ }^{11}$					$9{ }^{20}$		0.00		${ }^{40}$		${ }_{0} 00$	${ }^{1220}$		${ }_{5} 520$	${ }_{0} 00$	0.11	${ }_{4269}$	${ }^{11537}$		
	（19965																							3229	0.05	${ }^{6,1}$																
			${ }^{10.2}$	${ }^{50.1}$	${ }_{0}^{0.10}$		2	${ }_{18,}^{180}$	${ }_{\substack{136 \\ 306}}$	，		${ }^{24}$	17	${ }^{39}$	${ }^{42}$	${ }^{62}$	${ }^{268}$	${ }^{83}$	${ }_{180}$	${ }^{32}$	0.15	1.0		${ }^{46}$					${ }_{0} 0.0$		10	40	001	${ }_{1240}$		${ }_{182} 8$	${ }_{0} 001$	${ }_{0} 0$	10.58	3×6		
	${ }^{20}$			0.11			${ }^{24}$			4.11															001	${ }^{63}$																
			0.72		${ }^{020}$			${ }^{294}$	${ }^{24}$			${ }^{128}$	5	${ }^{205}$	${ }^{28}$	${ }^{47}$	${ }^{128}$	${ }^{35}$	${ }^{104}$	${ }^{14}$	0.16	${ }^{18}$		${ }_{138}$			${ }^{130}$		0.00		${ }^{20}$		000	${ }_{1090}$	${ }^{10}$	8550	000	${ }^{0.14}$	${ }_{4}^{63}$	1788		
	$\underbrace{20458969}$	：	0.8	0.31	020	21	${ }^{15}$	${ }^{730}$	${ }^{217}$	${ }^{680}$				${ }^{216}$											0.04	${ }^{422}$										8000						
			${ }^{0.76}$	${ }^{0.14} 0$	0.10			＋${ }^{780}$	${ }^{317}$			${ }_{187}$	${ }^{14}$	．	${ }^{37}$	40	${ }^{196}$	${ }^{63}$	${ }^{141}$	${ }^{28}$	0.11	0.5							0.00			10	．000	${ }_{170}$	${ }^{10}$	11680	001	0.68	${ }^{7} 4,81$	${ }_{26889}$		
							14		，	821														${ }_{166}$	000	${ }^{102}$																
			${ }_{406}$	${ }^{\text {9，100 }}$	0．0．0			${ }^{201}$	${ }^{\frac{16}{12}}$			${ }^{11}$	${ }^{197}$	${ }^{127}$	19	${ }^{2}$	${ }^{10,7}$	25	${ }^{4}$	10	0.08	${ }^{25}$		${ }^{2084}$			${ }^{1100}$		000		10	10	000	1830	s	${ }^{\text {6889 }}$	000	${ }^{0.005}$	${ }^{3689}$	${ }_{137.19}$		
${ }^{13032024}$	为						${ }^{24}$																		0.30	1830																
			${ }^{\text {a06 }}$	${ }^{1380}$	0．00			${ }_{7}{ }_{75}{ }^{\text {a }}$	${ }^{39}$			${ }^{183}$	5	${ }_{6}$	30	${ }^{6} 6$	${ }^{249}$	${ }^{65}$	134	${ }^{20}$	0.13	${ }^{20}$		${ }_{186} 1$			${ }^{132}$		0．00		10		0.00	${ }^{1530}$		${ }^{12850}$	000	${ }^{029}$	${ }^{\text {®8\％}}$	${ }^{2559}$		
	$\underbrace{2083}$	，	0.95	${ }^{198}$	020		${ }^{24}$	780	309	${ }^{500}$				\because											0.04	${ }^{61.8}$																
	${ }^{1200898989}$		${ }^{0.74}$	${ }_{0}^{0.11}$	2020			${ }^{708}$	${ }^{319}$			${ }_{188}$	${ }^{13}$	－	${ }^{37}$	${ }^{42}$	${ }^{20,1}$	${ }_{60}$	${ }^{146}$	${ }^{28}$	${ }_{0} 0.8$	0							0.00		10		0.00	0.80		${ }^{12030}$	000	0,9	${ }_{7}^{7482}$	22153		
																								${ }^{92}$	0.0	${ }^{318}$																
			${ }^{222}$	${ }^{\frac{14149}{14,9}}$	${ }^{0.20} 0$	${ }^{19}$	${ }^{23}$	${ }_{\text {\％}}^{\text {\％}}$	${ }_{\substack{187 \\ 184}}$	${ }^{500}$		${ }_{12}$	${ }^{1944}$	${ }^{2000}$	${ }^{23}$	${ }_{46}$	${ }^{78}$	${ }^{1,7}$	${ }^{6}$	14	0.11	${ }_{48}$					3270		－00		10		000	1270	\cdots	50.10	0.00	0.05	286	${ }^{2023}$		
			074					${ }_{720}$					${ }^{100}$	${ }_{40}$	11	${ }^{75}$	${ }_{195}$		100	10					0.19	${ }^{667}$	${ }^{200}$									8800	000	0.1		\％80		
					0.10			730							11	15		${ }^{4 .}$	100		020	20		3300	${ }^{009}$	${ }^{840}$																
			${ }^{0.74}$	${ }_{0}^{0.07}$	${ }_{0}^{0.00} 0$	${ }^{23}$	${ }^{24}$	${ }_{\substack{128 \\ 8.0}}^{\substack{\text { a }}}$	${ }_{\substack{126 \\ 206}}$	215		140	10	${ }_{\substack{48 \\ 10}}$	${ }^{29}$	${ }_{4}^{4.1}$	${ }_{165}$	${ }_{61}$	${ }^{120}$	${ }^{22}$	0.10	${ }^{20}$					50		${ }_{0}^{005}$	${ }_{10} 0$	${ }^{50}$	${ }^{20}$	${ }_{0} 02$	100	${ }^{20}$	10000	000	0.9	${ }^{62}$	${ }^{20}$		（oven
																								${ }^{20}$	000	${ }_{6} 6$																Onew
${ }^{\text {Pamane }}$		，	0.78	0.14	${ }_{0} 0.30$	．	－	${ }_{72}$	${ }^{265}$	${ }^{2}$		${ }^{141}$	${ }^{14}$	${ }^{20}$	30	${ }^{42}$	164	5.	${ }^{122}$	${ }^{23}$	0.13	0.4	249	${ }^{428}$			210		0.02		10	${ }^{20}$	0.00	1.50		10060	0.0	0^{02}	6139	20.186		（incon
		，	${ }^{0.77}$		O． 0.30	${ }^{28}$	${ }^{18}$	${ }^{7} 7.85$	${ }^{268}$	${ }^{158}$		${ }_{12}^{12}$	${ }^{93}$	${ }_{\substack{24 \\ 100}}^{\substack{\text { a }}}$	${ }^{25}$	${ }^{63}$	184	${ }^{37}$	${ }^{103}$	${ }^{20}$	0.10	${ }^{28}$					100		${ }^{0.00}$		${ }^{20}$		0.0	18.50			000	0.14	$6_{6,13}$	${ }^{178 .}$		
	Soleme							－															1086	${ }^{2565}$	0.10	${ }^{104}$																

Water Quality Oata Summary

	Somp		coin									ros mos	$\begin{array}{\|c\|} \hline \text { rss mosu } \\ \hline 10 \\ \hline \end{array}$				$\begin{array}{\|c\|c\|c\|c\|c\|c\|c\|c\|c\|} \substack{\text { anten }} \\ \hline 1000 \\ \hline \end{array}$			$\frac{\substack{\text { chnorase } \\ \text { mole }}}{\substack{175 \\ \hline 30 \\ \hline 30}}$	$\frac{\substack{\text { Finarae } \\ \text { most }}}{1,2}$										$\underset{\substack{\text { copeat } \\ \text { quat }}}{ }$ 14	（100）								\pm		${ }_{\substack{\text { Oafa }}}^{\substack{\text { saure }}}$		
	源		0.76	0.16	020				330															120.0							0.05					1100		${ }^{13500}$		$0^{\circ 8}$	${ }^{85}$	${ }^{20}$		
	，		${ }^{0.76}$	${ }^{0.16}$	${ }^{020}$		${ }^{25}$	\％	${ }_{40}^{40}$	${ }^{330}$				${ }_{35}^{35}$											004	${ }^{110}$																		
${ }^{120022} 4$			${ }^{208}$	${ }^{18,30}$	0.10			${ }^{758}$	${ }^{145}$			$\%$	${ }^{30}$	${ }^{315}$	${ }^{14}$	${ }^{62}$	100	${ }^{26}$	8	${ }^{6}$	0.10	${ }^{20}$		420.0			${ }^{1500}$		021	100	so	${ }^{20}$	002	1500	${ }^{20}$	6600	000	0.1	${ }^{355}$	${ }^{120}$		（onem		
隹		${ }^{200}$	${ }^{208}$		${ }^{0.10}$	${ }^{24}$	${ }^{26}$	${ }^{265}$	${ }_{\substack{189}}^{200}$	${ }_{547}$		${ }^{120}$	\％	${ }_{\text {col }}^{\substack{\text { s77 } \\ 10}}$			${ }^{140}$			${ }^{13}$					0.12	${ }_{320}$						${ }^{20}$								${ }^{100}$				
隹												${ }^{120}$	8		21	${ }^{69}$	${ }^{140}$	${ }^{39}$	${ }_{6}$	${ }^{13}$	0.10	20		2000			${ }^{1200}$		0.05	100	${ }^{50}$	10	002	${ }^{1400}$	${ }^{20}$	${ }^{8200}$	000	${ }^{0.6}$		${ }^{160}$		$\xrightarrow{\text { OnNeN }}$		
		${ }^{\frac{1720}{120}}$	${ }_{\substack{0.97 \\ 0.78}}$	${ }_{0}^{098}$	${ }^{020}$	${ }_{32}$	${ }^{\frac{28}{13}}$	${ }^{730}$	${ }_{\substack{2313}}^{23}$	${ }^{400}$				${ }^{181}$																												－		
		，	${ }_{4 \times 8}$	${ }^{12214}$	${ }^{0.10}$			${ }^{1745}$	${ }^{\text {che }}$			9	180	${ }^{\frac{12}{25}}$	18	6	${ }^{19}$	${ }^{22}$	${ }_{6}$	7	0.10	20		4500			${ }^{1500}$		${ }^{023}$	${ }^{100}$	50	${ }^{20}$	${ }_{0} 02$	${ }^{1700}$	${ }^{20}$	5300	000	${ }^{0.1}$	${ }^{29}$	${ }^{10}$				
	9034	${ }^{50}$	${ }^{4.36}$	${ }^{13214}$	0.10	${ }^{24}$	${ }^{25}$	${ }^{205}$	${ }_{181}$	${ }^{380}$															${ }^{0.18}$	${ }^{260}$																（inew		
				0.08				${ }^{305}$	${ }^{320}$			${ }^{20}$	10	${ }^{12}$	${ }^{12}$	5.	${ }^{230}$	72	${ }^{165}$	3	0.10	${ }^{20}$		${ }^{480}$			50		${ }^{0.0}$	100	${ }_{50}$	${ }^{20}$	0.0	60	${ }^{20}$	${ }^{13500}$	0.00	${ }^{11}$	${ }^{87}$	${ }^{20}$				
	7804199		${ }^{0.75}$	008	${ }^{\text {0．30 }} 0$	${ }^{25}$	${ }^{17}$	720	${ }^{345}$	670				${ }^{13}$									${ }_{364}$	${ }^{335}$																				
	Some	${ }^{175}$	${ }_{\text {O，78 }}^{0.74}$	${ }_{\text {O，}}^{0.22}$	${ }^{0.10} 0$		14	${ }_{7}^{788}$	${ }^{325}$	${ }^{820}$		${ }^{161}$	11	${ }^{32}$	${ }^{3}$	${ }^{4,1}$	${ }^{188}$		112	${ }^{25}$	0.12	04				\ldots	${ }_{30}$		${ }^{0.00}$					${ }_{10}^{1,0}$	10	${ }^{11765}$	${ }^{001}$	${ }^{063}$	${ }^{74404}$	${ }^{22213}$		（en		
						2	${ }^{19}$			${ }^{780}$					${ }^{34}$	4.	${ }_{188}$	${ }_{68}$	${ }^{102}$	${ }^{25}$	0.12	04	${ }^{2667}$	${ }^{420}$			${ }^{360}$		0.00				${ }_{0} 00$	${ }^{1.10}$								（in		
	${ }^{8}$	${ }^{1560}$	0.7	003	${ }_{0} 000$		，	${ }^{2 \times 9}$	${ }^{231}$	－		190	\bigcirc	$\stackrel{\square}{9}$	41	${ }_{5} 5$	2.0	${ }^{78}$	162	3	0.16	0	3288	394			550		0.0				0.0	3.0	30		0．0	0.58	${ }^{84} 4$	${ }^{2609}$		（in		
	${ }_{\text {dind }}^{81212999}$	${ }_{\text {cose }}^{\substack{150 \\ 180}}$					${ }^{27}$	${ }^{760}$		${ }_{692}$															001	${ }^{334}$																（owen		
		${ }^{927}$	${ }^{368}$	${ }^{6838}$	${ }^{020}$			202	${ }^{145}$			${ }^{9}$	${ }^{19}$	${ }^{197}$	12	${ }^{75}$	${ }^{105}$	${ }^{26}$	${ }^{6}$	12	0.11	${ }^{26}$	${ }^{12210}$	520			${ }^{1600}$		000				0.00	${ }^{1310}$		${ }^{\text {80，16 }}$	000	${ }^{108}$	\％69	${ }^{10,0.4}$				
		${ }^{29}$	${ }^{3,66}$	${ }^{6653}$	${ }^{020}$		22			4.10															${ }^{034}$	${ }^{14,1}$																（owen		
${ }^{\text {cosen }}$			0.89	0.84	020			${ }_{8} .6$	40			${ }^{22}$	38	${ }^{37}$	${ }^{5}$	${ }^{67}$	${ }^{181}$	${ }^{62}$	${ }^{185}$	${ }^{30}$	0.21	${ }^{10}$	479	${ }^{109} 1$			${ }^{1000}$		000			${ }^{20}$	0.00	${ }^{30}$	${ }^{30}$	15000	${ }_{0}^{0.0}$	${ }^{1,52}$	${ }^{2065}$	33473				
	${ }^{22032}$		${ }^{0.89}$	0.84	${ }^{020}$		${ }^{26}$	${ }^{760}$	${ }^{376}$	440				${ }^{2}$											${ }_{0} 004$	${ }^{21.7}$																${ }_{\text {ONPN }}^{\text {OneN }}$		
隹		， 102	${ }_{0}^{0.6}$		${ }_{\text {coso }}^{0.30}$			${ }^{304}$				${ }^{151}$	${ }^{13}$		${ }^{36}$	${ }^{42}$	${ }^{154}$	${ }^{53}$	${ }^{134}$	${ }^{23}$	0.14	0	${ }^{1891}$	${ }^{250}$			${ }^{190}$		0.0				${ }_{0} 00$	0.00		${ }^{11120}$	002	0.85	6022	21856				
边		${ }^{120}$	${ }^{0.76}$	${ }^{0.16}$	${ }^{0.30}$		15	${ }^{7} 8$	${ }^{\frac{29}{85}}$	${ }^{820}$				${ }^{3}$											or	${ }^{45}$																		
Somat	H12000		${ }_{200}^{200}$		${ }^{0.0}$			${ }^{608}$	${ }^{135}$			${ }^{88}$	${ }^{1350}$	${ }^{1320}$	${ }^{15}$	${ }^{63}$	${ }^{16}$	${ }^{20}$	${ }^{65}$	$\stackrel{8}{8}$	0.0	${ }^{28}$	33200	${ }^{640} 0$			som		${ }^{123}$			${ }^{50}$	000	1520		850	000	003	28.9	N0058		cown		
		${ }^{885}$	${ }_{\substack { 200 \\ \begin{subarray}{c}{\text { 200 }{ 2 0 0 \\ \begin{subarray} { c } { \text { 200 } } }\end{subarray}}$	${ }^{269}$			${ }^{19}$	${ }_{\text {\％}}^{6}$	${ }^{128}$	660															0.16	${ }_{326}$																Sown		
			${ }^{1,09}$		（oso							\because	${ }^{20}$	${ }^{35}$	${ }^{13}$	${ }^{43}$	${ }^{93}$	${ }^{27}$	12	\bigcirc	0.0	${ }^{20}$	13000	3200			${ }^{1400}$		${ }^{0.05}$	100	${ }^{50}$	${ }^{40}$	0.0	${ }^{1800}$	700	5900	000	1	${ }^{36}$	${ }^{110}$		（in		
${ }^{\text {cosemen }}$		185	${ }_{\substack{109 \\ 0.4}}^{\substack{10}}$	$0_{\substack{2.5 \\ 0.0}}^{\text {a }}$	${ }_{\text {coion }}^{0.00}$		${ }^{23}$	${ }_{\substack{700 \\ \hline 600}}^{\text {cos }}$	${ }_{1}^{140}$	${ }^{\frac{5}{350}} \mathbf{3}$				${ }_{\substack{365 \\ 120}}$																												（onew		
${ }^{\text {ligenen }}$		${ }^{17175}$	${ }^{0.14}$	0.09	${ }_{\text {－}}^{0.20}$			${ }^{200}$	100			${ }^{9}$	30	$1{ }^{15}$	${ }^{13}$	${ }^{51}$	${ }^{120}$	${ }^{35}$	${ }^{86}$	T	0.10	${ }^{20}$	${ }^{2000}$	1900			80		${ }^{0.17}$	100	50	${ }^{30}$	0.02	${ }^{1400}$	${ }^{20}$	7100	0.00	，	4	${ }^{130}$		（incm		
${ }^{1302032 a t}$		${ }^{17175}$			${ }^{0.20}$		${ }^{20}$			${ }^{330}$				${ }^{120}$											${ }^{0.07}$	${ }^{370}$																Sown		
		${ }_{\substack{130 \\ 120}}^{\substack{\text { a }}}$	0.8	0.0	${ }^{0.30}$			${ }^{7} 9$	220			${ }^{120}$	10		${ }^{18}$	${ }^{63}$	170	${ }^{5.1}$	${ }^{115}$	11	0.10	20	s10．	50.0			50		0.05	${ }^{100}$	50	2	0.02	900	20	9400	000	0.5	${ }^{6}$	10				
		${ }_{\substack{1385 \\ 1855}}^{1 .}$	${ }_{\substack{089 \\ 0.7}}^{0 .}$	$\stackrel{\text { OO2 }}{\substack{\text { O．}}}$	${ }^{\text {0．30 }} 0$	${ }^{29}$	${ }^{18}$	${ }^{7}$	${ }_{\substack{20 \\ 20}}$	830		${ }_{10}$	10	${ }_{6}^{12}$	${ }^{28}$	${ }^{68}$	${ }_{185}$	${ }^{63}$	${ }^{135}$	${ }^{23}$	0.10	${ }^{20}$					${ }_{500}$		${ }_{0}^{0.05}$	${ }^{100}$	50	20	${ }_{0} 0.2$	300	${ }^{20}$	$\xrightarrow{\substack{\text { gato } \\ 1000}}$	000	0.5	12	${ }^{20}$		（in		
																							${ }^{300}$	${ }^{300}$	001	${ }^{100}$		，														（in		
		${ }_{\substack { 1555 \\ \begin{subarray}{c}{135{ 1 5 5 5 \\ \begin{subarray} { c } { 1 3 5 } }\end{subarray}}^{\substack{\text { a }}}$	${ }^{0.7}$	O．04	－		14	${ }^{\frac{7270}{7.76}}$	${ }_{\substack{288 \\ 30}}$	${ }_{730}$		181	${ }^{11}$	${ }^{84}$	${ }^{34}$	${ }^{43}$	${ }^{189}$	${ }^{62}$	${ }^{140}$	${ }^{27}$	0.14	0							0.00	${ }_{30}$			000	${ }_{150}$	${ }^{10}$	${ }^{11570}$	${ }^{001}$	046	${ }^{1265}$	${ }^{20084}$				
		1335	0.6	030	0，30		${ }^{19}$	${ }^{7} 78$	${ }^{31}$	8.10				7									${ }^{3396}$	${ }^{31.1}$												${ }^{11240}$						（onew		
			${ }_{\substack{086 \\ 0.88}}$	${ }_{0}^{0.49}$	020			${ }^{1785}$	${ }_{\substack{193 \\ 198}}$			${ }^{120}$	${ }_{60}$	88	${ }^{24}$	${ }^{49}$	${ }^{110}$	${ }^{28}$	${ }^{85}$	11	0.10	40					${ }^{200}$		${ }^{0.24}$	${ }^{20}$	${ }^{30}$	170	${ }_{0}^{0.3}$	${ }_{1500}$	${ }^{30}$	1000	000	${ }_{0}^{0.1}$	${ }^{9}$	${ }_{100}$				
	边						20			${ }_{4}{ }^{10}$													17000	30.0	0.15	${ }^{3} 90$																$\xrightarrow{\text { OnNe }}$		
	colez	${ }^{\text {dis0 }}$	${ }^{27}$	${ }_{4737}^{47}$	${ }^{\text {O．20 }}$			${ }^{210}$	${ }_{135}^{135}$			${ }^{84}$	1100	${ }^{1560}$	12	${ }^{44}$	${ }^{39}$	${ }^{25}$	${ }^{68}$	5	0.10	30	2100.	8000			3000		${ }_{0}^{0.05}$	100	${ }^{30}$	10	${ }^{0.03}$	${ }^{1000}$	${ }^{40}$	5600	000	${ }^{0.1}$	${ }^{35}$	10		（in		
		${ }^{155}$	${ }^{27}$	${ }^{4737}$	${ }^{0.30}$		${ }^{27}$	${ }^{120}$	${ }^{188}$	${ }^{350}$				${ }^{1170}$											0.05	${ }^{290}$																		
	19022	120	${ }^{3.5}$	${ }^{47733^{4}}$	${ }^{0.00}$			${ }_{\text {\％}}^{1,08}$	${ }^{10} 10$			${ }^{16}$	50	${ }^{8.80}$	11	${ }_{47}$	70	${ }^{21}$	${ }^{6}$	${ }^{5}$	0.10	40					${ }^{200}$		${ }_{0}^{0.05}$	80	30	10	${ }_{0}^{003}$	${ }_{1300}$	${ }^{40}$	4500	0.00	\bigcirc	${ }^{26}$	${ }^{92}$				
	边																						17000	1000	O．11	${ }^{240}$																		
隹	退2022		292	${ }^{2943}$	0，30			${ }^{655}$	${ }^{87}$			${ }^{\circ}$	${ }^{30}$	s00	$\stackrel{8}{8}$	${ }_{4}^{4.1}$	${ }^{53}$	${ }^{17}$	${ }^{45}$	4	0.10	${ }^{20}$	12000	4200			${ }_{150}$		0.05	${ }^{20}$	${ }^{30}$	10	${ }_{0}^{0.3}$	110	${ }^{\circ}$	3700	000	－	${ }^{20}$			cown		
	－		${ }^{202}$	${ }_{\text {20，}}^{2.88}$	${ }^{0.0} 0$		${ }^{26}$	${ }_{7}^{7.05}$	${ }^{\frac{90}{10} 0}$	${ }^{360}$		${ }^{10}$	\because	${ }^{513}$	${ }^{19}$	${ }^{43}$	${ }^{125}$	${ }^{37}$	${ }^{2}$	\bigcirc	0.10	${ }^{20}$					1800		${ }^{0.13}$	100	${ }^{30}$	${ }^{140}$	${ }^{0.03}$	${ }_{1200}$	10	${ }^{7400}$	000	02	${ }^{46}$	${ }^{120}$				
${ }^{\text {Inema }}$	${ }_{\text {a }}^{12032}$																						7000	${ }^{1400}$	00.0	${ }^{330}$																		
		${ }^{1255}$	${ }_{\substack{095 \\ 0.95}}$	${ }_{\substack{166 \\ 1.65}}^{\text {ien }}$	${ }^{\frac{0}{020}} \mathbf{0}$		${ }^{26}$	${ }^{7} 7$	${ }_{\substack{185 \\ 185}}$	${ }^{800}$				${ }^{214}$																														
		145	068	091	0.0			${ }^{273}$	${ }^{268}$			${ }_{12}$	${ }^{35}$	${ }^{114}$	${ }^{36}$	46	${ }_{152}$	${ }^{4.3}$	${ }^{137}$	${ }^{13}$	0.16	1.	${ }^{1418}$	${ }^{122}$			${ }^{100}$		${ }_{0}^{0.0}$	50		${ }^{40}$	0.0	${ }^{930}$		11220	0.0	${ }^{0.4}$	¢6\％	${ }^{21169}$				
		${ }_{\text {coitico }}^{\substack{160}}$	${ }_{0}^{0.75}$	${ }_{0}^{0.12}$	${ }_{0}^{0.10}$	${ }^{26}$	2	${ }_{7}^{7,85}$	${ }^{205}$	300		${ }^{130}$	10	${ }^{113}$	${ }^{28}$	${ }^{41}$	${ }^{145}$	${ }_{4}{ }^{5}$	110	${ }^{21}$	0.10	${ }^{20}$	300				50		${ }^{0.05}$	100	${ }_{30}$	10	${ }_{0}^{0.3}$	${ }_{500}$	10	${ }^{0100}$	0.00	0.	${ }^{55}$	180				
			0.75				11			${ }^{930}$													\％ow	．	0.0	${ }^{110}$																		
（1asersa		${ }_{\substack{745 \\ 745}}$	0.8		0.0			${ }^{200}$	${ }^{245}$			${ }^{130}$	so	${ }_{10}^{10}$	${ }^{28}$	${ }^{53}$	${ }^{145}$	${ }^{39}$	${ }^{10}$	${ }^{17}$	020	20	8300	${ }^{2000}$			${ }^{20}$		007	100	${ }^{30}$	10	${ }_{0}^{0.03}$	200	4	${ }^{8200}$	0.00	02	${ }^{62}$	${ }^{180}$				
${ }^{\text {che }}$		${ }_{\text {lis }}^{185}$	0.74	0.56	${ }^{020}$			780	${ }^{34}$			190	${ }^{20}$	${ }^{20}$	${ }^{63}$	${ }^{64}$	${ }^{140}$	40	${ }^{165}$	${ }^{24}$	020	${ }^{20}$	2200	${ }^{12000}$			${ }_{1600}$		${ }^{005}$	${ }^{200}$	30	110	${ }^{0.3}$	200	10	${ }^{3350}$	0.0	04	${ }^{52}$	${ }^{220}$		$\xrightarrow{\text { ONWN }}$		
		${ }^{1859}$	${ }^{0.84}$	0.56	${ }^{0.20}$	${ }^{33}$	${ }^{25}$	200	${ }^{322}$	220				${ }^{373}$											0.0	${ }^{60}$																		
			0.7					${ }^{200}$				${ }^{120}$	150	${ }^{200}$	${ }^{23}$	${ }^{52}$	${ }^{120}$	${ }^{36}$	${ }^{105}$	，	${ }^{020}$	${ }^{20}$	000	2000			${ }_{1500}$		${ }^{0.05}$	100	${ }^{30}$	10	0.03	${ }^{11100}$	10	8870	0.00	02	${ }_{455}$	${ }^{160}$				
隹		${ }^{100}$	${ }_{0}^{0.78}$		${ }^{0.020}$		${ }^{30}$	${ }^{1720}$	${ }_{20}^{170}$	${ }^{360}$			${ }^{78}$	${ }_{\substack{245 \\ 235}}$	24	42	${ }^{130}$	${ }^{36}$	${ }^{104}$	1						${ }^{0}$			${ }^{0.05}$		10		00			${ }^{\text {B67 }}$	00	${ }^{021}$	（123	， 24				
${ }^{\text {cosezan }}$		${ }^{150}$	${ }_{0} 078$		${ }^{020}$	${ }^{24}$	${ }^{20}$	${ }_{7}^{700}$		480					4			${ }^{6}$					7295	${ }^{1390}$																				
${ }^{\text {ciene }}$			${ }^{0.75}$					${ }^{185}$	${ }^{248}$			14	${ }^{20}$	${ }^{45}$	${ }^{29}$	${ }^{45}$	${ }^{16,5}$	${ }^{48}$	${ }^{122}$	${ }^{18}$	0.12	1.0	${ }^{3116}$	447			${ }^{200}$		${ }^{0.04}$	${ }^{100}$	10	${ }^{\circ}$	${ }^{0.3}$	939	10	${ }_{\text {1017 }}$	001	047	${ }^{\text {sose }}$	1867		SNeN		
		${ }^{12}$	${ }^{0.75}$				14		${ }^{235}$	${ }_{650}$				${ }_{45}^{45}$											．0．	102																		
	coseme	${ }_{\text {cose }}^{12}$	${ }^{0.75}$	0.2	0．0 0.0 0.0 0			${ }^{*}$					10		3	${ }^{3}$	（100	${ }^{3}$	15	2	0.10	20	2000	200	001	80	${ }^{50}$		Ous	20	${ }^{\circ}$	10	ous	100	10		000	0.	\cdots	20				
	$\underbrace{\text { amata }}$	${ }^{185}$	${ }^{0.75}$	0.12	－		19	${ }_{7}^{8,10} 7$	${ }_{\substack{279 \\ 305}}^{\substack{\text { 20，}}}$	${ }^{750}$		160	20	${ }_{\substack{16 \\ 12}}^{12}$	${ }^{34}$	4.	190	6	${ }^{160}$	${ }^{24}$	020	20				\cdots	50		0.05	100	${ }^{30}$	10	0.08	100	10	${ }^{12500}$	0.0	0.3	${ }^{12}$	${ }^{20}$				
		${ }^{810}$	${ }^{0.70}$		－	${ }^{27}$	${ }^{23}$	${ }^{2} .10$	${ }^{313}$	${ }^{3.0}$													3300	${ }^{420}$																				
	隹		${ }^{\text {O23 }}$		（0，00			${ }^{220}$	135			${ }^{8}$	${ }^{1300}$	${ }^{200}$	17	${ }^{6}$	${ }^{100}$	${ }^{20}$	${ }^{18}$	${ }^{\circ}$	020	40	2300	8300			200		${ }^{0.05}$	${ }^{100}$	30	${ }^{20}$	${ }^{0.03}$	${ }^{1400}$	${ }^{\circ}$	${ }^{6400}$	0.00	${ }^{0.1}$	${ }^{33}$	${ }^{120}$				
					－0．10		${ }^{27}$	600	${ }_{1}^{184}$	${ }^{220}$				${ }^{2000}$											023	${ }^{33}$																		
	${ }_{\text {cosem }}$	${ }_{\substack{1255 \\ 185}}^{150}$	${ }_{\text {coid }}^{0.0}$	${ }_{0} .9$	${ }_{0}^{0.10}$			${ }^{200}$	${ }^{136}$			210	10	${ }^{20}$	${ }^{49}$	${ }^{66}$	215	${ }^{67}$	${ }^{185}$	${ }^{30}$	020	20	350	${ }_{410}$			500		${ }^{0.05}$	100	30	${ }^{20}$	${ }^{0.03}$	${ }^{1000}$	10	15000	000	${ }^{0.7}$	8	${ }^{30}$				
	，	${ }_{\text {，}}^{185}$	${ }_{\substack{0,76 \\ 0.76}}^{0 .}$		${ }^{0.10} 0$		${ }^{19}$	${ }_{1} 10$		56															00	${ }^{90}$																		
	（0isam	${ }^{1.5050}$	${ }_{\substack{\text { geges } \\ \text { geso }}}^{\substack{\text { ges }}}$		${ }^{0.020}{ }_{0}^{020}$			${ }^{2} 8$	${ }^{30}$			210	${ }^{20}$	${ }^{13}$	${ }^{46}$	${ }_{50}$	210	${ }^{2}$	${ }^{180}$	${ }^{31}$	020	20	200	${ }^{290}$			500		0.05	100	30	10	${ }_{0} 03$	600	10	17600	000	0.8	${ }^{82}$	${ }^{20}$		$\xrightarrow{\text { Onsen }}$		
	253		${ }_{\text {cose }}^{\substack{\text { ge9 } \\ 0.7}}$		（oid	${ }^{24}$	${ }^{16}$	${ }^{1788}$	${ }_{3}^{388}$	${ }^{720}$		${ }^{180}$	${ }^{19}$	${ }_{\substack{16 \\ 14}}^{1}$	，	${ }^{60}$	190	${ }^{6.5}$	${ }^{157}$	${ }^{28}$	0.10	1.0					50		${ }_{0}^{0.05}$	30	30	10	0.03	200	10	${ }_{\substack{18,500 \\ 18000}}$	000	${ }^{0.7}$	${ }^{14}$	${ }^{268}$				
																							3300	400	0.0	${ }_{4}^{47}$																		
							2	${ }_{718}$	${ }^{36}$	500																																		

come	Somp		coicce				(eict ${ }_{\text {comp }}$	${ }^{\text {pH }}$	$\underbrace{\substack{\text { ccm }}}_{\text {Ecm }}$				$\underset{\substack{\text { mos } \\ \text { mos }}}{\text { rsis }}$		(uxbuly	Some	${ }_{\substack{\text { Patassum } \\ \text { (mat) }}}^{\substack{\text { a }}}$	${ }_{\text {and }}^{\substack{\text { ancum } \\ \text { (mat) }}}$	Menememe				Sump	\pm	(omp		Ammota		chind				(on						$\begin{array}{\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|} \substack{\text { acoso } \\ \text { cmatu }} \\ \hline \end{array}$	(tan	(eat		${ }_{\substack{\text { Sata }}}^{\text {gouce }}$
					Mv	${ }^{\text {na }}$	20.00% \%10	${ }_{\substack{6,5 \\ 80}}^{\substack{\text { c, }}}$	${ }_{30}$		${ }^{\text {n® }}$	${ }^{85,10}$	${ }^{\text {na }}$	10	${ }_{50}$	${ }_{15}$	${ }^{\text {na }}$	1000	${ }^{\text {na }}$	${ }^{\text {na }}$	${ }^{175}$	${ }^{1,2}$	${ }_{400}$	${ }^{500}$	${ }_{\text {co }}^{50}$		${ }^{20}$	${ }^{200}$	5		${ }^{371}$	${ }^{1.4}$	${ }^{20}$			8							
	${ }^{2080}$	(730	${ }_{1,8}$		(0.30																			${ }^{30075}$	${ }^{1887} 1$	0.16	${ }^{4.4}$																Nomen
, 10,		${ }^{1200}$	${ }^{1,188}$		(0.30		${ }^{20}$	${ }^{\frac{720}{720}}$	${ }_{2}^{215}$		330		${ }^{123}$	${ }^{766}$	2000	${ }^{20}$	${ }^{57}$	150	${ }^{36}$	$\stackrel{\square}{9}$	12	0.10	17					3300		0.10	${ }^{40}$	${ }^{30}$	${ }^{\circ}$	0.03	${ }^{1200}$	${ }^{20}$	${ }^{820}$	0.00	$0^{0.2}$	${ }^{53}$	${ }^{161}$		
${ }^{\text {Premen }}$			${ }^{\frac{1}{102}}$			${ }^{33}$	${ }^{26}$	76			400				${ }^{80}$									15964	478												8800						
12002A	cose	${ }_{\text {a }}^{\text {820 }}$	0.9					${ }^{7} 7$	${ }^{36}$				${ }^{227}$	${ }^{0}$	${ }_{5}$	59	${ }^{68}$	${ }^{180}$	${ }^{51}$	${ }^{213}$	${ }^{22}$	020	10	639	157.0			100		0.05	${ }^{80}$	${ }^{30}$	10	${ }_{0}^{0.3}$	${ }^{900}$	10	${ }^{17600}$	000	0.	${ }^{6}$	${ }_{36}$		Onsw
			${ }^{\text {a,70 }}$		(o.00		${ }^{25}$	${ }_{70}{ }_{7}$	${ }_{\substack{36 \\ 204}}$		2.0		${ }^{120}$	310	${ }_{\substack{62 \\ 30}}$	${ }^{26}$	${ }^{43}$	${ }^{93}$	${ }^{30}$	${ }_{92}$	${ }^{15}$	0.10	${ }^{23}$				${ }_{350}$	${ }^{2000}$		${ }_{0}^{0.05}$	${ }_{50}$	${ }_{30}$	10	${ }^{003}$	${ }_{1200}$	${ }^{\circ}$	7600	000	${ }^{02}$	${ }^{36}$	${ }_{134}$		
		${ }_{\substack{1730}}^{1780}$	${ }^{0.90}$		(0,00																			10370	${ }^{1970}$	000	${ }^{400}$																
(10)			${ }^{320}$		0.10		15	${ }^{750}$	${ }^{\text {c }}$		8.10		π	${ }^{1330}$	${ }_{\substack{380 \\ 180}}$	17	${ }_{42}$	${ }_{4}{ }^{3}$	14	${ }_{88}$	6	020	${ }^{15}$					${ }^{330}$		0.05	${ }^{2}$	30	10	0.03	1000	80	${ }^{8800}$	000	-	17	9		(incone
		隹 1700					${ }^{24}$	${ }^{200}$	${ }^{92}$		200				${ }^{29}$									2020	811.0																		(inco
(1302A	,		${ }^{\text {oso }}$		(on			${ }^{7} 78$					${ }^{115}$	${ }^{198}$	${ }^{232}$	${ }^{19}$	${ }^{50}$	${ }^{130}$	${ }^{39}$	97	12	0.10	12	8000	${ }_{1880}$	${ }^{018}$	2	${ }^{1200}$		0.05	${ }^{30}$	30	10	${ }^{0.03}$	${ }^{1200}$	10	8000	0.00	0.1	${ }^{49}$	${ }^{132}$		
					${ }_{0} 0.30$		${ }^{27}$	${ }_{720}$	${ }^{189}$		530		9	${ }^{76}$	${ }^{799}$	14	${ }^{60}$	${ }^{120}$	${ }^{27}$	${ }_{8} 8$	-	0.10	19					${ }^{230}$		${ }_{0}^{0.05}$	${ }_{50}$	${ }_{30}$	${ }_{50}$	${ }^{0.08}$	${ }^{1400}$	8	8800	000	${ }^{0.1}$	${ }^{41}$	${ }^{127}$		
${ }^{\text {Brasera }}$					-	${ }^{3}$	${ }_{30}$		${ }^{126}$		${ }_{640}$													13322	${ }_{4095}$																		
,	7022006	${ }_{\substack{1855 \\ \hline 105}}^{180}$	${ }^{0.00}$		0			${ }^{700}$	${ }^{24}$				${ }^{186}$	4	${ }_{8}$	22	${ }^{69}$	${ }^{170}$	${ }^{4.1}$	${ }^{120}$	10	0.10	10	${ }^{2757}$	${ }^{23,6}$			1000		${ }^{0.05}$	${ }^{0}$	30	140	${ }_{0}^{0.03}$	${ }^{17200}$	10	\%800	000	02	${ }^{8}$	${ }^{180}$		
${ }^{\text {Brasona }}$			0.72				${ }^{29}$	720	${ }^{26}$		200															0.10	${ }^{209}$																
			0.68					${ }^{137}$	\%				${ }^{18}$	${ }^{32}$	${ }^{3}$	${ }^{18}$	${ }^{56}$	${ }^{150}$	${ }^{39}$	110	${ }^{8}$	020	${ }^{10}$	3500	${ }^{1300}$			${ }^{500}$		${ }^{0.05}$	${ }^{30}$	${ }^{30}$	${ }^{6}$	${ }^{0.03}$	${ }^{1200}$	${ }^{20}$	2000	${ }^{0.00}$	0.1	${ }^{54}$	162		
(10aseat					0.10		16	${ }^{730}$	${ }_{182}^{182}$		2.0															${ }_{0}^{0.3}$	4.7																
	${ }^{\frac{20}{20382000}}$	${ }^{205}$	${ }_{\text {O, }}^{0.68}$		${ }_{\text {O20 }}^{0.00}$		15	${ }_{\substack{7,700}}^{\substack{7,0}}$	${ }_{\text {cor }}^{\substack{292 \\ 292}}$				184	,	${ }^{\circ}$	${ }^{33}$	${ }^{67}$	${ }^{180}$	${ }^{62}$	${ }^{134}$	${ }^{25}$	0.10	10					50		${ }^{0.05}$	\cdots	30	10	${ }^{003}$	100	20	11700	000	0.4	${ }^{6}$	${ }^{22}$		
		${ }_{\substack{1800}}^{1800}$			${ }^{0.10} 0$			${ }^{737}$	${ }^{19}$				${ }^{105}$	916	1480	${ }^{17}$	${ }^{56}$	${ }^{130}$	${ }^{28}$	${ }^{85}$	10	${ }^{0.13}$	30	${ }^{2300}$	5190			300		${ }^{0.05}$	70	${ }^{30}$	${ }^{\circ}$	${ }^{0.03}$	${ }^{200}$	${ }^{\circ}$	2000	${ }^{000}$	${ }^{0.1}$	${ }^{4}$	${ }^{139}$		
(1asase			1,2		${ }_{0}^{0.10} 0$	${ }^{\frac{26}{22}}$	${ }^{\frac{25}{26}}$	${ }_{\text {coise }}^{\substack{730}}$	20		${ }_{\text {coiz }}^{\substack{8,20 \\ 750}}$				${ }_{\substack{205 \\ 205}}$																												
-		${ }_{\text {945 }}^{985}$						${ }^{752}$	${ }^{388}$				${ }^{200}$	${ }^{18}$	${ }^{106}$	40	${ }^{63}$	${ }^{230}$	${ }^{62}$	112	${ }^{23}$	020	${ }^{23}$	${ }^{331 .}$	${ }^{10,3}$			${ }^{1300}$		${ }^{0.05}$	40	30	10	${ }^{001}$	${ }^{1200}$	10	1200	00	0.3	${ }^{82}$	${ }^{275}$		$\frac{\text { Onew }}{\text { ONRW }}$
		${ }_{\text {a }}^{295}$	0.72		0.10		${ }^{26}$	${ }^{7} 5$	361																	${ }_{0}^{0.01}$	${ }^{226}$																
	2032307				0.10			${ }^{73}$					${ }^{89}$	70	1000	17	48	${ }_{0} 9$	${ }^{20}$	10	5	0.12	${ }^{32}$	18800	6050			${ }^{1000}$		0.11	110	30	100	00	110	100	\%800	000	0.1	${ }^{32}$	${ }_{14}$		${ }_{\text {onem }}^{\text {Onew }}$
,			0.9		${ }^{0.10} 0$	3	${ }^{26}$	${ }^{730}$	\%		960		${ }_{86}$	${ }^{\text {as8 }}$	${ }_{\text {cos }}^{\substack{109}}$	${ }^{13}$	${ }^{57}$	${ }^{87}$	${ }^{21}$	${ }^{10}$	5	0.12	${ }^{24}$					${ }^{2700}$		${ }_{0}^{0.08}$	50	30	${ }^{0}$	${ }_{0} 0$	11.00	30	8800	0.00	${ }_{0}^{0.1}$	${ }^{33}$	${ }^{111}$		
(insior																								12451	${ }^{36,3}$	${ }_{0}^{0.13}$	${ }^{3.7}$																Solen
(indion		${ }_{\substack{120 \\ 880}}^{\substack{120}}$	0.95	0.00	${ }_{\text {O }}^{0.00}$		${ }^{26}$	${ }_{700}^{700}$	${ }^{127}$		450		${ }^{127}$	${ }^{6}$	¢00	${ }^{17}$	${ }^{6} 7$	${ }_{180}$	${ }^{42}$	${ }^{17}$	7	0.15	14					${ }^{20}$		0.05	${ }_{30}$	30	${ }^{40}$	${ }_{0} 00$	${ }^{1330}$	10	5000	000	0.	${ }^{6}$	${ }^{1 / 3}$		
					0.10			${ }_{746}$	${ }^{195}$				${ }^{120}$	119	${ }^{255}$	${ }^{16}$	${ }^{63}$	${ }^{180}$	${ }^{37}$	${ }^{108}$	${ }^{8}$	0.14	24	${ }_{\text {m7.7 }}$	${ }_{1876}^{1876}$			${ }^{200}$		0.0	${ }^{50}$	30	110	001	${ }^{1300}$	3	${ }^{8900}$	0.00	02	5	16		Onen
(10)							${ }^{20}$	${ }^{63}$	${ }^{18}{ }^{182}$		800		${ }^{121}$	${ }^{131}$	${ }^{275}$	${ }^{21}$	${ }_{4.8}$	130	${ }^{43}$	102	${ }^{15}$	0.12	14					${ }_{100}^{140}$		0.06	30	30	∞	001	${ }_{800}$	${ }^{20}$	${ }^{840}$	\cdots	02	${ }^{64}$	${ }^{164}$		
2024			O2						215		1020				${ }^{20}$									\ldots	\%	000	${ }^{34,7}$																
limeser					\%		2				-												10								40	30	10	001		10		0.00					(inco

 \qquad

$\begin{array}{\|c} \substack{\text { Sample } \\ \text { Colection } \\ \text { Point }} \end{array}$	Sample	Physical										Cations				Anions				Nutrients 2 Biological					Trace Elements										Fiow		${ }_{\text {Data }}^{\substack{\text { Daure } \\ \text { surce }}}$
		Time		$\begin{array}{\|c\|c\|c\|c\|c\|c\|c\|} \substack{\text { water } \\ \text { (eme }} \\ \hline \end{array}$	pH	$\begin{array}{\|c\|} \hline \left.\begin{array}{c} \mathrm{EC} \\ \hline \text { HSm } \\ \hline \end{array} \right\rvert\, \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { Do } \\ \text { (mgLL) } \end{array}$	$\begin{gathered} \substack{\text { ono } \\ \text { sat }} \\ \hline \end{gathered}$	$\begin{array}{\|l\|l\|} \hline \text { TDS } \\ (\mathrm{mgLL}) \\ \hline \end{array}$	$\left.\begin{array}{c} \text { Tss } \\ (\mathrm{mg} L L \end{array}\right)$	$\left.\begin{array}{\|c} \text { Turbidity } \\ \text { (NTU) } \end{array} \right\rvert\,$	$\begin{array}{\|c} \begin{array}{c} \text { sodium } \\ (m g L) \end{array} \\ \hline \end{array}$	Potassium $(\mathrm{mg} / \mathrm{L})$	$\begin{gathered} \text { calcium } \\ \text { (mglL) } \end{gathered}$	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Magnesium } \\ (\mathrm{mg} / \mathrm{L}) \end{array} \\ \hline \end{array}$	$\begin{array}{\|c} \hline \text { Bicarbonate } \\ \text { as HCO3 } \\ (\mathrm{mg} / \mathrm{L}) \end{array}$	$\begin{array}{\|c} \substack{\text { chlorime } \\ \text { (mglL }} \\ \hline \end{array}$	$\begin{array}{\|l\|l\|} \hline \text { Fuoride } \\ (\mathrm{mglL}) \\ \hline \end{array}$	$\begin{array}{\|c} \begin{array}{c} \text { Sulphate } \\ (\mathrm{mg} / L) \end{array} \\ \hline \end{array}$		$\begin{array}{\|c\|} \hline \text { Tp } \\ (\mu g L L) \\ \hline \end{array}$	$\begin{array}{\|c\|c\|c\|c\|c\|c\|l\|l\|l\|} \hline \text { (ganola } \end{array}$		$\left\|\begin{array}{c} \text { chla } \\ (\mu g L L) \end{array}\right\|$	$\begin{array}{\|c\|c\|} \hline \end{array} \begin{gathered} \text { Arsenic } \\ (\mathrm{g} / L / 2) \end{gathered}$	$\begin{array}{\|c} \left.\begin{array}{c} \text { Boron } \\ (\mathrm{geLL} \end{array}\right) \end{array}$	$\begin{gathered} \text { Cadmium } \\ \text { (PglLL) } \end{gathered}$	$\begin{gathered} \text { Chromium } \\ (\mu \mathrm{g} / \mathrm{L}) \end{gathered}$	$\begin{array}{\|l\|l\|} \hline \text { copper } \\ \text { (HgLL) } \end{array}$	$\left\|\begin{array}{l} \text { Iron } \\ (\text { (ugl }) \end{array}\right\|$	$\left.\begin{array}{\|l\|l} \text { Lead } \\ (\mathrm{gaLL} \end{array}\right)$	$\begin{array}{\|c\|c\|} \substack{\text { mercury } \\ (\text { gellL) }} \\ \hline \end{array}$	$\left.\begin{array}{\|c} \text { Nickel } \\ \text { (egLL } \end{array}\right)$		Level	Velocity	
		MTV	${ }^{\text {na }}$	0.80 \%il	6.5.8.	340	na	$85-110$	na	10	50	115	na	1000	na	na	175	1,2	400	500	50	20	700	5	2413	370	0.2	50	1.4	200	${ }^{3.4}$	0.6	11	8	na	${ }^{\text {na }}$	
Utopia	250512005			12	7.2	${ }^{233}$	11.30	${ }^{103}$	${ }^{154}$	9		${ }^{28}$	3	${ }_{1}^{12}$	6	91	${ }_{21}^{22}$	0.15	<10	70 100	-50	<10 <10				$\xrightarrow{<100}$				165					$\xrightarrow{\text { Low-mod }}$ Mod	Mod	${ }_{\text {RH }}^{\text {RH }}$
Utopia	${ }^{541112006}$		29.8	${ }_{1}^{12.3}$	7.9 7.6	223 286	${ }_{8}^{14.20}$	${ }_{89}^{132}$	136 200	10 12	4	29 37	4	11 22	${ }_{7}$	91 150	${ }^{21}$	0.1 0.22	$\stackrel{1}{<1}$	100 680	<10 34	$\begin{array}{r}10 \\ 18 \\ \hline\end{array}$	$\stackrel{44}{ }$	<1	${ }_{<1}^{<1}$	<100	$\stackrel{<0.1}{<1}$	<1	<1	1 460	$\stackrel{<1}{<1}$	<0.1.	<1	<10	Mod	Mod	$\stackrel{\text { RH }}{\text { RH }}$
Utopia	201111964	2359			7.7	310			174			47		19	9	156	40	0.2	2				${ }_{55}$														${ }_{\text {SNRW }}$
Utopia	20211966	2359			7.4	288			161			35		20	7	140	30	0.1																			DNRW
Utopia	61101/1966	2359			8	270			162			39		14	9	136	32	0.15	1																		DNRW
Utopia	111081998	1510			7.6	273			170			40		${ }^{20}$	6	${ }^{137}$	${ }^{28}$		9																		DNRW
Utopia	80681970	1307			7.7	290			173			38		24	5	154	30	0.15																			DNRW
Utopia	24041979	1310		19	8	390			212			32		40	9	195	35	0.1																			DNRW
Utopia	250081971	1445		17	7.8	320			180			32		20	15	159	35	0.1																			DNRW
Utopia	${ }^{25111 / 11971}$	1000 800		${ }_{18}^{24}$	8	360 270			${ }^{102}$			44 40		34 17	${ }_{8}$	178 148	36 30	0.2 0.25																			DNRW
Uutopia	${ }^{10150909197272}$	${ }_{1}^{800}$		18 18	8											146	30																				DNRW
Utopia	1410411973	1730		23	8.2	310			187	13		32	5	27	8	163	70	0.2								20											DNRW
Utopia	11081/1973	1200		17	8.1	200			122			${ }^{21}$	5	15	5	87	20																				DNRW
Utopia	5/121973	1100		27	8.3	270			161	20		24	5	23	7	131	26	0.16																			DNRW
Utopia	27031/1974	1030		27	7.8	355			203			40	5	25	8	164	32	0.13																			DNRW
Utopia	${ }^{268101 / 1974} 1$	${ }_{1}^{1215}$		15	7.7	${ }^{300}$			178	${ }_{5}^{42}$		${ }^{34}$	4	${ }_{2}^{21}$	7	139 149	31 34	0.13																			DNRW
Utopia	${ }_{181809121974}^{18974}$	$\stackrel{1530}{1730}$		$\stackrel{17}{27}$	${ }_{7}^{7.6}$	${ }^{335}$			${ }^{199} 171$	${ }^{54}$		36 35	4	${ }_{20}^{21}$	${ }_{8}$	149 158	34 14	0.27 0.16																			DNRW
Utopia	81041975	1000		21.5																																	DNRW
Utopia	5 5071975	${ }^{1055}$		16	8	262			145	${ }^{33}$		${ }^{27}$	4	16 16	${ }_{7}$	115 140	22 26	0.1 0.2																			DNRW
Utopia		1300 1350 1		26 16	${ }^{7.6}$	311 430			${ }_{2}^{165}$	11		32 42 42	4	16 35	${ }_{9} 9$	140 186 1	26 40	0.2 0.2	5				${ }_{5} 5$														DNRW
Utopia	1410911976	${ }^{1231}$		16	8.3	375			211	5		43	4	28	8	167	37	0.2					55														DNRW
Utopia	1411211976	1632		29	8.2	360			198	11		${ }^{28}$	6	34	8	165	${ }^{26}$	0.4	2				331														DNRW
Utopia	${ }^{2010411977}$	${ }^{1347}$		${ }_{2}^{22}$	8.2 8.2 				212 181	7		39 35	4	28 21 1	${ }_{8} 9$	153 150 1	36 28 28	0.1	5				193 166														DNRW
Utopia	1110411978	${ }^{1305}$		77	8	280			164	15		30	4	19	7	142	26	0.1	2				${ }_{83}$														DNRW
Utopia	241101978	1154		21																																	DNRW
Utopia	${ }^{111 / 111989}$	1505 1200		${ }_{29}^{29}$	7.8	${ }^{330}$			172 170 1			34 31 31	4	18 18	${ }_{9}^{8}$	150 148	${ }_{25}^{24}$	${ }_{0}^{0.1}$	1				${ }_{55}^{138}$														DNRW
Utopia	4021981	1440		18	7.6	${ }^{78}$			77	500		8	4	5	2	24	${ }_{3}$	0.1	,				${ }_{7724}$														DNRW
Utopia	40271981	1440			7.4	90			62	500		8	4	6	2	38	4	0.1	4				1379														DNRW
Utopia	502021981	${ }^{945}$		18	7.5 7.3 7	${ }_{1}^{117}$			75 83 8	500 100		10	5	${ }_{8}^{8}$	2	${ }_{4}^{47}$	6	0.1	4				1931														DNRW
Uutopia	${ }^{\text {24023a } 1981981}$	${ }_{1755}^{1725}$			${ }_{8.1}^{7.3}$	${ }^{1165}$			${ }_{1}^{83}$	${ }_{10}^{100}$	16	${ }_{24}^{9}$	${ }_{5}^{4}$	$\stackrel{8}{21}$	${ }_{7}$	${ }_{133}^{44}$	${ }_{20}^{6}$	${ }_{0}^{0.1}$	${ }_{1}^{13}$				1931														DNRW
Utopia	240311981	1755		27																																	DNRW
Utopia	40681989	1010		16	7.3	${ }^{86}$			${ }^{58}$	200	${ }^{680}$	8	3	5	2	${ }^{26}$	${ }^{6}$	0.1	7				1103														DNRW
Utopia	${ }^{2310711981} 1$	${ }^{1640}$		24	8.2 8.5 8	永300			195 200	10 10	10	${ }_{3}^{37}$	4	${ }^{25}$	${ }_{8}^{8}$	155 150 150	31 27	0.1 0.2	$\stackrel{2}{13}$				${ }^{276}$														DNRW
Utopia	25031/1982	850		22	8	290			160	50	100	24	4	20	6	135	20	0.1					${ }_{276}$														DNRW
Utopia	121081/1982	1130		14	8.1	300			170	9	2	35	3	19	7	140	${ }^{27}$	0.1	3				110														DNRW
Utopia	3/3111982	1545 1730 10		25 28 28	7.8	330			190	10	13	${ }^{37}$	5	21	8	165	30	0.2	1				110														${ }^{\text {DNRW }}$ DNRW
Utopia	1512121983	800		24	8.1	320			190	25	72	31	4	24	7	145	${ }^{28}$	0.1	${ }^{3} .3$				${ }^{138}$														DNRW
Utopia	24031/1984	1045		26	7.3	290			220	5	3	37	4	${ }^{28}$	9	175	${ }^{33}$	0.1	7							30											DNRW
Utopia	${ }^{231061984} 1$	1210 1140 18		${ }_{20}^{12}$	${ }_{8.3}^{7.8}$	330 480			${ }^{200}$	5 5 5		$\stackrel{41}{56}$	${ }_{5}$	25 31	8 10	150 200	36 55	0.1 0.1	2.5 4.5				138			10											${ }^{\text {DNRW }}$
Utopia	130411985	1345		23	7.5	350			200	10	3	41	3	${ }^{23}$	7	165	36	0.1								20											DNRW
Utopia	50771985	1425			8.1	340			180	5	6	37	3	20	7	150	33	0.1																			DNRW
Utopia	${ }^{1811011985}$	1330 1714 18		22 30	${ }_{8}^{7}$	${ }_{20}^{92}$			77 160	330 5 5	100	${ }_{3}^{9}$	5	8 19	${ }_{7}$	$\begin{array}{r}50 \\ 140 \\ \hline\end{array}$	${ }^{8}$	0.1 0.2	2				${ }^{138}$			${ }_{20}^{10}$											DNRW
Utopia	180771986	1440		16	${ }^{8.4}$	${ }_{238}^{238}$			160	${ }^{25}$	$\stackrel{5}{9}$	${ }_{32}$	3	${ }^{19}$	7	130 130	${ }_{26}^{26}$	0.2																			DNRW
Utopia	1711019966	1643		25	8	301			160	10	13	32	3	19	7	140	27	0.1					690														DNRW
Utopia Utoia	97011987	${ }^{1807}$		${ }_{28}^{28}$	${ }^{7} 7$	152 288			95 160	2460 10	100	${ }^{11}$	5	${ }^{13}$	${ }^{3}$	${ }^{72}$	7	0.1	${ }^{2.6}$				${ }^{1324}$														DNRW
Utopia	${ }_{\text {l }}^{\text {317041987 }} 1$	${ }_{\text {¢ }}^{\substack{\text { 930 } \\ \hline 150}}$		23 11 11	${ }_{8.9}^{7.9}$	288 314			160 150 1	10 19	7	32 31 31	${ }_{3}^{4}$	20 17 17	${ }_{6}^{6}$	140 125 125	$\stackrel{26}{22}$	0.1 0.1 0.1								20											DNRW
Utopia	6/1111987	1720		21	7.3	${ }^{273}$			150	44	34	29	5	17	6	120	22	0.2																			DNRW
Utopia	${ }^{1219219988}$	${ }_{1645}^{1452}$		${ }_{28}^{28}$	${ }^{7} 7.3$	${ }^{142}$			${ }_{1}^{97}$	${ }_{7} 780$	$\begin{array}{r}100 \\ \hline 38 \\ \hline\end{array}$	${ }^{12}$	5	11	4	$\begin{array}{r}69 \\ \hline 115\end{array}$	${ }_{2} 9$	0.1					524			10											DNRW
Utopia	${ }^{1770511988}$	1452 1430		18 24	7.5 8.1	250 274			130 150 1	48 12 12	38 6	26 29	${ }_{4}$	16 18	${ }_{7}$	115 125	${ }_{21}^{21}$	0.1 0.1																			DNRW
Utopia	120111989	${ }^{1437}$		${ }^{27}$	7.1	175			89	125	100	10	5	13	3	73	9	0.1																			DNRW
Utopia	705/1989	852			7.8	308			150	81	${ }^{80}$	${ }^{24}$		19	6	105	${ }^{27}$		3.2				2152														DNRW
Utopia	20991989 31121989	1613 140 1		30	${ }_{8.5}^{7.9}$	434 405			${ }^{250}$	10 76	11 59	${ }_{46}^{46}$	$\stackrel{3}{4}$	${ }^{31}$	${ }_{8}^{10}$	180 155 1	${ }_{48}^{54}$	0.1 0.2	${ }_{4}$				${ }^{331}$			50 100			. 02								${ }^{\text {DNRW }}$ DNRW
Utopia	240311990	1115		22	8.	${ }^{320}$			179	47	45	${ }_{3}$	4	${ }_{20}$	7	${ }_{1}^{133}$	32	${ }^{0.16}$	${ }^{2} 8$				166			${ }^{100}$			0.02								DNRW
Utopia	130711990	1145		11	8.2	475			260		32	51	4	31	11	182	46	0.16	7				386			20											DNRW
Utopia	${ }^{1511111990}$	${ }^{1330}$		${ }_{26}^{26}$	${ }^{7.6}$	498 380			${ }^{270}$	$\stackrel{2}{4}$		58 47 47	5	31 24	${ }_{8}^{11}$	200 167	52 44	0.16 0.19	${ }^{3.4}$							40 30			0.03 0.03								DNRW
Uotopia	${ }_{\text {23081/1991 }}$	${ }_{1405}$		${ }_{8}^{22}$	${ }^{7} 8$	${ }_{303}$			176	${ }_{16}$	${ }_{4}$	${ }_{37}$	5	$\stackrel{24}{19}$	${ }_{7}$	141	${ }_{3}^{44}$	0.0	2.8							${ }_{20}$			${ }_{0}^{0.04}$								DNRW
Utopia	2911111991	${ }^{1340}$		${ }^{27}$	7.5	${ }^{294}$			182	4	3	41	4	17	8	143	32	0.16	0.6										0.03								DNRW
Utopia	${ }^{1210411992}$	${ }^{1003}$		17	${ }^{7.6}$	${ }^{302}$			158 151	11	3	33 33	$\stackrel{3}{2}$	19	7	135 124	26 25	0.14 0.13																			
Utopia	${ }^{121081 / 1992}$	${ }_{1420}^{1205}$		12 26	8.3 8.1	240			151 167	$\stackrel{11}{9}$	1 5	33 34	2	16 17	${ }_{8}$	124 136 136	25 25	0.13 0.12	${ }_{0.3}^{0.7}$				${ }^{55}$						0.01								DNRW
Utopia	240311993	1015		21.1	7.7	284			${ }^{153}$	11	7	${ }^{37}$	4	14	7	121	26	0.14					${ }_{55}$						0.02								DNRW
Utopia	210711993	915		14.2	7.9	249			137	23	15	30	3	15		115	20	0.12	0.6				28														DNRW
Utopia	${ }^{244111111993}$	${ }_{1455}^{1455}$		24.6	7.6 7.75	${ }^{190} 163$			110	230	100	15	4	13	4	79	19	0.1	2				${ }^{938}$			100			0.05								${ }_{\text {DNRW }}^{\text {DNRW }}$
Utopia	16/121/1993	1300			7.65	165			99	290	100	15	4	11	4	76	12	0.1	2				1048			100			0.05								DNRW
Utopia	${ }^{1310411994}$	${ }^{940}$		15.7 174 1	$\stackrel{7}{7} 8$	${ }^{294}$			168 147	${ }_{8}^{8}$	${ }_{4}^{4}$	33 33	4	19 19	7	134 126	${ }^{28}$	0.1	${ }^{0.6}$				110						0.01								DNRW
Utopia	${ }^{3310811994}$	1330 1420		17.4 16.2 1	8 8 8	278 294 20			147 155 1	${ }_{4}^{4}$	3	33 34	3	15 16	7	126 134 134	${ }^{23}$	0.11 0.12	0.7		${ }_{20}^{27}$	${ }_{20}^{17}$							0.02								-
Utopia	301111994	920		24.3	7.79	312			170	19	9.8	${ }^{31}$	4	20	9	150	22	0.14	0		${ }^{7}$		149						0								DNRW
Utopia	11/01/1995	1250		27.4	7.25	182			110	400	100	18	5	12	4	76	14	0.2	2		260	150	1434			100			0.05								DNRW
Utopia	100211995	919 159		25.1	7.18 7.58		6.21		65 114	${ }_{124}^{1220}$	200 200	${ }_{18}^{9}$	${ }_{4}^{4}$	$\stackrel{7}{13}$	${ }_{4}$	42 85	17 1	$\frac{0.11}{0.1}$	${ }_{1}^{1.29}$		${ }_{487}^{481}$	${ }^{30}$	${ }_{11131}^{114}$						0								DNRW

Water Quality Data Summary

BOLD MTV-
MTV- - minimum trigaer value
Sample
RHR R Rver Heath Report
DNR

Comet-Brown Catchment Water Quality Data

Appendix C

Table C1
Comet Catchment URS Surface Water Parameters
Table C2
Comet Catchment URS Analytical Results
Table C3 Comet Catchment Surface Water Data Summary
Table C4 Comet Catchment Surface Water Data Results - Brown River
Table C5
Comet Catchment Surface Water Data Results - Carnarvon Creek
Table C6
Comet Catchment Surface Water Data Results - Comet River at Rolleston
Table C7 Comet Catchment Surface Water Data Results - Meteor Creek
Table C8
Comet Catchment Surface Water Data Results - Planet Creek
Table C9
Comet Catchment Surface Water Data Results - Comet River Downstream Rolleston
Table C10 Comet Catchment Surface Water Data Results - Humboldt and Rockland Creeks
Table C11 Comet Catchment Surface Water Data Results - Comet River at Comet Weir

Table C1
Comet Catchment URS Surface Water Parameters
GLNG CSG Surface Water

Site ID		Date/Time		Water Quality Parameters				
Number	Name	Date	$\begin{aligned} & \hline \text { Time } \\ & \text { (EST) } \end{aligned}$	$\begin{gathered} \mathrm{EC} \\ (\mu \mathrm{~S} / \mathrm{cm})^{*} \end{gathered}$	$\begin{gathered} \mathrm{DO} \\ (\mathrm{mg} / \mathrm{L}) \end{gathered}$	pH*	Turbidity (NTU)	Temp (${ }^{\circ} \mathrm{C}$)
			MTV	340		6.5-8.0	50	
C001	Arcadia Ck @ Arcadia Valley Rd \#1	03-Feb-08	11:30	198	4.91	7.4	91	27.5
C001	Arcadia Ck @ Arcadia Valley Rd \#1	06-Mar-08	11:10	210	nt	7.6	nt	nt
C001	Arcadia Ck @ Arcadia Valley Rd \#1	14-May-08	10:30	-	-	-	-	-
C002	Basin Ck @ Arcadia Valley Rd	03-Feb-08	11:42	109.7	1.85	6.51	170	28.4
C002	Basin Ck @ Arcadia Valley Rd	06-Mar-08	10:45	141	nt	7.33	nt	nt
C002	Basin Ck @ Arcadia Valley Rd	14-May-08	10:45	228	7.21	7.11	675	16
C003	Arcadia Ck @ Arcadia Valley Rd \#2	03-Feb-08	12:10	199	7.13	5.85	58	27.3
C003	Arcadia Ck @ Arcadia Valley Rd \#2	06-Mar-08	12:20	184	nt	7.73	nt	nt
C003	Arcadia Ck @ Arcadia Valley Rd \#2	14-May-08	12:45	207	4.87	6.95	44	19.5
C004	Arcadia Ck @ Arcadia Valley Rd \#3	03-Feb-08	12:57	199.1	7.33	5.59	23	29.8
C004	Arcadia Ck @ Arcadia Valley Rd \#3	06-Mar-08	13:00	173	-	7.59	-	-
C004	Arcadia Ck @ Arcadia Valley Rd \#3	14-May-08		-	-	-	-	-
C005	Spring Ck @ Arcadia Rd	03-Feb-08	13:18	-	-	-	-	-
C005	Spring Ck @ Arcadia Rd	06-Mar-08		-	-	-	-	-
C005	Spring Ck @ Arcadia Rd	14-May-08	13:05	-	-	-	-	-
C012	Arcadia Ck @ Castle Hill	06-Mar-08	-	-	-	-	-	-
C012	Arcadia Ck @ Castle Hill	14-May-08	11:40	-	-	-	-	-
C014	Arcadia Ck @ Sunny Holt	06-Mar-08	-	-	-	-	-	-
C014	Arcadia Ck @ Sunny Holt	14-May-08	12:00	185.2	9.35	7.21	8	16.7
C007	Carnarvon Ck @ Carnarvon Hwy	03-Feb-08	14:20	395	6.96	8.1	46	31
C007	Carnarvon Ck @ Carnarvon Hwy	06-Mar-08	14:00	350	-	8.29	-	-
C007	Carnarvon Ck @ Carnarvon Hwy	14-May-08	13:45	490	9.6	8.23	2	20.9
C006	Moolayember Ck @ Carnarvon Hwy	03-Feb-08	15:50	-	-	-	-	-
C006	Moolayember Ck @ Carnarvon Hwy	06-Mar-08	13:50	-	-	-	-	-
C006	Moolayember Ck @ Carnarvon Hwy	14-May-08	13:40	-	-	-	-	-
C008	Carnavon Ck @ Rewan (Plane Crash)	03-Feb-08	14:43	449	7.8	8.08	28	28.9
C008	Carnavon Ck @ Rewan (Plane Crash)	06-Mar-08		-	-	-	-	-
C008	Carnavon Ck @ Rewan (Plane Crash)	14-May-08	14:20	500	11.15	8.42	1	18.9
C009	Comet River @ Rolleston	03-Feb-08	16:10	212.7	4.88	7.39	132	30
C009	Comet River @ Rolleston	06-Mar-08		-	-	-	-	-
C011	Triumph Ck @ Rolleston Rd	04-Feb-08	9:50	128	1.05	6.41	566	27.6
C011	Triumph Ck @ Rolleston Rd	06-Mar-08		-	-	-	-	-
C010	Comet River @ Comet Weir	04-Feb-08	8:55	230	7.01	7.43	28	28.1
C010	Comet River @ Comet Weir	06-Mar-08		-	-	-	-	-
C013	Arcadia Ck @ Towrie	14-May-08	11:50	176	nt	7.69	nt	nt

NOTES

MTV Minimum trigger value
BOLD Greater than minimum trigger value
"-" stream dry
nt - parameters not taken due to instrument failure

* - Samples collected March 08 were analysed by laboratory due to instrument failure

Table C2
URS Surface Water Analytical Results Comet Catchment
GLNG CSG Surface Water

Location		Sample ID	Date Sampled	Analyte Sample Type	Physico-Chemical Parameters				Metals (Total)									Nutrients					
		Biochemical Oxygen Demand			Chemical Oxygen Demand	Total Organic Carbon		Arsenic	Boron	Cadmium	Chromium	Copper	Iron	Lead	Nickel	Zinc	Nitrate and Nitrite (as N)		Total Phosphorus as P	$\left\|\begin{array}{c} \text { Total } \\ \text { Nitrogen as } \\ \mathrm{N} \end{array}\right\|$	Calcium		
		Units		mg/L																			
		LOR		2	5	1	1	0.001	0.1	0.0001	0.001	0.001	0.05	0.001	0.001	0.005	0.01	0.1	0.01	0.1			
		MTV					10	$0.007^{\text {b }}$	0.37	0.0002	0.001	0.0014	0.2	0.0034	0.011	0.008			0.05	0.5	1000		
C001	Arcadia Ck @ Arcadia Valley Rd\#1		C001_06/03/08	6/03/2008	PS	-	85	<1	64	0.005	<0.1	<0.0001	<0.001	0.002	-	0.001	0.005	0.006	0.029	1.1	0.18	1.1	22
C001	Arcadia Ck @ Arcadia Valley Rd\#1		C001_06/03/08CHK	6/03/2008	LD	-	-	-	-	-	-	-	-	-	-	-	-	-	0.023	1.3	0.18	-	
C002	Basin Ck @ Arcadia Valley Rd		C002_06/03/08	6/03/2008	PS	-	82	<1	270	0.002	<0.1	0.0002	0.018	0.022	-	0.028	0.034	0.065	0.09	2.4	1.02	2.5	15
C002	Basin Ck @ Arcadia Valley Rd		C002_14/05/08	14/05/2008	PS	37	5	-	106	<0.001	<0.05	0.0002	<0.001	0.005	0.98	0.004	0.003	<0.005	0.266	1.4	0.38	1.6	30
C002	Basin Ck @ Arcadia Valley Rd	C002_14/05/08CHK	14/05/2008	LD	-	6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
C003	Arcadia Ck @ Arcadia Valley Rd \#2	C003_06/03/08	6/03/2008	PS	-	46	<1	52	0.004	<0.1	0.0001	<0.001	0.002	-	<0.001	0.003	0.006	0.01	1.3	0.04	1.3	18	
C003	Arcadia Ck @ Arcadia Valley Rd \#2	C003_06/03/08CHK	6/03/2008	LD	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	18	
C003	Arcadia Ck@ Arcadia Valley Rd \#2	C003_14/05/08	14/05/2008	PS	58	10	-	27	0.002	0.06	0.0002	<0.001	0.002	0.98	<0.001	0.003	<0.005	<0.01	1	0.15	1	19	
C004	Arcadia Ck @ Arcadia Valley Rd \#3	C004_06/03/08	6/03/2008	PS	-	66	<1	128	0.005	<0.1	<0.0001	0.014	0.011	-	0.005	0.014	0.031	0.018	2.3	0.55	2.4	12	
C004	Arcadia Ck@ Arcadia Valley Rd \#3	C004_06/03/08CHK	6/03/2008	LD	-	-	-	138	0.006	<0.1	<0.0001	0.014	0.012	-	0.005	0.014	0.032	-	-	-	-	-	
C007	Carnarvon Ck @ Carnarvon Hwy	C007_06/03/08	6/03/2008	PS	-	25	<1	25	0.002	<0.1	0.0001	$<0.001^{*}$	0.002	-	<0.001	0.002	<0.005	0.044	0.6	0.08	0.6	36	
C007	Carnarvon Ck@ Carnarvon Hwy	C007_06/03/08CHK	6/03/2008	LD	-	-	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
C007	Carnarvon Ck @ Carnarvon Hwy	C007_14/5/08	14/05/2008	PS	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	42	
C008	Carnavon Ck @ Rewan (Plane Crash)	C008_14/05/08	14/05/2008	PS	17	2	-	2	<0.001	<0.05	0.0002	<0.001	0.001	<0.05	<0.001	<0.001	<0.005	<0.01	<0.1	0.04	<0.1	44	
C008	Carnavon Ck @ Rewan (Plane Crash)	C008_14/05/08CHK	14/05/2008	LD			-							-					0.1	0.04			
C013	Arcadia Ck @ Towrie	C013_06/03/08	6/03/2008	PS	-	46	<1	25	0.004	<0.1	0.0001	<0.001	0.002	-	<0.001	0.003	<0.005	0.013	1.2	0.13	1.2	16	
C013	Arcadia Ck @ Towrie	C013_06/03/08CHK	6/03/2008	LD	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
C014	Arcadia Ck@ Sunny Holt	C014_14/05/08	14/05/2008	PS	41	9	-	10	0.001	<0.05	<0.0001	<0.001	0.002	0.23	<0.001	0.002	<0.005	<0.01	1	0.07	1	19	
C014	Arcadia Ck @ Sunny Holt	QC02_14/05/08	14/05/2008	FD	93	9	-	11	<0.001	<0.05	<0.0001	<0.001	0.002	0.26	<0.001	0.002	<0.005	<0.01	1	0.07	1		
C014	Arcadia Ck @ Sunny Holt	QC02_14/05/08CHK	14/05/2008	LD	-	-	-	-	0.001	-	<0.0001	<0.001	0.002	-	<0.001	0.002	<0.005	-	-	-	-		

Notes
PS - Primary Sample
LD - Lab Duplicate
FD - Field Duplicate Sample
MTV - Minimum Trigger Value
a-Guideline physico-chemical parameter values for protection of aquatic ecosystems (central Coast Region)
b-AsIII/AsIV respectively
BOLD Greater than the MTV

Table C2
URS Surface Water Analytical Results Comet Catchment
GLNG CSG Surface Water

Location		Sample ID	Date Sampled	Analyte	Major Ions									Alkalinity				
		Sample Type		Chloride	Fluoride	Magnesium	Potassium	Sodium	Sulphate	Total Anions	Total Cations	Ionic Balance	Hydroxide Alkalinity as CaCO 3	Carbonate Alkalinity as CaCO3	Bicarbonate as CaCO 3	$\begin{gathered} \text { Total } \\ \text { Alkalinity } \\ \left(\text { as } \mathrm{CaCO}_{3}\right) \end{gathered}$		
		Units		mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	meq/I	meq/	\%	mg/L	mg/L	mg/L	mg/L		
		LOR		1	0.1	1	1	1	1	0.01	0.01	0.01	1	1	1	1		
		MTV		175	,			<115	250									
C001	Arcadia Ck @ Arcadia Valley Rd\#1		C001_06/03/08	6/03/2008	PS	2	0.1	6	12	8	<1	2.19	2.29	-	<1	<1	107	107
C001	Arcadia Ck @ Arcadia Valley Rd\#1		C001_06/03/08CHK	6/03/2008	LD	-	-	-	-	-	-	-	-	-	-	-	-	-
C002	Basin Ck @ Arcadia Valley Rd		C002_06/03/08	6/03/2008	PS	<1	<0.1	4	6	4	1	1.37	1.41	-	<1	<1	67	67
C002	Basin Ck @ Arcadia Valley Rd		C002_14/05/08	14/05/2008	PS	4	0.2	8	8	-	6	2.43	2.61	-	-	-	-	-
C002	Basin Ck @ Arcadia Valley Rd	C002_14/05/08CHK	14/05/2008	LD	4	-	-	-	-	-	-	-	-	-	-	-	-	
C003	Arcadia Ck@ Arcadia Valley Rd \#2	C003_06/03/08	6/03/2008	PS	4	0.2	6	11	14	<1	2.06	2.25	-	<1	<1	98	98	
C003	Arcadia Ck @ Arcadia Valley Rd \#2	C003_06/03/08CHK	6/03/2008	LD	-	-	6	11	13	<1	-	-	-	-	-	-	-	
C003	Arcadia Ck@ Arcadia Valley Rd \#2	C003_14/05/08	14/05/2008	PS	3	0.2	7	8		13	2.11	2.29	-	-	-	-	-	
C004	Arcadia Ck@ Arcadia Valley Rd \#3	C004_06/03/08	6/03/2008	PS	4	0.2	4	8	22	2	1.9	2.08	-	<1	<1	87	87	
C004	Arcadia Ck@ Arcadia Valley Rd \#3	C004_06/03/08CHK	6/03/2008	LD	-	-	-	-	-	-	-	-	-	-	-	-	-	
C007	Carnarvon Ck @ Carnarvon Hwy	C007_06/03/08	6/03/2008	PS	11	0.1	21	5	23	7	4.48	4.64	1.74	<1	<1	202	202	
C007	Carnarvon Ck@ Carnarvon Hwy	C007_06/03/08CHK	6/03/2008	LD	-	-	-	-	-	-	-	-	-	-	-	-	-	
C007	Carnarvon Ck @ Carnarvon Hwy	C007_14/5/08	14/05/2008	PS	19		27	4	-	26	5.49	5.56	0.64	-	-	-	-	
C008	Carnavon Ck @ Rewan (Plane Crash)	C008_14/05/08	14/05/2008	PS	14	0.2	34	2	-	27	6.06	6.21	1.17	-	-	-	-	
C008	Carnavon Ck @ Rewan (Plane Crash)	C008_14/05/08CHK	14/05/2008	LD									-					
C013	Arcadia Ck @ Towrie	C013_06/03/08	6/03/2008	PS	2	0.1	5	12	10	<1	1.81	1.99	-	<1	<1	88	88	
C013	Arcadia Ck @ Towrie	C013_06/03/08CHK	6/03/2008	LD	3	0.1	-	-	-	-	-	-	-	<1	<1	87	87	
C014	Arcadia Ck @ Sunny Holt	C014_14/05/08	14/05/2008	PS	3	0.2	7	10	-	9	2.01	2.16	-	-	-	-	-	
C014	Arcadia Ck @ Sunny Holt	QC02_14/05/08	14/05/2008	FD		0.2	-	-	-	-	-	-	-	-	-	-	-	
C014	Arcadia Ck @ Sunny Holt	QC02_14/05/08CHK	14/05/2008	LD		-	-	-	-	-	-	-	-	-	-	-	-	

Notes
PS - Primary Sample
FD - Field Duplicate Sample
MTV - Minimum Trigger Value
a -Guideline physico-chemical parameter values for protection of aquatic ecosystems (central Coast Reg
b-AsIII/AsIV respectively
BOLD Greater than the MTV

Table C3
GLNG CSG Surface Water

Water Quality Parameter				Brown River (u/s Rolleston)				Carnarvon Creek				Comet River (at Rolleston)				Meteor Ck				Planet Creek				Comet River (d/s Rolleston)				Humboldt + Rockland Creek				Comet River at Comet Weir				
		Min		Med	Max	n	Min	Med	Max	n																										
$\begin{aligned} & \text { Physico- } \\ & \text { Chemical } \\ & \text { Parameters } \end{aligned}$	Conductivity @ 25C		$\mu \mathrm{S} / \mathrm{mm}$	340	66	217.0	545	53	115	343.3	436	38	150	206.5	331	4	160	615.5	810	40	89	698.3	1080	50	101	233.9	1030	81	48	202.9	335	7	72	203.9	510	125
	Conductivity @ 25C F	$\mu \mathrm{s} / \mathrm{cm}$	340	65	176.4	385	23	113	341.9	438	43	147	233.5	418	8	310	421.3	520	4	342	830.9	1120	13	95	164.3	458	69		151.0	151	1	50	187.6	479	85	
	Turbidity	NTU	50	1	77.9	620	37	1	26.9	200	27	1.5	149.5	430	3		27.8	100	12	1	7.6	26	22	2	79.9	3110	62	70	654.0	1238	2	1	690.9	9310	71	
	Turbidity F	NTU	50	5	112.1	330	15	1	4.9	15	18	6	160.7	538	8									1	1305.2	3180	47		1280.0	1280	1	15.6	1053.3	7740	60	
	Transparency (secchi depth) FLD	m																														0.14	0.5	1.02	4	
	Colour True	Hazen Units		5	28.8	95	32	5	9.2	30	24	10	19.3	28	3	5	14.5	50	10	5	24.0	70	20	5	24.8	70	32	14	42.0	70	2	2	34.1	325	67	
	Air Temp FLD			18	21.9	26	4	13	18.1	27	5	14.7	16.0	17.2	2									23.4	23.9	24.3	3					17	22.7	27.7	6	
	Water Temp FLD		20-80\%\%ile	8	22.2	32	33	10.3	20.6	32	48	16.5	20.7	24.9	8	4	24.8	34	30	14	24.1	35	36	10.9	23.0	35	57	19	21.3	28	5	14	24.7	34.2	109	
	pH	pH Units	6.5-8.0	6.6	7.6	8.5	53	7.4	8.3	8.8	38	7	7.5	7.91	4	7.4	${ }^{8.3}$	8.8	40	6.8	8.0	8.8	50	7.05	7.8	8.72	57	6.9	7.3	7.7	7	6.9	7.6	8.6	125	
	pH FLD	pH Units	6.5-8.0	6.92	7.8	8.9	17	7.8	8.5	8.8	29	7.5	7.7	8.1	7					8.3	8.4	8.4	2	6.47	7.8	8.88	28		7.4	7.4	1	6.5	7.4	8.53	74	
	Oxygen (Dissolved) FLD	mgh		4.06	7.6	17.5	15	6.8	9.5	11.9	18	3.8	5.3	6.7	8									5.88	7.9	9.85	18		5.3	5.3	1	3.6	6.4	10.48	46	
	Total Suspended Solids	mgl	10	5	148.6	3910	47	2	27.5	335	37	5	131.7	370	3	1	40.4	300	32	2	28.8	580	41	2	611.6	2350	75	4	119.3	360	6	2	455.9	5772	99	
	Total Diss. Solids	mgl	500	39	126.0	296	52	88	202.0	251	38	89	126.6	170.79	3	99	357.8	485	40	50	405.5	620	50	69.69	167.1	602	57	45	128.6	204	7	52	125.5	271	117	
Nutrients	Nitrate (N03)	mg/L	50	0.17	1.4	3.8	36	0.2	0.8	,	17	0.44	1.5	3.6	4	0.4	0.9	2.9	16	0.2	1.1	5.2	23	0.1	1.5	5.5	34	1	3.5	5.3	3	0	1.8	9.7	73	
	Nitrate + nititie (N total)	mgl																									0									
	Nitrate + nitrite (N soluble)	mg/L						0.0025	0.003	0.0042	3													0.0019	0.1	0.475	22					0	0.2	1.05	48	
	Ammonia (N total)	mgl	0.02																								0									
	Ammonia (N soluble)	mg/	0.02	0.006	0.006	0.006	1	0.005	0.01	0.0215	4													0.0042	0.025	0.0814	23		1.1	1.11	1	0	0.1	0.80	51	
	Kjeldahl Nitrogen	mg/L		0.685	1.1	1.4	5	0.175	0.18	0.175	1	0.543	1.3	2	2									1.581	3.3	11.882	11					715	715.0	715		
	Total Nitrogen (TN)	mg/	0.5	0.5008	1.0	2.1024	8	0.1	0.16	0.2158	2	0.83	0.9	1.0419	3									0.3712	0.6	0.8278	3					0.36	1.5	4.48	36	
	Organic Nitrogen	mgl		0.68	0.7	0.68	1	0.1132	0.19	0.3	4	0.59	0.6	0.59	1									0.41	2.4	17.8609	24					0.3	1.1	3.2	30	
	Total Reactive Phosphorus	mg/																									0									
	Total React Phosphorus (P soluble)	mg/		0.067	0.1	0.067	1	0.0045		0.0223	4														0.1	0.164	22					0.003	0.1	0.27	50	
	Total Phosphorus (P)	mgh	0.05	0.0961	0.3	0.581	14	0.0162		0.052	8	0.0397	0.3	0.74	6									0.0877	0.7	2.4338	37		0.4	0.39	1	0.022	0.7	2.84	66	
Metals	Boron as B	mgl	0.37	0.01	0.037	0.1	21	0.01		0.2	15	0.04	0.1	0.1	2	0.02		0.03	12	0.02	0.1	0.1	22	0.02	0.032	0.05	11					0.01	0.1	0.11	41	
	Aluminium (Al)	mgl	0.055	0.01	0.044	0.1	9	0.01	0.1	0.2	7	0.05	0.1	0.18	3					0.1	0.2	0.22	2	0.01	0.031	0.09	14					0.01	0.1	0.59	40	
	Copper (Cu)	mg/	0.0014	0.01	0.033	0.06	9	0.01	0.04	0.06	8	0.01	0.02	0.05	3					0.02	0.1	0.11	4	0.01	0.035	0.17	19			0.01	1	0.01	0.03	0.08	27	
	Bromide (Br)	mgl										1	1.0	1	1												0									
	Cadmium (Cd total)	$\mu \mathrm{g} / \mathrm{L}$	0.2																								-					2.6	3.1	3.5	2	
	Chromium (Cr total)	нg/	1																								0					3	5.0	7	2	
	Copper (Cu total)	нg/	1.4																								0					4	5.5	7	2	
	Flouride (F)	Mgh	1	0.1	0.2	0.65	50	0.1	0.1	0.2	37	0.11	0.2	0.24	3	0.1	0.2	0.63	40	0.01	0.2	0.3	42	0.04	0.1	0.42	53	0.1	0.3	0.8	6	0.02	0.2	0.83	124	
Major lons	Hydrogen (H)	mg/L						0.1	0.1	0.1	4				3	0.1	0.2	0.5	8	0.1	0.1	0.1	9	0.1	0.1	0.1	5					0.1	0.1	0.1	4	
	Chloride (CI)	mg/	175	2.2	10.2	58	52	3.8	10.6	20	38	4.8	6.1	7.9	4	12	26.1	65	40	13.8	74.9	155	50	4	13.6	140	57	10	37.1	90	7	2	10.3	46.37	124	
	Potassium (K)	mg/L		3.1	7.2	21.1	48	1.3	2.9	6.7	38	3.86	5.7	7	4	2.2	3.6	24	39	1.4	3.0	5.6	48	2.4	4.9	8.2	55	1.8	4.3	5.3	6	2.2	5.2	48	103	
	Sodium (Na)	mgl	115	4	13.3	39.9	53	11.5	17.5	22	38	8.6	11.3	14.5	4	3.4	37.3	80.4	40	11.1	71.4	124	50	4.8	16.8	115	57	5.6	24.1	40	7	4	12.3	36	125	
	Total Dissolved lons	mgl		43.9	173.6	443.7	53	92.2	287.9	366.7	37	113	166.7	273.94	4	127.3	509.9	710.9	39	48.6	537.6	831.3	50	83.68	231.3	781.7	57	46.9	142.0	229.9	7	75	168.8	382.2	125	
	Calcium (Ca)	mg/	1000	2.8	17.1	63	53	6.4	27.4	38	38	8.8	15.8	29.4	4	12	35.6	51	40	1.5	30.9	57	50	6.4	19.1	45	81	1.5	9.5	20	7	5.6	16.9	48	125	
	Sulphate (SO4)	mg/	250	0.5	2.5	9.3	24	0.65	2.9	16	33	0.51	2.2	4.2	4	1	8.0	27.5	26	0.9	3.3	8.2	27	0.7	3.6	25	40	6	11.6	20	4	0.97	4.4	53.33	88	
	Magnesium (Mg)	mgl		1.5	8.2	20	53	4.2	19.5	25.3	38	4.7	9.2	18.7	4	4	41.9	54	40	2	33.1	54.2	50	3.3	11.8	45	81	1.9	5.8	8.8	7	2.6	8.8	27	125	
Alkalinity	Total Alkainity ($\mathrm{CaCO3}$)	mg/L		,	95.6	256	53	47	173.7	223	38	63	108.7	168	3	41	301.7	416	40	10	267.3	470	50	42	115.0	355	57	15	43.9	80	7	26	92.1	222	125	
	Total Akalinity (CaCO3) FLD	mg/		55	77.0	124	4	18.8	139.4	180	5	50	86.4	149.2	3			0						56	119.5	180	,		48.0	48	1	8.6	59.3	124	10	
	Hydroxide (OH)	mg/L		0	0.0	0.02	11	0.02	0.1	0.1	20							0		0.04	0.1	0.1	,	0.09	0.1	0.09	1				5	0.01	0.0	0.1	13	
	Carbonate (CO3)	mgl		0.07	0.5	1.6	39	0.1	3.1	9.1	38	0.1	0.5	0.98	3	0.1	6.1	30	40	0.1	5.3	15	38	0.03	1.4	19	52			0.1	5	0.04	0.7	16.8	83	
	Bicarbonate (HCO3)	mg/L		9.2	115.9	311	53	57	205.3	263	38	70	116.2	202.93	4	28	355.6	500	40	12	317.9	553.3	50	51.12	155.9	426	57	18.3	53.4	97	7	31.5	111.3	267	125	
	Hardness (CaCO3)	mgl		13	76.3	240	53	33	148.7	194	38	41.5	77.2	150.24	4	54	261.1	350	40	12	213.2	360	50	29.54	96.2	298	81	12	47.7	80	7	25	78.3	201	125	

notes
MTV Minimem nigger valu

\equiv| Not deteded |
| :---: |
| Estinate |

Brown-Comet Catchment Water Quality Data

	staton namE	${ }_{\substack{\text { sample. } \\ \text { No. }}}^{\text {a }}$	date	${ }^{\text {TME }}$	Hydrologl																							meats																	
						${ }_{\text {Stama }}^{\substack{\text { sitang } \\ \text { Denase }}}$	ooph			Tubidit		colour	${ }_{\text {a }}^{\substack{\text { fain } \\ \text { feld }}}$		р ${ }^{\text {H }}$	${ }_{\text {PH }}^{\text {Pro }}$		$\substack{\text { Suspal } \\ \text { Supanded } \\ \text { Solise }}$	$\left\lvert\, \begin{gathered}\text { Toibl } \\ \text { dois } \\ \text { sois }\end{gathered}\right.$	(tras)	$\underset{\substack{\text { Nitatat } \\ \text { nitie }}}{\text { N }}$ nitrite soluble	mone		${ }^{\text {TN }}$			tp	${ }_{\text {Baon }}^{\text {gas }}$	aumin			- Hytasem	cosme	Sosasum	(me)		catam	some	cose			${ }^{\text {as }} \mathrm{OH}$	${ }_{\text {cosem }}^{\text {casomas }}$ ascos	$\underbrace{}_{\substack{\text { Bratanoal } \\ \text { astocos }}}$	
				Units	m	Socs	m	${ }_{\text {uscm }}$	${ }^{\text {uscm }}$	NuT	nти	$\underbrace{}_{\substack{\text { Hezen } \\ \text { unis }}}$	${ }^{\circ}$	${ }^{\circ} \mathrm{C}$	${ }_{\text {phen }}^{\substack{\text { mints }}}$	${ }_{\substack{\text { pHe } \\ \text { dims }}}$	mgt	mal	man	men	mga	mal	mgr	mar	mg	mgr	nal	mg2	mar	mg2	mg2	mg2	mg2	mgr	m92	ugh	ugh	ugh	mgr	mgh	mal	mgr	mar	mg	m92
				mv				${ }^{30}$		${ }_{50}$				coick	6.5.0. 6	5.80		10	${ }^{500}$	${ }_{50}$		0.02		0.5			0.05	${ }_{0}^{0.37}$	0.055	0.0014	1		4175		<115		1000	250							
$\underbrace{}_{\substack{1065020 \\ 1035020}}$				$\underset{\substack{1030 \\ \hline 1400}}{ }$	${ }_{1,29}^{\text {Na }}$	${ }^{0.094}$	${ }_{0}^{02}$	${ }_{3}^{335,3}$	${ }_{\substack { 383 \\ \begin{subarray}{c}{36{ 3 8 3 \\ \begin{subarray} { c } { 3 6 } } \\{\text { S60 }}\end{subarray}}$	${ }^{122}$	15	5	${ }^{27}$	${ }^{24.4}$	8.7	${ }^{8.5}$	${ }_{\text {926 }}^{102}$	150	211.62	No	${ }_{\text {colo }}^{\text {coin }}$	${ }_{\text {O.0.05 }}^{0.002}$			-0.432	${ }_{0}^{0.015}$	${ }_{\text {O }}^{0.0041}$		No	0.01	${ }^{0.14}$	${ }^{\text {No }}$	${ }^{8,87}$	${ }^{1,3}$	${ }^{18}$	${ }^{304}$	2,	${ }^{1.02}$	${ }^{226}$	${ }^{1896}$		${ }_{0}^{0.07}$	${ }_{565}^{56}$	${ }_{219,6}^{229}$	
		${ }^{1717899}$	${ }^{\text {H20929965 }}$	$\xrightarrow{1400}$900 00	${ }^{1.27}{ }^{1.3}$	${ }^{\text {O.044 }}$ 0.055	${ }_{0}^{0.2}$	${ }^{\text {3682 }}$	${ }_{\substack{200 \\ 388}}^{29}$	- ${ }_{56}^{56}$	7		${ }^{233}$	${ }_{\text {242 }}^{228}$		${ }_{8} 8$	9.	${ }^{10.0}$	${ }^{20933} 2$	no	${ }_{\substack{0}}^{0.0026}$ (0025	${ }^{0.0071}$			${ }_{\substack{021182}}^{0.152}$	${ }^{\text {O.OOC45 }}$ 0.023	${ }_{\text {a }}^{0.0928}$	${ }^{\text {No }}$ No	No	${ }_{\text {O.06 }}^{\substack{\text { No }}}$	0,16	${ }^{\text {No }}$ No	${ }^{9094}$	2	${ }^{\frac{18,3}{178}}$	${ }^{324}$	${ }^{29,5}$	${ }_{\text {a }}^{0.58}$	${ }^{23,4}$	${ }_{\text {l }}^{1927} 18.8$	${ }_{188}^{180}$		${ }_{\substack{513 \\ 298}}$	${ }_{\substack{23,69 \\ 2363}}^{2}$	
		${ }^{1857788} \times$		(ino	${ }_{\text {+ }}^{128}$		-	${ }^{375}$	($\stackrel{3}{2}$	$\stackrel{14}{2}$	${ }_{\substack{10 \\<1}}$	${ }^{134}$	${ }^{128}{ }^{103}$		${ }^{8.5}$	${ }_{8}^{89}$	$\underset{\substack{13.0 \\ 10.0}}{ }$		${ }_{\text {No }}$			0.175	0.1			${ }^{\text {0.033\% }}$	80,	${ }_{0}^{0.05}$	$\xrightarrow{\text { No }}$			${ }^{8,03}$	${ }_{\substack{1.4 \\ 1.4}}^{\text {, }}$	${ }_{\substack{158 \\ 18.5}}^{1.8}$	${ }^{39}$	${ }^{26,9}$	${ }_{0}^{0.7}$	${ }^{23,5}$	- ${ }_{192}^{198}$	${ }_{178}^{168}$	${ }^{0.03}$	${ }^{2,9} 4.9$	${ }_{\substack{2297 \\ 230}}$	
		$\underbrace{188789}_{\text {207871 }}$		${ }^{1220}$	(028		${ }_{0}^{0.3}$	(312 320		$\stackrel{26}{7}$	$\stackrel{2}{2}$	100		${ }^{23.1}$	${ }^{8.5}$		${ }_{11,9}$	$\stackrel{\text { 2. }}{10.0}$	${ }_{\text {21565 }}^{160}$	0.5			${ }^{0} 0.1$	0216			${ }_{\text {coibe }}^{0.0062}$			$\xrightarrow{\text { N0, }}$	${ }^{0.1}$	No	${ }^{926}$	+1.4	${ }^{182}$	${ }^{200}$		${ }^{\frac{0.71}{2}}$	253 20.5	(1937		${ }^{\text {0.08 }}$	${ }_{\text {en }}^{\text {6, }}$	${ }_{\substack{23,75 \\ 190}}^{\substack{\text { 20, }}}$	${ }^{145}$
			${ }^{138061987}$		$\stackrel{\text { N. }}{\substack{\text { N.1 } \\ \\ \hline}}$	0015	${ }^{02}$	${ }_{40}$	${ }^{307}$					139	7.			${ }^{20.0}$	${ }^{238}$												0.16		12	${ }^{38}$	${ }^{17}$		${ }_{38}$		${ }^{24}$	${ }^{206}$			12	${ }^{249}$	
	come	$\underbrace{\text { ¢18 }}_{\substack{7550 \\ 91588}}$		${ }^{1055}$		${ }_{\substack{0.068 \\ 0.005}}^{\substack{\text { a }}}$		¢		5		5		- ${ }_{18}^{18}$	${ }^{8.8}$				${ }^{235}{ }_{24}^{24}$	${ }_{0}^{0.3}$												${ }^{0.1}$	${ }_{21}^{11}$	${ }_{4}^{26}$	${ }_{19}^{21}$	${ }_{\substack{300 \\ 346}}$	${ }_{\substack{35 \\ 35}}$	${ }_{5}^{25}$	${ }^{22}$	$\underset{\substack{204 \\ 205}}{ }$			${ }^{28}$		
	Camano chatweevy		${ }^{11771758}$	${ }_{8}^{815}$	0.13 0.01	${ }^{0.192} 0$	${ }_{0}^{0.1}$	$\underset{\substack{230 \\ 335}}{ }$		${ }_{10}$		${ }^{20}$			${ }^{8.3}$			¢0.0.	${ }^{140}{ }^{200}$	3											0.1		+ ${ }^{8} 8$		${ }_{18}^{16}$	${ }_{\substack{187 \\ 278}}^{\text {278 }}$	${ }^{13}$		¢	${ }_{164}^{98}$			-	${ }_{\text {c }}^{1105}$	
	Cameno ckatweev			${ }^{1325}$	-0.35	${ }^{0.065}$		${ }_{\substack{355 \\ 355}}^{\text {3, }}$		${ }_{3}^{3}$		5		${ }^{18}$				${ }^{20.0}$	${ }^{190}{ }^{100}$									002			${ }_{0} 0^{1}$							${ }^{2}$		${ }_{\substack{150 \\ 190}}^{\text {100 }}$					
	comer			${ }_{\substack{1345 \\ 150}}^{\text {120 }}$		${ }_{\text {O.0.26 }}^{0.055}$		${ }_{\substack{235 \\ 205}}$	${ }^{195}$	${ }^{100}$		${ }^{10}$		32	${ }^{8.3} 8$					${ }_{0}^{1.5}$								(0.01	0.1	${ }_{0}^{0.05}$		No	${ }^{\text {c }}$	${ }^{4.4}$	${ }_{185}^{135}$		${ }^{1205}$		$\stackrel{10}{15}$						
	cemen		${ }_{\text {cole }}$	${ }_{\text {¢ }}^{1185}$	0.1	${ }^{0.054}$	O,	(300	${ }^{330}$					14	${ }^{8.3}$			${ }_{\text {\% }}^{8}$	${ }^{208}$									0.04	.			-		${ }^{3}$				${ }^{32}$					${ }^{3}$	${ }^{245}$	
	(eamen					${ }_{\substack{1.64 \\ 0.089}}^{\substack{\text { a }}}$	${ }_{0} 0.1$	${ }^{268}$	${ }^{257}$	${ }_{200}$		15		${ }^{16}$	${ }_{80}$			550	$\stackrel{142}{14}$	${ }_{0} 0.7$											${ }_{0}^{0.13}$	No	${ }^{56}$	${ }^{\text {34 }}$	${ }_{13}^{13}$	${ }^{184}$	${ }_{184}^{184}$	${ }^{3,7}$	${ }^{109}$	${ }_{106}$		0.02	${ }_{0}^{0.7}$	${ }_{127.7}^{127}$	
${ }^{1305999}$	Caraneon char iemen	${ }^{\text {Sasbeg }}$	${ }^{\text {40971985 }}$	${ }^{14100}$	${ }_{1}^{1.13}$															0.													${ }^{13}$												
	coman	${ }^{124858}$		${ }_{140}^{140}$	${ }^{1.15}$		${ }_{0}^{0.1}$	¢	(inc	$\stackrel{5}{1}$		¢			${ }_{8}^{8.5}$				220	${ }^{5}$								${ }^{0.021}$			${ }_{0}^{0.2}$	${ }_{0}^{0.1}$		${ }_{20}{ }^{\text {a }}$	${ }^{22}$	${ }^{332}$	${ }_{30}$		21	${ }_{201}^{201}$			${ }_{4}^{47}$	${ }_{\substack{205 \\ 235}}^{\substack{20}}$	
,			${ }^{2}$	${ }^{\frac{14515}{115}}$	${ }_{1,1 / 3}^{1.1}$	${ }^{\text {O.O35 }}$	0.1			${ }_{18}$		${ }_{5}^{5}$		${ }_{14}^{14}$	${ }_{8}^{8.2}$				${ }^{170}$	${ }^{0.5}$								${ }_{0}$.	${ }^{185}$	${ }_{2}^{26}$	${ }_{10}$	${ }^{2200}$	${ }^{18}$	${ }_{3.1}^{2}$	${ }_{20}^{20}$				${ }^{12}$	${ }^{185}$	
			${ }^{\text {a }}$	${ }_{\substack{1045 \\ 1315}}$	${ }_{1}^{1.05}$	${ }^{0.025}$	$\stackrel{0.1}{0.1}$		(300	${ }^{3}$				${ }_{18}^{18}$	${ }_{8,3}^{8.3}$			$\begin{array}{r}\text { 10. } \\ \hline 10 \\ \hline\end{array}$	${ }_{2}^{200}$	0.5								0.01					$\stackrel{11}{10}$	${ }_{2}^{26}$	${ }^{18}$	${ }_{\substack{318 \\ 238}}$	${ }^{\frac{32}{29}}$	$\stackrel{2}{2}$	${ }^{21}$	${ }_{\substack{189 \\ 188}}^{188}$			${ }^{28}$	${ }^{\frac{225}{215}}$	
				${ }^{1300}$	${ }_{1}^{1.15}$		${ }^{02}$	${ }_{\substack{230 \\ 300}}^{\substack{280}}$		${ }_{\substack{100 \\ 11}}^{10}$		$\xrightarrow{70} 10$		${ }^{32}$	${ }^{8.2}$			${ }^{1320}$	${ }^{120}$	${ }^{\text {i, }} 1$								${ }^{0.1}$	${ }^{0.2}$	${ }_{0}^{0.05}$		${ }^{\text {No }}$ N	$\stackrel{6}{9}$	${ }_{24}^{24}$	${ }^{16} 5$	${ }_{\substack{200 \\ 280}}$	${ }_{28,}^{24}$	${ }_{3}^{2}$	${ }^{13,5}$	${ }_{1}^{165}$		${ }_{\text {OTO }}^{0.1}$	${ }^{\frac{3}{1.7}}$	${ }^{165}$	
			${ }^{\text {coser }}$				${ }^{0.1}$	(isk	${ }_{4}^{425}$	${ }_{\substack{51 \\ 13}}$		${ }^{10}$			- ${ }_{\text {8, }}^{8.2}$			(10.	$\xrightarrow{202}$273 173									${ }^{\text {a }}$			${ }_{0}^{0.17}$	No		${ }^{23}$	${ }_{\text {20 }}^{10}$		${ }^{26}{ }^{2.7}$	3.	${ }_{\substack{24 \\ \\ 20}}^{20}$	${ }_{\substack{26 \\ 146}}$		${ }_{0}^{0.03}$	+109		
	Canamo chatreen		${ }^{205059090}$	${ }^{1609}$	1.15 0.05		0.1	${ }_{37}^{29}$		${ }^{27}$		10			${ }_{8.3}$			${ }_{220}^{20.0}$	$2{ }^{20}$									0.01			0.14	No	${ }_{126}$	${ }^{\frac{32}{23}}$	${ }_{1}^{134}$	${ }_{27}^{27}$	${ }^{27}{ }^{26}$	${ }_{56}^{29}$	${ }^{18,7}$	${ }_{1}^{180}$		${ }_{\substack{0.08 \\ 0.008}}^{0.0}$	${ }_{22}^{0 .}$	俍	
边					${ }^{1.01}$	${ }_{\text {a }}^{\substack{\text { O224 }}}$	0.1	330	${ }^{232}$						8.0			4	${ }^{242}$									005	0.03	0.03	0.17	No	95	4	20	${ }^{348}$	${ }^{344}$	${ }^{29}$	${ }^{226}$	210		0.02	${ }^{17}$	${ }^{2529}$	${ }^{178}$
${ }^{\text {a }}$	Camano cor freemn			${ }_{\substack{1250 \\ 1250}}$	${ }_{0} 0.96$	${ }^{0.067}$	0.1	${ }_{\text {cose }}^{39}$	${ }^{30}$	$\stackrel{1}{2}$				${ }^{15}$		${ }_{8.5}^{8.5}$		${ }_{5}^{8}$	${ }^{230}$										0.02	0.06	0.15	No	${ }^{173}$	${ }_{28}^{27}$	${ }^{18,9}$	${ }^{338}$	${ }^{326}$	${ }^{28}$	${ }_{\text {23, }}^{23.4}$	${ }_{\substack{202 \\ \\ 0}}$		${ }^{0.04}$	- ${ }^{36}$	${ }_{\substack{23,8 \\ 238}}^{\substack{2,8 \\ \hline}}$	
	coman	${ }_{\text {coseme }}$	${ }^{\text {30entas2 }}$		${ }_{0}^{1094}$	${ }^{\text {O.ats }}$	${ }_{0}^{0.1}$	${ }_{3}^{379}$	${ }_{607}^{407}$	2		5		${ }^{17}$	${ }_{8}^{8.2}$	${ }^{8.8}$			${ }_{214}^{214}$									0.0			0.15	${ }^{\text {No }}$	${ }_{8}^{8.9}$	${ }_{1}{ }_{14}$	${ }^{20 .}$	${ }_{39} 3$	${ }_{3}^{202}$	12	${ }^{22 .}$	${ }_{\text {l }}^{1105}$		${ }_{0}^{0.09}$	${ }_{28}^{28}$	${ }_{\substack{2325 \\ 2325}}^{20 .}$	
	comater		${ }^{\text {cosema }}$	${ }_{1929}$	${ }_{0}^{0.96}$	${ }^{\text {O.038 }}$	$\stackrel{0.1}{0.1}$		$\underbrace{}_{\substack{388 \\ 347}}$	${ }^{6}$		${ }^{5}$			- ${ }_{8}^{8.4}$	${ }_{8}^{8.6}$		9		02										${ }^{0.04}$	${ }_{\substack{0.14 \\ 0.4}}^{0.1}$	${ }^{\text {No }}$ No		${ }^{\text {24 }}$	${ }^{\frac{18,3}{17,1}}{ }^{172}$	${ }_{\substack{39 \\ 29 \\ 29}}$	(302	${ }^{1.3}$	${ }^{\text {c }}$	(176		cos		(en	
	Comane chat iewn		${ }_{\substack{212049994 \\ 1204995}}$	(1500	${ }^{1.095}$	${ }^{\text {0.054 }}$	0.1		${ }_{\substack{432 \\ 369}}$							${ }^{8.8} 8$															0.13		${ }^{121}$	39	${ }^{22}$		${ }_{366}$		${ }^{24}$	${ }^{23}$			${ }_{4}^{4}$		
				${ }^{\text {T1767 }}$	O. 0.94	${ }^{\text {O.0.7 }}$			(329							${ }_{8,6}^{8.7}$																													
	Comano chat			${ }^{1609}$	${ }^{\text {O.853 }}$	${ }^{0.012}$	02		${ }_{\substack{280 \\ 380}}^{\substack{\text { 30, }}}$		${ }^{22}$			${ }_{\substack{30.5 \\ 259}}$																															
(13099	Coramo crafeemen		${ }_{\substack{\text { 307h7999 } \\ \text { Su4200 }}}$		(0.89	${ }^{0.006}$			(in		${ }^{3}$					${ }^{8}{ }_{7,3}^{8,8}$	${ }^{10.1}$																												
	Coren	Soind		${ }_{\substack{120}}^{1125}$							$\stackrel{2}{3}$																																		
	cemaner chateen			${ }_{\text {litiob }}^{1205}$,	${ }_{\text {a }}^{\substack{0.152}}$	${ }_{0}^{0.1}$							-		\%																													
														${ }^{10,6}$			10.5																												

Table C6

Comet Catchment DNRW Water Quality Results - Comet River Rolleston
GLNG csG Surface Water

$\underset{\text { ID }}{\text { Station }}$	Station name	$\begin{array}{\|c\|c\|} \text { SAMPLLE } \\ \text { No. } \end{array}$	date	time	Hydrological Parameters			Physico-Chemical Parameters												Nutrients					Metals				
					Stream Water Level	Stream Discharge	$\begin{gathered} \text { Dist. } \\ \hline \begin{array}{c} \text { Delow } \\ \text { Beater } \\ \text { wafface } \end{array} \\ \text { suff } \end{gathered}$	Conductivity @ 25C	Conductivity @ 25C (FLD)	Turbidity	Turbidity FLD	$\begin{gathered} \text { Colour } \\ \text { True } \end{gathered}$	$\begin{array}{\|c\|c\|} \hline \text { Air Temp } \\ \hline \end{array}$	$\left\lvert\, \begin{gathered} \text { Water Temp } \\ \text { FLD } \end{gathered}\right.$	pH	$\begin{aligned} & \text { pH } \\ & \text { FLD } \end{aligned}$	$\begin{aligned} & \text { Oxygen } \\ & \text { (Dissolved) } \\ & \text { FLD } \end{aligned}$	$\begin{gathered} \text { Total } \\ \text { Suspended } \\ \text { Solids } \end{gathered}$	$\begin{aligned} & \text { Total } \\ & \text { Diss. } \\ & \text { Solids } \end{aligned}$	Nitrate (NO3)	Kjeldah Nitrogen	$\begin{gathered} \text { Total } \\ \text { Nitrogen } \\ \text { (TN) } \end{gathered}$	Organic Nitrogen	$\begin{gathered} \text { Total } \\ \text { Phosphorus } \\ \text { (P) } \end{gathered}$	$\begin{array}{\|l\|l} \hline \text { Boron } \\ \text { as B } \\ \text { (mg/L) } \end{array}$	$\begin{gathered} \hline \text { Aluminium } \\ \text { as AI } \\ \text { soluble } \\ \text { (mg/L) } \end{gathered}$		$\begin{gathered} \text { Bromide } \\ \text { as Br } \\ \text { (mglL) } \end{gathered}$	$\begin{gathered} \text { Flouride } \\ \text { as } \\ \text { (mgLL) } \end{gathered}$
				Units	m	cumsecs	m	$u S / \mathrm{cm}$	$u S / \mathrm{cm}$	NTU	NTU	$\begin{array}{\|c\|c\|} \hline \text { Hazen } \\ \text { units } \end{array}$	${ }^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{C}$	pH units	$\begin{gathered} \text { pH } \\ \text { units } \end{gathered}$	mg/	mg/L	mg/	mg/	mg/	mg/							
				mTV				340		50				20\%ile80\%ile	5-8.0	6.5-8.0		10	500	50		0.5		0.05	0.37	0.055	0.0014		1
1305002	Comet at Rolleston	192164	5/06/1999	800	NA	ND	0.2	195	199	17	26	20	14.7	16.5	7.7	7.8	6.2	20	120	1			0.59	0.082	<0.1	0.05	<0.05		<0.1
1305002	Comet at Rolleston	194128	1109/1999	740	NA		0.2	150	147	430	538	28		18	7.3	7.5	3.8	370	89	3.6	2			0.74	0.1	0.05	0.05		0.2
1305002	Comet at Rolleston	205211	2910212000	730	NA	2	0.2	150	148		228			24.9	7	7.5	3.9			0.81		1.0419		0.3571	0.04	0.18	0.01	1	0.24
1305002	Comet at Rolleston	205256	29102212000	730																		0.84		0.36					
${ }^{1305002}$	Comet at Rolleston	${ }^{205256}$	710312000	645		0.0001	0.2		168		${ }^{58}$			24.8		7.7	5.3												
1305002	Comet at Rolleston	205285	2810312000	700		ND	0.1		418		108			22.3			5.6					0.83		0.27					
1305023	Panorama Ck at Rolleston	185767	12/06/1997	1700	NA	ND	0.2	331	321	1.5	6	10	17.2	17.5	7.91	8.1	6.7	5.0	170.8	0.4	0.543			0.0397			0.01		0.11

$\frac{\text { Notes }}{\text { mTV }}$
minimum trigger value
xxx Greater than MTV
xxx Historic Water Quality Datal044 Quality pood
Greater than MTV and Historic WQ Data
NA Not avaiable (Gauge Height < Instrument Threshola
ND Not delected
E Estimate

Table C6
Comet Catchment DNRW Water Quality Results - Comet River R
GLNG CSG Surface Water

$\underset{\text { ID }}{\substack{\text { Station } \\ \hline}}$	station name	$\begin{gathered} \text { SAMPLE } \\ \text { No. } \end{gathered}$	date	Major Ions								Alkalinity					
				$\begin{aligned} & \text { Hydrogen } \\ & \text { as H } \end{aligned}$	$\begin{gathered} \text { Chloride } \\ \text { (CI) } \end{gathered}$	$\begin{gathered} \begin{array}{c} \text { Potassium } \\ (\mathrm{K}) \end{array} \\ \hline \end{gathered}$	$\begin{gathered} \text { Sodium } \\ (\mathrm{Na}) \end{gathered}$	$\begin{array}{\|c\|} \hline \text { Total } \\ \text { Dissolved } \\ \text { lons } \\ \hline \end{array}$	$\begin{gathered} \text { Calcium } \\ \text { (Ca) } \end{gathered}$	$\begin{gathered} \text { Sulphate } \\ (\mathrm{SO} 4) \end{gathered}$	$\begin{gathered} \text { Magnesium } \\ (\mathrm{Mg}) \end{gathered}$	$\begin{array}{\|c} \text { Total } \\ \text { Alkalinty } \\ \text { (CaCO3) } \end{array}$		$\begin{gathered} \text { Hydroxide } \\ (\mathrm{OH}) \end{gathered}$	Carbonate (CO3)	Bicarbonate (HCO3)	$\begin{aligned} & \text { Hardness } \\ & \text { (CaCO3) } \end{aligned}$
				mg/L	mg/L	mg/L	mg/	mg/L	mg/	mg/L	mg/L	mg/L	mg/	mg/	mg/L	mg/	mg/L
					<175		<115		1000	250							
1305002	Comet at Rolleston	192164	5/06/1999	0	4.8	6.8	11	160	16	2	8.4	95	60	ND	0.3	115	75
1305002	Comet at Rolleston	194128	1109/1999	0	5.6	5.2	14.5	120	8.8	2	4.8	${ }^{63}$	50	ND	0.1	77	41.5
1305002	Comet at Rolleston	205211	29/02/2000		7.9	7	8.6	113	9	4.2	4.7					70	42
1305002	Comet at Rolleston	205256	29/02/2000														
1305002	Comet at Rolleston	205256	7/03/2000														
1305002	Comet at Rolleston	205285	28/03/2000														
1305023	Panorama Ck at Rolleston	185767	12106/1997	0	5.9	3.86	11.1	273.9	29.4	0.51	18.7	168	149.2	ND	1.0	202.9	150.2

$\frac{\text { Notes }}{\text { MTV }}$
MTV minimum trigger value
xxx Greater than MTV
xxx Historic Water Quality Datal044 Quality poor.
Greater than MTV and Historic WQ Data
ND Not detected
E Estimate

\begin{tabular}{|c|}
\hline \& \& \& \& \& \& ogical Paran \& neters \& \& \& \& hhysico.C. \& Chemical Par \& ameters \& \& \& \& trients \& \& tals \& \& \& \& major \& \& \& \& \& \& \& Alkalinty \& \& \\
\hline Station id \& Station name \& \(\underset{\substack{\text { SaMple } \\ \text { No. }}}{ }\) \& date \& TIME \& \[
\begin{gathered}
\text { Stream } \\
\text { Water } \\
\text { Level }
\end{gathered}
\] \& Stream \& \[
\begin{array}{|l|}
\hline \text { Dist } \\
\text { Below } \\
\text { seler } \\
\text { surface }
\end{array}
\] \& (1) 25c \& Q256 (fLL) \& Tubidity \& Cole \begin{tabular}{c}
Colour \\
True \\
\hline
\end{tabular} \& \({ }_{\text {Water Temp }}^{\text {FLO }}\) \& pH \& \({ }_{\text {cto }}^{\text {PH }}\) \& \[
\begin{gathered}
\text { Total } \\
\text { Suspended } \\
\text { Solids } \\
\hline
\end{gathered}
\] \& \[
\begin{gathered}
\text { Toital } \\
\text { Solid }
\end{gathered}
\] \& (1itas) \& \[
\begin{gathered}
\text { Boron } \\
\text { as B } \\
(\mathrm{mg} / \mathrm{L})
\end{gathered}
\] \& \[
\begin{array}{|c|c|c|c|c|c|c|c|c|c|c|}
\substack{\text { anf } \\
\text { (mgl) }} \\
\hline
\end{array}
\] \& \({ }_{\text {che }}^{\substack{\text { Hydrogen } \\ \text { as }}}\) \& \({ }_{\text {Choride }}^{\substack{\text { Cli }}}\) \& \({ }_{\substack{\text { Polassum } \\ \text { (k) }}}^{\text {a }}\) \& (inct \& \[
\begin{array}{|c|}
\hline \text { Total } \\
\text { Dissolved } \\
\text { lons } \\
\hline
\end{array}
\] \& \(\underset{\substack{\text { Calcium } \\ \text { (a) }}}{\text { cat }}\) \& \& \& \& \(\underset{\substack{\text { Hydroxde } \\ \text { (OH) }}}{ }\) \& Catonate \& \({ }_{\text {B }}^{\substack{\text { Bicatonate } \\ \text { (HCO3) }}}\) \& \\
\hline \& \& \& \& Units \& m \& cumsocs \& m \& \(u s / \mathrm{cm}\) \& \(u s / \mathrm{cm}\) \& NTU \& \({ }_{\substack{\text { Hazen } \\ \text { units }}}^{\text {cos }}\) \& \({ }^{\circ} \mathrm{C}\) \& OH Hunts \& \({ }_{\text {p }}^{\substack{\text { on } \\ \text { unis }}}\) \& mgh \& mg \& mg \& mg \& mgh \& mgl \& ngh \& mgh \& mgl \& mgh \& mgh \& mg/ \& mg/ \& mg/ \& mgh \& mgh \& mgl \& mgl \\
\hline \& \& \& \& miv \& \& \& \& 340 \& \& 50 \& \& \& 6.5.8.0 \& 6.5.8.0 \& 10 \& 500 \& \({ }^{50}\) \& \({ }_{0.37}\) \& 1 \& \& \(<175\) \& \& 115 \& \& 1000 \& 250 \& \& \& \& \& \& \\
\hline \& \& \({ }_{\substack{57735}}^{57844}\) \& \({ }_{\substack{\text { 90331973 } \\ 5061973}}\) \& \({ }_{1}^{1200}\) \& \({ }_{0}^{0.8}\) \& \({ }^{0.11}\) \& 0.1
0.1 \& \({ }^{490}\) \& \& \& \& 29 \& \({ }^{8.7}\) \& \& \& \({ }^{285}\) \& \& 002 \& \({ }_{0}^{0.2}\) \& \& \({ }_{4}^{20}\) \& \& \({ }^{33}\) \& \({ }_{4}^{421.2}\) \& \({ }_{\text {cke }}^{38.4}\) \& 1 \& \({ }^{31.6}\) \& \({ }_{2}^{268}\) \& \& \({ }_{3}^{29}\) \& \({ }_{\text {268 }}^{268}\) \& \({ }^{226}\) \\
\hline \({ }^{13050588}\) \& Meteor ckat springwood \& 59132 \& 270991973 \& \({ }_{930}\) \& \({ }_{0}^{0.64}\) \& 0.004 \& 0.1 \& \({ }_{720}\) \& \& \& \& \& \({ }_{8.6}^{8.4}\) \& \& \(\stackrel{4}{2}\) \& \({ }_{417}\) \& \& 0.02 \& 0.22 \& \({ }^{0.5}\) \& \({ }_{55}^{65}\) \& \({ }_{4}^{4.6}\) \& \({ }_{61}\) \& \({ }_{608,3}\) \& \({ }_{34}\) \& \& \({ }_{48}^{58}\) \& \({ }_{340}\) \& No \& 9 \& \({ }_{396}\) \& \({ }_{282}^{288}\) \\
\hline 130508A
130508
1 \& Meter C Cat St Siniguod \& \& \({ }_{20}^{200419974}\) \& \begin{tabular}{l}
1540 \\
1115 \\
\hline 115
\end{tabular} \& -0.22 \({ }_{0}^{0.28}\) \& 0.22
0.05
0 \& 0.1
0.1
0.1 \& ¢640 68 \& \& \& \& 29
16 \& \({ }_{8.1}^{8.3}\) \& \& 1
80 \& \& \& \& \({ }_{0}^{0.17}\) \& \& \begin{tabular}{|c}
30 \\
20 \\
20
\end{tabular} \& \begin{tabular}{|}
3.2 \\
\({ }_{2}{ }^{2}\) \\
\hline
\end{tabular} \& \({ }_{32}^{32}\) \& \& 50
40 \& \& \begin{tabular}{|c}
40 \\
51
\end{tabular} \& 年300 \& \(\stackrel{\text { No }}{\text { No }}\) \& \({ }_{3.8}^{4.8}\) \& \begin{tabular}{|c}
356 \\
410
\end{tabular} \& \begin{tabular}{|c}
290 \\
310 \\
\hline 10
\end{tabular} \\
\hline \({ }^{1305088}\) \& Meter C C at springwood \& \({ }^{63102}\) \& 300991974 \& \({ }^{1640}\) \& 0.63 \& 0.051 \& 0.1 \& \({ }_{690}\) \& \& \& \& \({ }^{24}\) \& \({ }^{8.2}\) \& \& \({ }^{21}\) \& 394 \& \& \& 0.19 \& No \& \({ }^{25}\) \& \({ }_{3.2}^{2.2}\) \& \({ }_{40}\) \& \({ }^{604.9}\) \& \({ }_{48}^{48}\) \& \& \({ }_{48}^{48}\) \& \({ }_{365} 3\) \& \& 4.5 \& \({ }_{436}\) \& \({ }_{3} 317\) \\
\hline 130508A
13058A \& Meteor c cat Sopingood \& \({ }^{64480}\) 64899 \& \({ }^{111 / 2121974}\) \& \begin{tabular}{l}
1630 \\
1030 \\
\hline 100
\end{tabular} \& \({ }_{0}^{0.62} 0\) \& 0.06
0.28 \& 0.1
0.1
0.1 \& \({ }_{6}^{610} 6\) \& \& \& \& \({ }_{27}\) \& \({ }_{8}^{8.3}\) \& \& \({ }_{74}^{76}\) \& \& \& \& \({ }_{0}^{0.17} 0\) \& ND \& \({ }^{25}\) \& \({ }^{4.1}\) \& 38
30
30 \& ¢ \begin{tabular}{c}
530.7 \\
568.4 \\
\hline
\end{tabular} \& \({ }_{47}^{47}\) \& \({ }^{6.4}\) \& \({ }_{44}^{41}\) \& \({ }_{\substack{315 \\ 347}}\) \& \& \({ }_{4}^{4}\) \& 376
414 \& 259
299 \\
\hline \({ }_{\text {1305058A }}\) \& \& \({ }^{648425}\) \& \({ }^{\text {280441975 }}\) \& 1700 \& \({ }_{0}^{0.69}\) \& \(\stackrel{\text { 0.276 }}{0 .}\) \& \({ }_{0}^{0.1}\) \& \({ }_{630}^{60}\) \& \& \& \& \& \({ }_{8.5}^{8.3}\) \& \& \({ }_{80}^{80}\) \& \({ }^{395}\) \& \& \& \({ }_{0.18}^{0.18}\) \& ND \& \({ }_{20}^{25}\) \& \& \({ }_{30}\) \& \& 57 \& \& \({ }_{44}^{44}\) \& \({ }^{3} 350\) \& \& \({ }_{7}{ }_{7} .8\) \& \(\stackrel{411}{411}\) \& \({ }_{306} 309\) \\
\hline \({ }^{1305088}\) \& Meter C Kat Sopingwood \& 65709 \& 220719975 \& 1715 \& 0.62 \& 0.079 \& 0.1 \& \({ }^{710}\) \& \& \& \& \& 8.2 \& \& 2 \& \({ }^{414}\) \& \& \& 0.3 \& No \& \({ }^{22}\) \& 2.5 \& \({ }^{40}\) \& 621.8 \& \({ }^{44}\) \& 5 \& \({ }^{50}\) \& \({ }_{380}\) \& \& 5 \& 453 \& \({ }^{316}\) \\
\hline \begin{tabular}{l}
130508A \\
1305088 \\
\hline
\end{tabular} \& Meteor C Cat Sopirigwod \& \({ }^{66498}\) \& \({ }^{7110191975}\) \& (1740 \& (0.58 \& \({ }^{0.0043}\) \& \({ }^{0.2}\) \& \({ }_{\substack{715 \\ 665}}\) \& \& \& \& \& \& \& \begin{tabular}{|}
26 \\
47
\end{tabular} \& (\({ }_{\text {388 }}^{387}\) \& \& \& 0.63 \& No \& \({ }_{26}^{24}\) \& \(\stackrel{4}{24}\) \& \({ }_{4}^{40}\) \& \({ }_{5454}\) \& 17 \& \& \& \({ }_{\substack{356 \\ 330}}\) \& ND \& \begin{tabular}{l}
3.4 \\
5 \\
5 \\
\hline
\end{tabular} \& \({ }_{3}^{429}\) \& \({ }^{299}\) \\
\hline \({ }^{130505088}\) \& Meteor ckat springwood \& \({ }^{68128}\) \& \(311 / 319796\) \& \({ }^{1025}\) \& \({ }_{0} 0.6\) \& \({ }^{1.3}\) \& 0.1 \& \({ }_{590}\) \& \& \& \& \({ }_{23}\) \& \({ }_{8.2}^{8.3}\) \& \& 16 \& \({ }_{354}\) \& \& \& 0.4 \& \& \({ }_{16}\) \& \({ }_{2.4}^{2.4}\) \& \({ }_{26}\) \& \({ }^{517.3}\) \& 49 \& \& \({ }_{40}\) \& \({ }_{317}\) \& \& \({ }_{3.5}^{5.4}\) \& \({ }_{380}\) \& \({ }_{287}^{289}\) \\
\hline 130508A
\(130508 A\)

18 \& Meteor ckat Sopinguod \& \begin{tabular}{l}
69374

7034

\hline 7

 \& ${ }_{\text {230710976 }}^{25101976}$ \&

1420

\hline 1520

\hline
\end{tabular} \& ${ }_{0}^{0.46}$ \& 0.273

0.092 \& 0.1
0.1

0.1 \& \begin{tabular}{c}
738

680

\hline 80

 \& \& \& \& ${ }^{28}$ \& ${ }_{8.4}^{8 .}$ \& \& ${ }^{23}$ \& ${ }_{\text {3 }}^{396}$ \& ${ }^{1.8}$ \& \&

0.2

0.3

\hline

 \& ${ }_{0} 0.1$ \& ${ }_{20}^{20}$ \&

24

${ }_{28}^{24}$

\hline 28
\end{tabular} \& 36

41
41 \& ${ }_{\text {S }}^{567.5}$ \& ${ }^{45}$ \& \& ${ }_{49}^{46}$ \& \& $\stackrel{\text { No }}{\text { No }}$ \& 2.9

6.1 \& | 435 |
| :---: |
| 400 | \& 302

287
28

\hline 1305088 A \& Meteor Ckat Spingwood \& ${ }^{73316}$ \& 290331977 \& ${ }^{1353}$ \& 0.63 \& ${ }_{1.48}^{1.48}$ \& 0.1 \& 500 \& \& \& \& ${ }^{26}$ \& ${ }^{8.4}$ \& \& \& ${ }_{327}$ \& 0.8 \& \& 01 \& \& ${ }^{20}$ \& ${ }_{2}^{2.2}$ \& 4 \& ${ }_{4}^{445.8}$ \& 5 \& \& ${ }_{32}$ \& ${ }_{208}^{268}$ \& \& 4.7 \& ${ }_{317}$ \&

\hline | 130508 A |
| :--- |
| 10508 A | \& Meter c cat spiniguod \& | 73168 |
| :--- |
| 74102 | \& ${ }_{\text {S }}^{5107197977}$ \& | 1445 |
| :--- |
| 1235 |
| 1235 | \& ${ }_{0}^{0.45}$ \& $\stackrel{0.443}{0.095}$ \& ${ }_{0}^{0.1}$ \& ${ }_{6900}^{600}$ \& \& \& \& ${ }^{30}$ \& ${ }_{8}^{8.1}$ \& \& 10 \& ${ }_{389}^{381}$ \& 0.5 \& \& | 0.2 |
| :--- |
| 0.2 | \& \& ${ }^{18}{ }^{18}$ \& | 28 |
| :---: |
| 3 |
| 3 | \& ${ }^{40}$ \& 501.9

573.1 \& ${ }^{34}{ }^{38}$ \& ${ }^{10}$ \& ${ }_{5}$ \& \& \& $\stackrel{2.9}{5.4}$ \& ${ }_{\substack{360 \\ 410}}$ \& 年264

\hline | 130508 A |
| :--- |
| 105088 | \& Meteor crat spiniguod \& ${ }_{7}^{75696}$ \& ${ }^{401191978}$ \& ${ }^{11040}$ \& ${ }^{0.26}$ \& ${ }^{0.022}$ \& ${ }_{0}^{0.1}$ \& ${ }_{6}^{675}$ \& \& \& \& ${ }_{31}^{31}$ \& ${ }^{8.4}$ \& \& \& ${ }_{405}^{405}$ \& ${ }^{1.5}$ \& \& ${ }_{0}^{0.2}$ \& \& ${ }^{31}$ \& ${ }^{3.3}$ \& ${ }_{50}^{50}$ \& ${ }_{\text {cher }}^{580.6}$ \& ${ }_{19}^{22}$ \& ${ }^{8}$ \& ${ }_{51}^{51}$ \& | 344 |
| :---: |
| 3 |
| 20 | \& \& -5.6 \& | 408 |
| :---: |
| 323 | \& ${ }^{265}$

\hline ${ }^{13050508}$ \& Meteor ckat springuood \& ${ }_{7}^{77583}$ \& ${ }^{13}{ }^{\text {13066197988 }}$ \& ${ }_{1450}$ \& ${ }_{0}^{0.34}$ \& $\stackrel{\text { O.084 }}{ }$ \& ${ }_{0}^{0.1}$ \& ${ }_{610}^{600}$ \& \& \& \& ${ }^{3}$ \& ${ }_{8.4}^{8.2}$ \& \& \& ¢ ${ }_{378}$ \& 0.7 \& \& ${ }_{0}^{0.2}$ \& \& ${ }_{25}^{24}$ \& ${ }_{2.5}$ \& ${ }_{40}{ }_{40}$ \& ${ }^{\text {454.7.7 }}$ \& ${ }^{2}$ \& 5 \& ${ }_{50}^{46}$ \& ${ }_{325}^{235}$ \& \& ${ }_{5.3}^{2.3}$ \& ${ }_{3} 23$ \& ${ }_{286}^{228}$

\hline (130508 \& Meteor crat Sopingood \& ${ }_{\text {790181 }}$ \& ${ }_{4}^{26009197978}$ \& | 1200 |
| :---: |
| 1000 |
| 100 | \& - 0.44 \& ${ }_{0}^{0.482}$ \& 0.1

0.1
0.1 \& 600
415 \& \& \& \& 2 \& \& \& 9 \& (${ }_{\text {367 }}{ }_{268}$ \& 0.4 \& \& 0.1
0.1

0.1 \& ${ }^{0.1}$ \& \begin{tabular}{|c}
18

20

 \&

23

\hline 38

3.8

 \&

30

20

20
\end{tabular} \& 529.9

3498 \& ${ }^{47}$ \& \begin{tabular}{l}

\hline

\hline 3.6

11

 \& ${ }_{\text {39 }}{ }_{23}$ \& (1985

325

198

\hline
\end{tabular} \& \& 6.4

0.9

0 \& (| 383 |
| :---: |
| 240 |
| 20 | \& (172

\hline ${ }^{13050589}$ \& Meteor Ckat spingwood \& 91763 \& 122081981 \& ${ }^{1325}$ \& 0.26 \& 0.04 \& 0.1 \& ${ }^{738}$ \& \& 5 \& 5 \& 19 \& ${ }^{8.2}$ \& \& 10 \& 428 \& 1 \& \& 0.1 \& \& ${ }^{30}$ \& 2.5 \& ${ }^{42}$ \& 644.5 \& ${ }^{45}$ \& ${ }^{11}$ \& ${ }^{51}$ \& ${ }^{383}$ \& \& 4.9 \& ${ }_{457}^{20}$ \& ${ }^{322}$

\hline | 1305088 |
| :--- |
| 10508 A | \& \& ${ }_{\text {925099 }}^{\text {92999 }}$ \& ${ }^{1217111981} 17061982$ \& 1310

1230 \& ${ }_{0}^{0.24} 0$ \& -0.022 \& | 0.1 |
| :--- |
| 0.1 | \& ${ }_{7}^{510}$ \& \& 5 \& \& ${ }_{4}^{34}$ \& \& \& 300

9 \& 300

430 \& ${ }_{0}^{0.4}$ \& \& \begin{tabular}{l}
0.2

0.2

\hline

 \& ${ }^{0.1}$ \& ${ }_{35}^{20}$ \& ${ }^{3.3}$ \& ${ }_{\substack{31 \\ 56}}$ \& ${ }_{6425}^{167}$ \& ${ }_{\substack{34 \\ 37}}$ \& ${ }^{16}$ \&

32

50

\hline

 \& ${ }_{31}^{439}$ \& \& ${ }_{4}^{11}$ \&

28

440
\end{tabular} \& ${ }_{2}^{217}$

\hline ${ }_{1350588}$ \& Meter C C a S Spingwood \& ${ }^{98161}$ \& 288991982 \& 1450 \& 0.08 \& 0 \& ${ }_{0} 0.1$ \& ${ }_{780}$ \& \& 6 \& \& \& ${ }_{8.3}^{8.8}$ \& \& 9 \& 440 \& 0.9 \& \& 0.2 \& \& 44 \& ${ }^{3.5}$ \& ${ }_{63}$ \& ${ }_{6}^{644,8}$ \& ${ }^{33}$ \& ${ }_{13}$ \& ${ }_{52}$ \& ${ }_{353} 3$ \& \& ${ }_{5.2}$ \& ${ }_{420}$ \& ${ }_{296}^{296}$

\hline ${ }^{1305088}$ \& Meteor C Cat Sopiriguod \& ${ }_{9994}$ \& ${ }^{200819893}$ \& ${ }^{935}$ \& ${ }^{0.16}$ \& 0.207 \& ${ }^{0.1}$ \& ${ }_{6}^{660}$ \& \& \& \& ${ }^{17}$ \& | 8.5 |
| :--- |
| ${ }_{78}$ |
| 8 | \& \& 10

10
10 \& 390 \& \& ${ }^{0.02}$ \& 0.2 \& \& ${ }_{20}^{20}$ \& 2.5
38
38 \& ${ }_{43}^{33}$ \& ${ }_{\text {568.7 }}^{5617}$ \& ${ }_{47}^{49}$ \& ${ }^{3.7}{ }^{3.3}$ \& ${ }_{48}^{46}$ \& ${ }_{\substack{343 \\ 3 \\ 3}}$ \& \& 4.2 \& 410 \& 312
315

\hline ${ }^{11305058}{ }^{1305}$ \& Meter crat sporinguood \& ${ }^{99320}$ \& ${ }^{261412191983}$ \& ${ }_{1}^{1655}$ \& ${ }_{0}^{0.08}$ \& ${ }_{0}^{0.044}$ \& 0.1

0.1 \& ${ }_{620} 6$ \& \& 4 \& \& ${ }_{29}^{29}$ \& ${ }_{8.3}$ \& \& ${ }_{5}$ \& ${ }_{3}^{460}$ \& \& ${ }_{0} 0.03$ \& | 0.2 |
| :--- |
| 0.2 | \& \& ${ }^{26}$ \& ${ }^{3.6}$ \& ${ }^{44}$ \& ${ }_{5}^{629.1}$ \& ${ }_{39}^{49}$ \& ${ }^{6.3}$ \& ${ }_{40}^{48}$ \& ${ }^{3} 50$ \& \& 4.9 \& ${ }_{3}{ }^{435}$ \& ${ }_{262}$

\hline 136508A

1305588 \& Meteor Ckat Soringwood \& 103458 \& ${ }^{190221984}$ \& ${ }^{1435}$ \& 0.81 \& ${ }_{5.64}$ \& 0.1 \& ${ }^{460}$ \& \& 17 \& ${ }^{30}$ \& ${ }^{27}$ \& ${ }^{8.6}$ \& \& ${ }^{20}$ \& ${ }^{270}$ \& \& \& ${ }^{0.1}$ \& ${ }^{0.1}$ \& ${ }^{16}$ \& ${ }^{24}$ \& ${ }^{3.4}$ \& 372.2 \& ${ }^{22}$ \& \& ${ }_{35}$ \& ${ }^{228}$ \& \& ${ }^{6.6}$ \& ${ }^{265}$ \& 199

\hline ${ }^{\text {H00506A }}$ \& \& ${ }^{1043585}$ \& ${ }^{250511099894}$ \& | 1750 |
| :--- |
| 1735 | \& ${ }_{0}^{0.14}$ \& ${ }_{0}^{0.032}$ \& | 0.1 |
| :--- |
| 0.1 | \& ${ }_{680}^{810}$ \& \& 5 \& \& ${ }_{22}$ \& ${ }_{8,2}$ \& \& 5 \& ${ }_{360}^{480}$ \& \& 0.02 \& ${ }_{0}^{0.2}$ \& \& ${ }^{32}$ \& ${ }_{2}^{2.4}$ \& ${ }^{50}{ }_{33}$ \& ${ }_{5}^{703.9}$ \& ${ }_{40}^{51}$ \& 4.1 \& ${ }_{45}^{54}$ \& ${ }_{310}^{410}$ \& \& ${ }_{4}^{3.8}$ \& (500 \& ${ }_{\text {cki }}^{\substack{350 \\ 285}}$

\hline ${ }^{1305058}$ \& Meteor C Kat Soringwood \& ${ }^{106797}$ \& ${ }^{14142121984}$ \& ${ }^{1500}$ \& 0.15 \& 0.113 \& ${ }^{0.1}$ \& ${ }_{530}$ \& \& \& ${ }^{10}$ \& ${ }^{23}$ \& ${ }_{7} 7.8$ \& \& 5 \& 320 \& \& 0.02 \& 0.2 \& \& ${ }^{23}$ \& ${ }^{3.3}$ \& ${ }^{29}$ \& ${ }_{465}$ \& ${ }_{32}$ \& \& ${ }^{36}$ \& ${ }_{281} 28$ \& \& ${ }^{4.5}$ \& ${ }_{340}$ \& ${ }_{228}^{228}$

\hline ${ }_{\substack{1305089 \\ 130508 A}}$ \& Meteor c a a s spingood \& ${ }^{109499}$ \& ${ }^{1817551985} 17121985$ \& | 1230 |
| :--- |
| 1045 | \& ${ }_{0}^{0.03}$ \& ${ }_{0}^{0.0006}$ \& 0.1

0.1 \& \begin{tabular}{l}
cise

495

\hline

 \& ${ }^{425}$ \& ${ }_{5}^{2}$ \&

5

\hline 10

\hline

 \&

20

33
\end{tabular} \& ${ }_{8}^{8.4}$ \& \& 10

10 \& ${ }_{280}^{480}$ \& ${ }^{0.5}$ \& ${ }^{0.02}$ \& 0.2 \& ${ }_{0} 0.1$ \& ${ }_{20}^{40}$ \& | 28 |
| :--- |
| 3.6 | \& ${ }^{54}$ \& ${ }^{609.8}$ \& ${ }^{28}$ \& ${ }_{5.7}^{11}$ \& ${ }_{31}^{51}$ \& ${ }_{\substack{321 \\ 227}}$ \& \& ${ }_{5.6}^{6.3}$ \& ${ }_{265}^{415}$ \& ${ }_{193}^{280}$

\hline | 130508A |
| :--- |
| 13058 | \& Meteor C Cat Soringwood \& ${ }^{118017}$ \& ${ }^{10121219896}$ \& ${ }^{1030}$ \& ${ }^{0.03}$ \& 0.002 \& 0.1 \& ${ }_{455}^{455}$ \& ${ }_{5}^{430}$ \& 19 \& ${ }^{50}$ \& 26 \& ${ }^{8.7}$ \& \& ${ }^{25}$ \& ${ }^{260}$ \& ${ }^{0.7}$ \& 0.03 \& 0.2 \& ${ }_{0}^{0.1}$ \& ${ }^{22.5}$ \& ${ }^{3.4}$ \& ${ }^{28}$ \& ${ }^{364}$ \& ${ }^{31}$ \& ${ }^{4.5}$ \& ${ }^{25.5}$ \& $\begin{array}{r}210 \\ 234 \\ \hline\end{array}$ \& \& 7.9 \& ${ }_{220}^{240}$ \& ${ }_{182}^{182}$

\hline \& Meteror ckat stpringuood \& ${ }_{1}^{122163}$ \& ${ }^{2002091987}$ \& ${ }_{1230}$ \& ${ }_{0}^{0.02}$ \& ${ }_{0}^{0.007}$ \& 0.1
0.1 \& ${ }_{160}$ \& \& 100 \& \& \& ${ }_{7}{ }_{7} .4$ \& \& 180 \& 290 \& \& 0.02 \& ${ }_{0}^{0.2}$ \& \& ${ }^{28}$ \& ${ }^{2.5}$ \& ${ }^{46}$ \& ${ }^{4127.3}$ \& ${ }_{15}^{12}$ \& ${ }_{6.3}$ \& ${ }_{3}{ }^{36}$ \& $\stackrel{\substack{234 \\ 59 \\ \hline}}{ }$ \& \& ${ }^{10} 0$ \& ${ }_{72}$ \& ${ }_{54}^{174}$

\hline 130508 A \& Meteor C kat Springwood \& ${ }^{122336}$ \& 1011211987 \& 1217 \& 0.07 \& 0.002 \& 0.1 \& 335 \& 310 \& 100 \& \& 29 \& 8.2 \& \& ${ }^{220}$ \& 190 \& 0.8 \& 0.02 \& 0.3 \& \& 16 \& ${ }^{3.1}$ \& ${ }^{24}$ \& 260.9 \& 22 \& 3 \& 15 \& 146 \& \& 1.7 \& 175 \& 117

\hline
\end{tabular}

```
\frac{NOtes}{MTV}
<cuc
```



```
    ME NO Nsimatected
```


Net Catchment DNRW Water Ondity Result- Planet Creek

\begin{tabular}{|c|}
\hline \multirow[t]{4}{*}{} \& \multirow{4}{*}{station name} \& \multirow{4}{*}{} \& \multirow{4}{*}{date} \& \multirow[b]{2}{*}{tIME} \& \multicolumn{3}{|l|}{Hydrological Parameters} \& \multicolumn{10}{|c|}{Physico-Chemical Parameters} \& \multicolumn{5}{|l|}{Nutrient \({ }^{\text {a }}\) Metals} \& \multicolumn{8}{|c|}{Major Ions} \& \multicolumn{5}{|c|}{Alkalainity} \\
\hline \& \& \& \& \& \[
\begin{gathered}
\text { Stream } \\
\text { Water Level }
\end{gathered}
\] \& \[
\begin{aligned}
\& \begin{array}{c}
\text { Stream } \\
\text { Discharge }
\end{array}
\end{aligned}
\] \& \[
\begin{array}{|l|l|}
\hline \text { Dist. } \\
\text { Below } \\
\text { Betar } \\
\text { sufface }
\end{array}
\] \& \[
\begin{array}{|c}
\text { Conductivity } \\
\text { @ 25C }
\end{array}
\] \& Conductivity
@ 25C (FLD) \& Turbidity \& \[
\begin{gathered}
\text { Colour } \\
\text { Tue }
\end{gathered}
\] \& \[
\begin{gathered}
\substack{\text { water } \\
\text { Temp } \\
\text { FLD }} \\
\text { cLe }
\end{gathered}
\] \& pH \& \(\underset{\text { pH }}{\text { pro }}\) \& \[
\left.\begin{array}{|c|}
\hline \text { Oxygen } \\
\text { (Dissolved) } \\
\text { FLD }
\end{array} \right\rvert\,
\] \& \[
\begin{gathered}
\substack{\text { Total } \\
\text { Suspanded } \\
\text { Solids }}
\end{gathered}
\] \& \[
\begin{aligned}
\& \text { Total } \\
\& \text { Siss } \\
\& \text { Solids }
\end{aligned}
\] \& (\(\begin{gathered}\text { Nitate } \\ \text { (No3) }\end{gathered}\) \& \[
\left(\begin{array}{l}
\text { Bron } \\
\text { ang } \\
\text { (mgLL }
\end{array}\right)
\] \& \& \& \[
\left.\begin{array}{c}
\text { Flouride } \\
\text { asf } \\
\text { (mgL) }
\end{array}\right)
\] \& \[
\begin{array}{|c}
\text { Hydrogen } \\
\text { as } H
\end{array}
\] \& \[
\begin{gathered}
\text { Chloide } \\
(C \text { (} 1)
\end{gathered}
\] \& \[
\begin{aligned}
\& \text { Potassium } \\
\& (\mathrm{K})
\end{aligned}
\] \& \[
\begin{gathered}
\text { Sodium } \\
(\text { Na) }
\end{gathered}
\] \& \[
\begin{gathered}
\text { Ditalal } \\
\text { Disolved } \\
\text { lons }
\end{gathered}
\] \& \[
\begin{aligned}
\& \text { Calcium } \\
\& (\mathrm{Ca})
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { Sulphate } \\
\& \text { (SO4) }
\end{aligned}
\] \& \[
\begin{gathered}
\text { Magnesium } \\
(\mathrm{Mg})
\end{gathered}
\] \& \& \[
\left\{\begin{array}{|l|l}
\text { Hyydroxide } \\
(0 H H)
\end{array}\right.
\] \& \[
\begin{gathered}
\text { Carbonate } \\
(\mathrm{CO} 3) \\
\hline
\end{gathered}
\] \& Bicarbonate (HCO3) \& \begin{tabular}{l}
Hardness \\
(CaCO3)
\end{tabular} \\
\hline \& \& \& \& Units \& m \& secs \& m \& us/cm \& \(s / \mathrm{cm}\) \& лт \& \({ }_{\substack{\text { Hazen } \\ \text { Units }}}\) \& \({ }^{\circ} \mathrm{C}\) \& OH units \& \({ }_{\text {p }}^{\text {pHits }}\) \& mg/ \& mg/ \& mg \& mg/ \& mg/ \& mgh \& mg \(/\) \& mgh \& mgl \& mgl \& mgh \& mg \& mgl \& mg/ \& mg/ \& mg/ \& mgl \& mg/ \& mg/ \& mgh \& mg/ \\
\hline \& \& \& \& miv \& \& \& \& 340 \& \& 50 \& \& \& 6.5-8 \& 6.5-8.0 \& \& 10 \& 500 \& 50 \& 0.37 \& 0.055 \& . 0014 \& 1 \& \& \({ }^{175}\) \& \& 115 \& \& 000 \& 250 \& \& \& \& \& \& \\
\hline 130507 A \& Planet Ck. Planet D Ds \& 56714 \& 200011973 \& 1120 \& 0.09 \& 0.002 \& 0.1 \& \({ }^{490}\) \& \& \& \& \& 7.7 \& \& \& \& \({ }^{267}\) \& \& \& \& \& 0.15 \& ND \& 64 \& \& \({ }^{60}\) \& 373.1 \& \({ }^{24}\) \& 0.9 \& 5 \& 170 \& ND \& ND \& \({ }^{207}\) \& \({ }^{130}\) \\
\hline \({ }^{130507 A}{ }^{13507 A}\) \& \({ }_{\text {Plane Ck Pranet }}\) Prs \& \({ }_{57843}^{56736}\) \& \({ }^{710368197973}\) \& 810
1600 \& \begin{tabular}{l}
0.07 \\
0.3 \\
\hline
\end{tabular} \& \({ }^{0} 0.006\) \& 0.1
0.1 \& 842
910 \& \& \& \& \& \begin{tabular}{l}
7.9 \\
8.1 \\
\hline
\end{tabular} \& \& \& 17 \& \begin{tabular}{|c}
343 \\
59
\end{tabular} \& \& 0.05 \& \& \& \begin{tabular}{l}
0.22 \\
0.16 \\
\hline
\end{tabular} \& ND \& 70
120 \& 4.6 \& 16
109
109 \& \({ }^{505.1}\) \& 告76.5 \& \& \({ }_{40}^{45}\) \& \({ }_{345}^{260}\) \& ND \& ND \& \({ }_{421}^{317}\) \& \begin{tabular}{l}
325 \\
283 \\
\hline
\end{tabular} \\
\hline 130507 A \& Planet Ck.planet Dns \& 60951 \& 131/21973 \& 1300 \& 0.11 \& 0 \& 0.1 \& \({ }^{750}\) \& \& \& \& \& 8.4 \& \& \& \& \({ }_{463}\) \& \& \& \& \& 0.16 \& ND \& 90 \& 5 \& 79 \& 615.8 \& 42.5 \& \& \({ }^{37}\) \& 300 \& ND \& \({ }^{6.1}\) \& \({ }^{353}\) \& \({ }^{258}\) \\
\hline 130507A \& Planet Ck. Planet Dns \& 61616 \& 251061974 \& 1730 \& 0.12 \& 0.004 \& 0.1 \& 1000 \& \& \& \& 16 \& \({ }^{8.1}\) \& \& \& 10 \& 549 \& \& \& \& \& 0.17 \& ND \& \({ }^{98}\) \& \({ }^{3.3}\) \& \({ }^{88}\) \& \({ }_{732.3}^{732}\) \& 49 \& \& 47 \& 370 \& ND \& \({ }^{3.8}\) \& \({ }^{443}\) \& \({ }^{316}\) \\
\hline 130507 A \& Planet Ck. Planet Dns \& 63105 \& 301091974 \& 1410 \& 0.12 \& \({ }^{0.0003}\) \& 0.1 \& \({ }_{1205}^{925}\) \& \& \& \& \({ }^{28}\) \& 8.1
7.9 \& \& \& \& [522 \& \& \& \& \& 0.21
0.26 \& ND \& \begin{tabular}{l}
100 \\
\hline 155
\end{tabular} \& \begin{tabular}{l}
3.2 \\
5.6 \\
\hline
\end{tabular} \& 96
124
12 \& \begin{tabular}{l}
736.2 \\
746.1 \\
\hline
\end{tabular} \& \({ }^{40}{ }^{28}\) \& \& \(\stackrel{44}{41.2}\) \& 375
321 \& \(\stackrel{\text { No }}{\text { No }}\) \& 3.8
N0 \& \({ }_{392}^{499}\) \& 281
239 \\
\hline \({ }^{1305074} 1\) \& \({ }_{\text {Plane Ck. Planet }{ }^{\text {Prs }}}\) \& \({ }_{64854}^{636}\) \& \({ }^{1112121974}{ }^{1 / 21975}\) \& 1400
1510 \& - \(\begin{aligned} \& 0.13 \\ \& 0.25\end{aligned}\) \& \({ }_{0}^{0.001}\) \& \({ }_{0}^{0.1}\) \& 1000
165 \& \& \& \& \({ }^{35}\) \& \begin{tabular}{l}
7.9 \\
7.5 \\
\hline 8.
\end{tabular} \& \& \& \(\stackrel{2}{17}\) \& \({ }_{93}^{579}\) \& \& \& \& \& 0.26 \& ND \& 155
21 \& \(\begin{array}{r}5.6 \\ \\ 2.5 \\ \hline\end{array}\) \& \({ }_{124}^{124}\) \& 746.1
1093 \& \({ }_{5}^{28}\) \& \& \({ }_{\text {ckin }}^{41.2}\) \& \({ }^{321} 48\) \& \(\stackrel{\text { No }}{\text { ND }}\) \& ND \& \({ }_{\text {c }}^{392}\) \& \({ }^{239}\) \\
\hline \({ }^{1305057}{ }^{13050}\) \& \& 648412 \& 310419975 \& \({ }^{15145}\) \& 0.25
0.29 \& 0.012 \& 0.1 \& \({ }_{1}^{165}\) \& \& \& \& \({ }^{35}\) \& \({ }_{7}^{7.7}\) \& \& \& 5 \& \({ }_{86}\) \& \& \& \& \& \& ND \& \({ }_{25} 25\) \& \({ }_{2.6}^{2.6}\) \& 17.5 \& 101.5 \& \({ }_{3.7}\) \& \& \({ }_{4}^{4.7}\) \& \({ }_{39}\) \& ND \& ND \& \({ }_{48}^{58}\) \& \({ }_{29}{ }^{39}\) \\
\hline 130507 A \& Planet Ck._Planet D Ss \& 64827 \& 281041975 \& 1400 \& 0.15 \& 0.003 \& 0.1 \& 890 \& \& \& \& \& \({ }^{8.3}\) \& \& \& 72 \& \({ }_{531}\) \& \& \& \& \& 0.15 \& ND \& 100 \& 4 \& 92 \& 702.9 \& 44 \& \& 41.6 \& \({ }^{350}\) \& ND \& \({ }_{5} 5\) \& 416 \& 281 \\
\hline \({ }^{1305077}{ }^{\text {a }}\) \& Planet Ck.planet Dns \& 65712 \& 220711975 \& \({ }^{1350}\) \& 0.14 \& 0.004 \& 0.1 \& \({ }^{980}\) \& \& \& \& \& 8.1 \& \& \& 11 \& 571 \& \& \& \& \& 0.2 \& ND \& 97 \& \({ }^{3.3}\) \& 100 \& 769 \& 50 \& \& 47 \& 390 \& ND \& \({ }^{3.5}\) \& 468 \& \({ }^{318}\) \\
\hline \({ }^{1305077}\) \& Planet Ck._Planet Dns \& 64499 \& 101/0191975 \& 1030 \& 0.12 \& 0.003 \& 0.1 \& 1080 \& \& \& \& \({ }^{28}\) \& 7.9 \& \& \& \& 600 \& \& \& \& \& 0.3 \& ND \& 110 \& 4.5 \& 105 \& 807.6 \& \({ }^{45}\) \& \& \({ }^{50}\) \& 406 \& ND \& 2.8 \& 490 \& \({ }^{318}\) \\
\hline 130507A
13507A \& \& \({ }_{69896}^{693}\) \& \({ }^{80841976}\) \& 830
1113 \& 0.43
0.19 \& \begin{tabular}{l}
0.485 \\
0.005 \\
\hline
\end{tabular} \& 0.1
0.1 \& 115
990 \& \& \& \& \({ }_{1}^{15}\) \& \({ }_{7.9}^{6.8}\) \& \& \& 6 \& \& \& \& \& \& 0.1 \& \& 18
88
88 \& \begin{tabular}{l}
1.8 \\
\({ }_{2} .4\) \\
\hline
\end{tabular} \& 13
94 \& \({ }_{7}^{67.9}{ }_{7}^{69.6}\) \& 2.8
56 \& \& 3.3
40 \& 24
370 \& \(\stackrel{\text { ND }}{\text { ND }}\) \& 2.1 \& \({ }_{447}^{29}\) \& \({ }_{305}^{21}\) \\
\hline \({ }^{1305057}{ }^{13050}\) \& \& \({ }_{70385}\) \& 2310191976 \& \({ }^{1725}\) \& 0.17 \& \({ }_{0}^{0.0005}\) \& \({ }_{0}^{0.1}\) \& \({ }_{840} 9\) \& \& \& \& \({ }^{28}\) \& \({ }_{8}^{8.6}\) \& \& \& \({ }_{25}\) \& \({ }_{492}^{596}\) \& 1.8 \& \& \& \& \({ }_{0}^{0.1}\) \& 0.1 \& \({ }_{95}^{88}\) \& \({ }_{3}{ }^{2.2}\) \& \({ }^{9} 101\) \& \({ }_{623}\) \& \({ }_{20}^{50}\) \& \& \({ }_{40}^{40}\) \& \({ }_{305}\) \& \({ }_{\text {ND }}\) \& \({ }_{9.6}^{2.1}\) \& \({ }_{352}^{451}\) \& \({ }^{215}\) \\
\hline 130507A \& Planet CK__ Planet Dis \& 70386 \& 271101976 \& 810 \& 0.2 \& 0.023 \& 0.1 \& 820 \& \& \& \& 21 \& 8.7 \& \& \& 30 \& 472 \& 1.8 \& \& \& \& 0.3 \& 0.1 \& 100 \& \({ }_{3} 3\) \& 91 \& 600.7 \& 39 \& \& 32 \& 281 \& ND \& 9.9 \& \({ }^{323}\) \& 229 \\
\hline 130507 A \& Planet Ck._Planet D ns \& \({ }^{72325}\) \& 31031977 \& 1130 \& 0.54 \& 1.28 \& 0.1 \& 97 \& \& \& \& 30 \& 7.9 \& \& \& 6 \& 54 \& 0.5 \& \& \& \& \& \& 18 \& 1.6 \& \({ }^{13}\) \& 48.6 \& 1.5 \& \& 2 \& 10 \& \& \& 12 \& 12 \\
\hline 130507 A \& Planet Ck. Planet Dns \& \({ }^{72406}\) \& 27041977 \& 1645 \& 0.31 \& \({ }^{0.152}\) \& 0.1 \& 130 \& \& \& \& \({ }^{24}\) \& 7.8 \& \& \& \& \({ }^{73}\) \& 0.6 \& \& \& \& \& \& \({ }^{21}\) \& 2.4 \& 16 \& 82.4 \& \({ }^{3.1}\) \& \& \({ }^{3.2}\) \& 30 \& No \& 0.1 \& 36 \& \({ }^{21}\) \\
\hline \({ }^{1305077}{ }^{\text {a }}\) \& Planet Ck.planet Dns \& 75698 \& 61011979 \& 840 \& 0.27 \& 0.067 \& 0.1 \& 170 \& \& \& \& \({ }^{25}\) \& 7 \& \& \& 580 \& 98 \& 5.2 \& \& \& \& 0.2 \& \& \({ }^{20}\) \& 4.2 \& 16 \& 119.6 \& 5 \& 6 \& 5 \& \({ }^{48}\) \& \& \& \({ }^{58}\) \& \({ }^{33}\) \\
\hline \({ }^{130507 \mathrm{~A}}{ }^{13507 A}\) \& \({ }_{\text {Plane Ck. Planet } \text { ns }}\) \& \({ }_{76019}^{7754}\) \& \({ }^{1615031978} 1\) \& \({ }_{1}^{1500} 1140\) \& 0.16 \& \({ }_{0}^{0.0006}\) \& \begin{tabular}{l}
0.1 \\
0.1 \\
\hline
\end{tabular} \& 605
860 \& \& \& \& 32
17 \& \begin{tabular}{l}
7.7 \\
8.1 \\
\hline
\end{tabular} \& \& \& 7 \& 349 \& \({ }^{2.7}\) \& \& \& \& 0.1
0.2 \& \& \begin{tabular}{l}
55 \\
94 \\
\hline
\end{tabular} \& \({ }_{3}^{4}\) \& \begin{tabular}{l}
53 \\
92 \\
\hline
\end{tabular} \& 460.6
720.7 \& \begin{tabular}{l}
31 \\
48 \\
\hline
\end{tabular} \& 3.5 \& \({ }_{44}^{26}\) \& \({ }_{3}^{237}\) \& ND \& 0.8
3.5 \& 288
432 \& 184 \\
\hline 130507 A \& Planet Ck._Planet Dns \& 79183 \& 281091978 \& 1517 \& 0.27 \& 0.073 \& 0.1 \& 180 \& \& \& \& \({ }^{26}\) \& 7.5 \& \& \& \({ }^{13}\) \& 104 \& 0.3 \& \& \& \& \& \& \({ }^{22}\) \& 2 \& 20 \& \({ }_{131.3}\) \& \({ }_{6.6}\) \& \({ }^{\text {J. }}\) \& \({ }_{6.3}\) \& 60 \& \& \({ }_{0}^{0.1}\) \& \({ }_{73}\) \& \({ }_{42}\) \\
\hline 130507 A \& Planet Ck_P Planet Dns \& 87363 \& 1919919880 \& 1215 \& 0.18 \& 0.001 \& 0.1 \& 910 \& \& \& \& \({ }^{28}\) \& 7.8 \& \& \& 15 \& 567 \& \& \& \& \& 0.2 \& \& 62 \& 1.5 \& 82 \& 767.9 \& 57 \& 5 \& \({ }^{47}\) \& 423 \& \& 2.2 \& 511 \& \({ }^{336}\) \\
\hline 130507 A \& Planet Ck_Planet Dns \& 89190 \& 1212121980 \& 900 \& 0.19 \& 0.005 \& 0.1 \& 910 \& \& \& \& 25 \& 8.2 \& \& \& \& 561 \& 1 \& \& \& \& 0.2 \& \& 57 \& 1.8 \& 73 \& 757.2 \& 54 \& 5 \& 49 \& 428 \& \& 5.2 \& 511 \& 337 \\
\hline \({ }^{1305074}{ }^{135074}\) \& \& \({ }_{91769}^{9513}\) \& \({ }^{1010881981} 1\) \& \({ }_{17305}^{1730}\) \& - 0.12 \& \({ }_{0}^{0.004}\) \& 0.2
0.1
0 \& 838
920 \& \& \({ }_{5}\) \& 5 \& \begin{tabular}{|l}
19 \\
18 \\
18
\end{tabular} \& \begin{tabular}{|c}
8.75 \\
8.7 \\
\hline 8
\end{tabular} \& \& \& \({ }_{9}^{10}\) \& \({ }_{410}^{489}\) \& ND \& \& \& \& 0.2 \& N0 \& \({ }_{1} 99\) \& \({ }_{1}^{1.8}\) \& \({ }_{9}^{98}\) \& \({ }_{623}^{623}\) \& \({ }_{16}^{14}\) \& \({ }_{4}\) \& \({ }_{45}^{45}\) \& \begin{tabular}{l}
304 \\
303 \\
\hline
\end{tabular} \& \({ }^{0.1}\) \& \(\stackrel{13}{12}\) \& 344
345
345 \& \(\begin{array}{r}220 \\ 229 \\ \hline\end{array}\) \\
\hline \({ }^{1305057}{ }^{130507}\) \& \& \({ }_{98120}\) \& 270091982 \& \({ }_{1540}^{1450}\) \& \({ }_{0}^{0.09}\) \& \({ }_{0}^{0.002}\) \& 0.1
0.1 \& 920
990 \& \& \(\frac{1}{6}\) \& \& \({ }^{18}\) \& \begin{tabular}{l}
8.7 \\
8 \\
8 \\
\hline 8
\end{tabular} \& \& \& \({ }_{10}^{9}\) \& 510
580 \& \({ }_{0}^{0.4}\) \& \& \& \& 0.1
0.2 \& \& \({ }_{59}^{110}\) \& \(\stackrel{23}{3}\) \& \begin{tabular}{l}
105 \\
85 \\
\hline
\end{tabular} \& 640.9
783.5 \& \begin{tabular}{|c}
16 \\
\hline 57
\end{tabular} \& \({ }_{3.3}^{4}\) \& \begin{tabular}{|c}
46 \\
52 \\
\hline
\end{tabular} \& 303
432
4 \& \& 12

3.6 \& 345

520 \& | 229 |
| :---: |
| 356 |

\hline 130507 A \& Planet Ck_Planet Dns \& 99418 \& 610711983 \& 900 \& 0.46 \& 0.555 \& 0.1 \& 115 \& \& \& 15 \& 14 \& ${ }^{7.5}$ \& \& \& 10 \& 69 \& \& 0.02 \& \& \& 0.1 \& \& 20 \& 1.6 \& 17 \& ${ }_{7} 72.8$ \& 2.5 \& ${ }_{2} 2.6$ \& ${ }_{3.3}$ \& ${ }_{21}$ \& \& \& ${ }_{25.5}$ \& ${ }_{20}$

\hline 130507 A \& Planet Ck._Planet Dns \& 9947 \& 241101983 \& 1610 \& 0.41 \& ${ }^{0.333}$ \& 0.1 \& 105 \& \& 20 \& 70 \& ${ }^{28}$ \& ${ }^{8.5}$ \& \& \& ${ }^{23}$ \& 61 \& 0.5 \& 0.04 \& \& \& 0.1 \& 0.1 \& 16 \& 2.2 \& 13 \& 64.2 \& 2.6 \& 2.2 \& 2.5 \& ${ }^{21}$ \& \& 0.4 \& 24.5 \& 17

\hline 130507 A \& Planet Ck._Planet Dns \& 10328 \& 131/21983 \& 1345 \& 0.17 \& 0.015 \& 0.1 \& 800 \& \& ${ }^{3}$ \& 10 \& 31 \& ${ }^{8.8}$ \& \& \& 5 \& 470 \& 1.2 \& 0.08 \& \& \& 0.2 \& 0.1 \& 86 \& 2.8 \& 94 \& 601.4 \& 14 \& 4 \& 4 \& 304 \& \& 15 \& ${ }^{340}$ \&

\hline 130507A

13507A \& \& ${ }^{103730}$ \& ${ }^{1770219884}$ \& \& \begin{tabular}{l}
0.2

0.21

\hline

 \&

0.002

0.002

\hline
\end{tabular} \& 0.1

0.1 \& \begin{tabular}{c}
940

1050

\hline 1050

 \& \& 5 \&

10

10

 \&

31

22

22
\end{tabular} \& 7.9

79

7 \& \& \& 5 \& | 560 |
| :---: |
| 570 | \& \& ${ }^{0.088}$ \& \& \& 0.2 \& \& 105

110 \& ${ }_{3}^{3.3}$ \& 105 \& ${ }_{7529}^{751}$ \& ${ }^{37}$ \& \begin{tabular}{l}
8.2

8.5

\hline

 \&

46

49
\end{tabular} \& 369

369 \& \& $\stackrel{25}{27}$ \& ${ }_{4}^{445}$ \& ${ }^{282}$

\hline ${ }^{1305057}{ }^{13050}$ \& \& ${ }^{2055887}$ \& ${ }^{22409919894}$ \& ${ }_{1}^{1640}$ \& O. 0.21 \& ${ }_{0}^{0.0002}$ \& 0.1

0.1 \& \begin{tabular}{l}
1050

950

\hline 100

 \& \& 5 \& \& ${ }_{23}^{22}$ \&

7.9

7.8

\hline

 \& \& \& 5 \& ${ }_{540}^{540}$ \& \& ${ }_{0}^{0.07}$ \& \& \&

0.2

0.2

\hline

 \& \&

110

130

\hline 1

 \& ${ }^{3.6}$ \& ${ }_{105}^{105}$ \& ${ }^{7599.1}$ \&

40

37

\hline
\end{tabular} \& ${ }_{3.3}^{3.5}$ \& $\begin{array}{r}49 \\ 45 \\ \hline\end{array}$ \& 369

311 \& \& | 2.7 |
| :--- |
| 1.8 | \& ${ }_{375}^{475}$ \&

\hline ${ }^{1305057 A}$ \& Planet Ck.planet Dns \& 109516 \& ${ }^{200551985}$ \& 940 \& 0.27 \& 0.001 \& 0.1 \& 1000 \& \& 1 \& 5 \& \& 8 \& \& \& 5 \& 580 \& \& 0.08 \& \& \& 0.2 \& \& 110 \& 2.5 \& 105 \& 790.5 \& 40 \& \& 49.5 \& 399 \& \& \& 480 \& 304

\hline ${ }^{1305074} 1$ \& \& ${ }^{112298}$ \& ${ }^{1919121985}$ \& (1725 \& 0.24
0.26
0.0 \& 0.001
0.001
0 \& 0.1
0.1
0.1 \& 900
700 \& 850

700 \& $\frac{1}{8}$ \& \& ${ }^{33}$ \& 8.8.8 \& \& \& \begin{tabular}{l}
10

50

\hline

 \& ${ }^{530}$ \& 0.5 \& ${ }^{0.099}$ \& \& \& 0.2 \& 0.1 \&

65

54

\hline
\end{tabular} \& 2.5

14 \& \begin{tabular}{|c}
83

75

\hline 8

 \& $\stackrel{7154}{5757}$ \&

46

19
\end{tabular} \& $\stackrel{2}{26}$ \& $\stackrel{44}{44}$ \& 393

319 \& \& ${ }^{7}$ \& ${ }_{3}^{465}$ \& $\begin{array}{r}296 \\ 229 \\ \hline\end{array}$

\hline ${ }^{1305057 A}{ }^{13057 A}$ \& \& ${ }^{114885}$ \& 180611986 \& ${ }_{1030}$ \& | 0.26 |
| :--- |
| 0.32 | \& ${ }_{0}^{0.0001}$ \& 0.1 \& ${ }_{880} 8$ \& 1000

1000 \& ${ }_{2} 8$ \& ${ }^{5}$ \& 18 \& ${ }_{8.5}^{8.6}$ \& \& \& ${ }_{50}$ \& ${ }_{520}^{450}$ \& 0.5 \& ${ }_{0}^{0.08}$ \& \& \& 0.2
0.2 \& \& 54

115 \& | 1.4 |
| :--- |
| 3.2 | \& 100 \& ${ }^{5751.2}$ \& ${ }^{27}$ \& ${ }_{2.5}^{2.6}$ \& ${ }_{44}^{44}$ \& ${ }_{3}^{326}$ \& \& ${ }_{8.6}^{9.6}$ \& \& ${ }_{229}^{229}$

\hline ${ }^{1305057 A}$ \& Planet Ck_Panet Dns \& 116718 \& 3/1019986 \& 1613 \& 0.29 \& 0.002 \& 0.1 \& 960 \& 900 \& 26 \& 30 \& 26 \& ${ }^{8.6}$ \& \& \& ${ }^{35}$ \& 540 \& 0.5 \& 0.08 \& \& \& 0.2 \& 0.1 \& ${ }^{125}$ \& ${ }^{4.1}$ \& 110 \& 709.5 \& 36.5 \& 2 \& 40 \& ${ }^{330}$ \& \& \& 380 \& ${ }_{256}$

\hline 130507 A \& Planet Ck_Panet Dns \& 117465 \& 1012121986 \& 1310 \& 0.39 \& 0.001 \& 0.1 \& 670 \& 625 \& 9 \& 40 \& 34 \& 8.2 \& \& \& 10 \& 380 \& 1.2 \& 0.06 \& \& \& 0.1 \& \& ${ }^{53}$ \& 2.6 \& ${ }^{58}$ \& 528.8 \& ${ }^{37.5}$ \& 2 \& 30.5 \& ${ }^{285}$ \& \& ${ }^{3.8}$ \& 340 \& 219

\hline ${ }^{1305074} 1$ \& \& ${ }_{1221259}^{1259}$ \& ${ }^{8 / 9091987} 1061988$ \& 1220
1420 \& ${ }_{0}^{0.41}$ \& 0.002
0.002 \& 0.1
0.1 \& 990
1050

100 \& | 810 |
| :--- |
| 940 | \& $\frac{1}{2}$ \& 15

10

10 \& \begin{tabular}{|}
19

19

19

 \& ${ }_{8.2}^{8.3}$ \& \& \& 5 \& ${ }_{6}^{590}$ \& 16 \& ${ }^{0.07}$ \& \& \& 0.2 \& \& ${ }^{125}$ \& ${ }_{3}^{23}$ \&

115

115

115

 \&

7923

\hline 827

\hline

 \&

33

45

\hline
\end{tabular} \& ${ }_{6} 9$ \& 50

50

50 \& | 388 |
| :--- |
| 395 |
| 3 | \& \& ${ }_{5}^{6.7}$ \& 460

470 \& | 288 |
| :--- |
| 318 |

\hline 1305007A \& Planet CK_Planet Dis \& ${ }_{12887}$ \& 12011989 \& 1750 \& ${ }^{0.58}$ \& ${ }_{0}^{0.0005}$ \& ${ }^{0.1}$ \& ${ }_{7} 70$ \& ${ }_{720}$ \& ${ }_{4}$ \& 40 \& 31 \& | ¢ |
| :--- | \& \& \& ${ }_{20}$ \& ${ }_{430} 20$ \& \& ${ }_{0}^{0.06}$ \& \& \& | 0.1 |
| :--- |
| 0.1 | \& \& ${ }^{183}$ \& ${ }_{3.7}^{3.2}$ \& ${ }_{69} 6$ \& ${ }_{\text {¢ }}^{876.4}$ \& ${ }_{43}^{43}$ \& \& ${ }_{30}$ \& \& \& ${ }^{5} 1.9$ \& ${ }_{345}^{430}$ \& ${ }_{232}{ }^{338}$

\hline 130507A

13507A \& ${ }_{\text {Plane Ck. Planet }{ }^{\text {P }} \text { Ns }}$ \& ${ }_{\substack{130205 \\ 131255 \\ \hline}}$ \& 77051989 \& | 835 |
| :---: |
| 1235 |
| 1 | \& 0.66

0.5
0.5 \& - \& 0.2

0.1 \& ${ }_{820}^{240}$ \& 840 \& 12 \& ${ }^{60}$ \& 17 \& ${ }_{8}^{8.3}$ \& \& \& | 22 |
| :--- |
| 5 | \& ${ }^{140}$ \& 0.5 \& ${ }_{0}^{00.01}$ \& ${ }^{0.1}$ \& 0.09 \& ${ }^{<0.1}$ \& ND \& 29

89
8 \& -3.6 \& 24
80
80 \& 190
688
688 \& ${ }_{48}^{13}$ \& 2 \& 9.4

40 \& | 94 |
| :--- |
| 366 | \& 0.1 \& $\stackrel{2}{47}$ \& ${ }_{4}^{110}$ \& ${ }_{21}^{785}$

\hline ${ }^{1305057 A}$ \& Planet CK_Planet Dis \& 132782 \& 211111989 \& 1042 \& 0.59 \& ${ }_{0} 0.009$ \& 0.1 \& ${ }_{2} 295$ \& ${ }_{342}$ \& 2 \& \& \& ${ }_{8.1}^{8.1}$ \& \& \& \& 180 \& 0.9 \& 0.02 \& \& \& 0.1 \& \& ${ }^{26}$ \& ${ }_{2} 2.9$ \& ${ }^{27}$ \& ${ }^{234}$ \& 18.5 \& ${ }^{3.5}$ \& 14 \& ${ }_{116}$ \& \& 1 \& 140 \& ${ }_{104}$

\hline ${ }^{1305074}{ }^{\text {13507A }}$ \& \& ${ }_{1}^{134535}$ \& ${ }^{2940519990}$ \& | 1215 |
| :---: |
| 1655 | \& 0.81

0.78 \& ${ }_{0}^{0.647} 0$ \& 0.1
0.1 \& 89
94 \& \& ${ }_{2}^{22}$ \& 70

40 \& \& | 7.1 |
| :--- |
| 6.8 | \& \& \& 9 \& 50

54
54 \& 0.4 \& ${ }^{0.03}{ }_{0}^{0.08}$ \& 0.22 \& . 02 \& 0.01 \& ND \& $\begin{array}{r}13.8 \\ 15.5 \\ \hline 1.5\end{array}$ \& ${ }^{1.6}$ \& ${ }_{1}^{11.1}$ \& 49.9

57 \& ${ }_{2.3}^{2.7}$ \& \& | 2.5 |
| :--- |
| 2.6 | \& ${ }_{14}^{14}$ \& ND \& $\stackrel{\text { ND }}{\text { No }}$ \& 17.7

21.8 \&

\hline ${ }^{1305077}$ \& Planet Ck.planet Dns \& 143345 \& 200071991 \& 1527 \& 0.54 \& 0.002 \& 0.1 \& 942 \& 970 \& 1 \& 5 \& ${ }^{21}$ \& ${ }^{8.4}$ \& \& \& 15 \& 563 \& \& 0.07 \& \& 0.11 \& ${ }^{0.18}$ \& No \& 10.9 \& ${ }^{2.9}$ \& ${ }^{1201.2}$ \& 759.2 \& 46.6 \& 3 \& $\stackrel{24.7}{4.7}$ \& 381 \& 0.05 \& ${ }^{7} \mathbf{7}$ \& 449.8 \& 300

\hline ${ }^{1305077}{ }^{13507 A}$ \& ${ }_{\text {Plane Ck. Planet D Ds }}$ \& ${ }^{145499}$ \& ${ }^{410819992}$ \& ${ }_{825}^{1754}$ \& $\stackrel{0.6}{0.58}$ \& ${ }^{0.002}$ \& 0.1

0.1 \& \begin{tabular}{c}
1080

\hline 98

 \& ${ }_{\substack{120 \\ 985}}$ \& 6 \&

10

10
\end{tabular} \& 19

26 \& 8.3
8.4 \& ${ }_{8}^{8.3}$ \& \& 5
16 \& 605
609 \& 0.2
1.4 \& 0.1 \& \& 0.02 \& 0 \& No \& 111.4
63.9 \& 1.9 \& $\xrightarrow{103.4}$ \& ${ }_{882.6}^{820.6}$ \& 50.4

551 \& 1.5 \& | 53.8 |
| :--- |
| 54. |
| 5 | \& 414

470 \& 0.04

0.05 \& | 7.7 |
| :--- |
| 10 | \& 489.9

553 \& ${ }_{3}^{346}$

\hline
\end{tabular}

Notes
MTV
BoLD

Tall C C 10

stationio	station name	${ }_{\substack{\text { Sanple } \\ \text { No. }}}$	date	TME	$\underbrace{\substack{\text { a }}}_{\substack{\text { Hydrolotical } \\ \text { Prameters }}}$			Chemic								Nutriens			Meats				Major ons								kalinty					
					Stream Water Level	Siscan	$\begin{aligned} & \text { Dist. Below } \\ & \text { water } \\ & \text { surface } \end{aligned}$	${ }^{\substack{\text { ajuchenty }}}$	Tubidity	$\xrightarrow{\text { Tubidily }}$	Cotur	$\begin{gathered} \text { Water } \\ \text { Temp } \\ \text { FLD } \end{gathered}$	р ${ }^{\text {+ }}$	$\begin{gathered} \text { Susparald } \\ \text { Suspor } \\ \text { solss } \end{gathered}$	$\begin{aligned} & \text { Total } \\ & \text { Sols } \end{aligned}$	(103)	Solbe	$\begin{gathered} \text { Total } \\ \text { Phosphorus } \\ (\mathrm{P}) \\ \hline \end{gathered}$	coick	Aumin		Flumbe	(t)	cicic	(k)	coide)	$\begin{aligned} & \text { Tisoal } \\ & \hline \text { s.on } \end{aligned} \text { (}$	$\substack{\text { Calcum } \\ \text { (a) } \\ \text { cat }}$	${ }_{\text {Suphate }}^{\substack{\text { Suphe } \\ \text { (504) }}}$	(M)			(Hydioxde			(Hathess
				Unis	m	cumsecs	m	uscm	ntu	ntu	${ }_{\substack{\text { Hazen } \\ \text { unis }}}^{\substack{\text { den }}}$	${ }^{\circ} \mathrm{C}$	${ }_{\text {dits }}^{\text {pHis }}$	mgh	mgr	mg	mal	mal	mg	mal	mg	mg	mg	mgL	mg	mg	ma	mg	mgh	mgl	mgh	mg	mgL	mgl	mgh	mg
				miv				${ }^{34}$	50	50		coiche	8.0	10	500	50	0.02	${ }_{0} 0.05$	${ }_{0} .37$	0.055	0.004	1		175		115		1000	400							
- 1305058	Recknad Humbult Rd	${ }_{\text {185787 }}^{18071}$	${ }_{\text {230671997 }}$	${ }^{1640}$	${ }_{\text {NA }}^{\text {OS }}$	$\stackrel{0}{0}$	0.2 0 0	${ }_{\substack{167 \\ 150}}^{\text {150 }}$	${ }^{1238}$	1280	14	18.7		${ }^{229}$	${ }^{10501}$	4.12	${ }^{1.11}$	0.39	No	No	0.01	$0_{0}^{0.17}$	${ }_{\text {ND }} \mathrm{ND}$	${ }^{20.59}$	${ }^{4.8}$	$\frac{20.1}{16}$	${ }_{\text {12103 }}^{1145}$	$\frac{6.7}{8}$	${ }^{\text {8,55 }}$	$\frac{42}{63}$	${ }^{2427}$	${ }^{48}$	\bigcirc	${ }^{0.02}$	${ }_{51,77}^{68}$	${ }^{3399}$
${ }^{\text {13065S }}$	Humbolt C Ssminght	${ }^{61406}$	${ }^{3103197974}$	${ }^{1100}$	0.27	0.00	0.1	${ }^{335}$					${ }^{7} 7$		${ }^{204}$							0.12	No	${ }_{6}^{65}$	5	${ }^{38}$	${ }^{229.9}$	${ }^{16}$		${ }_{8}^{8.8}$	${ }_{8}^{80}$			0		${ }^{76}$
	Humbodit K Sumilight	${ }^{63599}$	${ }_{\text {cosilich }}$	${ }^{12245}$	${ }^{\text {NA }}$	${ }^{0.006}$	${ }_{0}^{0.1}$	${ }^{360}$				${ }_{21}^{20}$	${ }_{7}^{7}$	${ }_{17}^{17}$	${ }^{192}$							0.2		${ }^{96}$	${ }^{4.3}$	${ }^{40}$	${ }^{176{ }^{129}}$	${ }^{20}$	12	7.3 6.7	${ }_{72}^{15}$		-	0.1		㐌50
${ }_{\substack{\text { a }}}^{\text {13065 }}$		$\xrightarrow{\text { 7033 }}$ O0509	${ }_{\text {271701976 }}^{1061981}$	${ }_{1}^{1045}$	0.33 0.62	${ }^{0.005}$	0.1 0.1	${ }_{48}^{130}$	70		70	${ }_{19}^{28}$	${ }_{7}^{7.7}$	($\begin{gathered}360 \\ 10\end{gathered}$	${ }_{4}^{114}$	${ }_{1}^{5.3}$						0.8 0.1		20 10	${ }_{\text {c.3 }}^{\substack{\text { 1.8 }}}$	${ }_{\text {19 }}^{\substack{19}}$	${ }_{46.9}^{113.3}$	${ }^{3.5}$	${ }_{6}^{20}$	${ }_{1.9}^{5.9}$	${ }_{16}^{28}$				${ }_{19}^{34}$	${ }^{31}$

[^18]

10	stato name	samper	date		Lomed		worn			Q230	2380 frul			\％		－0		10	10	ss Tos	No：	Nom	ambe	Noame	sombel		（TN）		（tamp	（peobec）	（1）	888	（w）	（c）	（8）	Catasal	crome	（aam）	（4）	ash	（c）	（k）	（me）		（ca）	（809）	（m）		（tab	（ain）	cois	
					028	aumoss	m	m		${ }_{\text {uscm }}^{225}$	ustm	Nu	Nu	m		${ }^{\circ}$	${ }^{\text {PH }}$	comb	号	50x mat	not	nol	man	mar	man	mar	mal	mar	mar	mar	mar	man	mal	mar	man	un	wor	ust	${ }_{\text {max }}$	mma	${ }^{\text {mas }}$	man	${ }_{\text {man }} 19$	${ }_{\text {mag }}^{\text {mas }}$	${ }^{\text {mar }}$	mal	${ }_{\text {mar }} 10$	${ }_{\text {mar }}^{10}$	mar	mal	${ }_{\text {mar }}^{\text {No }}$	
						$\stackrel{\circ}{\substack{\text { ang }}}$				$\frac{225}{128}$										$\underbrace{\substack{\text { g }}}_{\substack{120 \\ \hline 85}}$																				$\xrightarrow{\substack{\text { No } \\ \text { No } \\ \text { No }}}$	－		$\stackrel{19}{16}$		${ }^{\frac{20}{8}}$	${ }_{1}^{4}$	－				$\xrightarrow{\substack{\mathrm{No} \\ \mathrm{No} \\ \mathrm{No}}}$	
																																								－						${ }^{10}$						
				${ }^{195}$																${ }_{\text {cos }}^{\substack{\text { gi }}}$																					${ }^{10}$		－ 12		\％		${ }_{3}^{4}$	${ }_{\substack{40 \\ 60}}^{\substack{40}}$		No	${ }_{\substack{\text { No }}}^{\substack{\text { No } \\ \text { No }}}$	
（13060	Comer facome wer				${ }_{4}^{49} 4$					${ }_{10}$																														No	$\stackrel{8}{8}$		${ }_{12}^{11}$	－	10		$\stackrel{4}{4}$	¢				${ }_{68}^{68}$
	Comer frocome wer				${ }^{\frac{388}{28}}$					－																																					${ }_{4}^{4}$					
	（emen				，	$\underbrace{\text { liga }}$			${ }^{0.1}$	$\underbrace{\substack{24 \\ 28 \\ 24}}$										${ }_{28}{ }^{\frac{12}{12}}$												${ }^{0.05}$							${ }_{0.4}^{0.6}$	${ }_{\substack{\text { No } \\ \text { No }}}$	${ }_{\text {¢ }}^{10}$		${ }^{10}$		${ }^{18}$						$\underset{\substack{\text { No } \\ \text { No }}}{\text { Not }}$	${ }_{\substack{149 \\ 104}}^{\substack{19}}$
成				${ }^{1100}$	，	${ }^{\text {a }}$			0.1	${ }_{\substack{\text { cis }}}^{\substack{\text { 24 }}}$							${ }_{78}$			${ }^{10} 10$																			0.15	－	${ }_{10}$	${ }_{39}{ }^{39}$	${ }_{12}$		${ }^{\frac{2}{17.5}}$		${ }^{106}$	${ }_{9}$		No	${ }_{\text {N4 }}^{0.0}$	${ }_{14}^{14}$
${ }_{\text {cosem }}$	Comer frocen wer				${ }_{\substack{086 \\ 248}}^{0.0}$	\bigcirc			${ }_{0}^{01}$	${ }_{20}^{48}$	${ }^{258}$	2			${ }^{20}$	${ }_{21}^{28}$	${ }_{8}^{19}$	$8{ }^{8}$			0		${ }^{\text {ouns }}$		${ }^{0032}$			${ }^{06}$											${ }_{0}^{0.3}$	No	${ }^{15}$	${ }^{56}$	${ }^{27}$	${ }^{\frac{3858}{3085}}$	${ }^{\frac{36}{26}}$		${ }^{23}$	${ }_{\frac{217}{12}}$		No．	${ }_{\substack{\text { No } \\ 1,1}}$	
${ }_{\text {cosem }}$	Comer facomen wer					。			${ }^{02}$	${ }^{\frac{278}{20}}$	$\frac{27}{\frac{27}{27}}$	$\stackrel{1}{3}$		${ }^{0.19}$	${ }_{\substack{20 \\ 30}}$		${ }^{178}$	${ }^{89}$			0.		cois		${ }_{\text {cos }}^{\substack{\text { O20 }}}$			${ }^{0.8}$		（0， 0 O3	${ }^{\text {O，}}$	$8{ }^{2}$	005									${ }^{\frac{72}{74}}$	${ }^{128}$	${ }^{225}$		${ }_{2}^{24}$	${ }^{175}$				${ }^{0.5}$	
${ }^{\text {a }}$		${ }^{182604}$	${ }^{11272998}$		${ }^{\text {Na }}$					${ }_{\substack{265}}^{\substack{285}}$	${ }^{\frac{304}{30}}$	${ }^{2}$		0.52	${ }^{30}$	$\frac{2}{28} 8$		${ }^{84}$		${ }^{10}$	${ }^{13}$		${ }_{\text {cose }}$		${ }_{0} 0.05$			0.9 0.8 0.		Ones	${ }^{\text {O }}$	$\frac{2011}{0.011}$	${ }^{005}$								${ }^{83}$	${ }^{8,}$	${ }^{145}$	${ }^{200}$								
	Comet focome wer	${ }^{\text {rand }}$		${ }^{1284}$		${ }^{273}$			02 02 0	${ }_{\text {cose }}^{\substack{\text { is }}}$	${ }^{146}$	${ }^{100}$			－	${ }_{29}$	－${ }^{78}$	${ }^{2}$	${ }^{65}$	为	d		通					${ }^{14}$		Oi， 0.1 0.1		$\frac{8.0 .1}{80.1}$	${ }_{\text {a }}^{0.05}$	${ }_{\text {cos }}^{\substack{\text { a } \\ 0.05}}$						${ }_{\text {No }}$	${ }^{\frac{7}{47}}$		${ }^{185}$	${ }^{120}$		${ }_{4}^{44}$	${ }_{4}^{48}$	${ }_{5}^{5}$				
				${ }^{\frac{10}{166}}$	168	\bigcirc			－${ }^{\circ .2}$	${ }_{\text {coic }}^{10}$	${ }_{\substack{17 \\ 20}}^{\substack{20}}$	${ }_{\text {cki }}^{100}$	${ }_{\text {ctic }}^{178}$				${ }^{27}{ }^{17}$	$\begin{aligned} & 1.51 \\ & \hline 18 . \end{aligned}$		（10	${ }^{28}$		${ }^{0.008}$		，			${ }_{0} 0$			¢																		178			
		${ }^{\text {che }}$	${ }^{20}$	${ }_{150}$	${ }^{288}$	－				${ }^{\text {12，}}$						$\frac{225}{25}$	$\frac{21}{29}$	${ }_{7}^{78}$	${ }^{18}$	${ }_{\text {ckib }}^{20}$	$2{ }^{29}$																							${ }^{11832}$		${ }^{268}$						
				${ }^{\frac{1}{1265}}$					${ }^{02}$	${ }^{20^{25}}$		${ }^{10}$	${ }^{273}$		${ }^{20} 13$				${ }^{88}$	${ }^{10}$	${ }^{10}$		${ }^{\text {oras }}$					${ }_{\text {\％}}^{1064}$			${ }^{\text {oun }}$	${ }_{8}^{81}$	${ }^{0.06}$	${ }^{\text {cos }}$					${ }^{02}$	${ }_{\text {No }}^{\text {No }}$	${ }^{43}$	${ }^{4 .}$	${ }^{\frac{83}{81}}$	${ }_{10}^{100}$	${ }^{10}$	${ }^{25}$	${ }_{8}^{8 .}$	${ }_{100}^{100}$		No	${ }^{\circ}$	${ }^{\frac{1185}{125}}$
	Comer frecome wer								${ }^{0.1}$				${ }^{\frac{2000}{1100}}$						${ }_{\text {ctic }}^{4}$																														${ }^{464}$			
	${ }_{\text {Comen }}^{\text {cos comen weir }}$	${ }^{\text {ITRasi }}$		${ }^{1800}$							${ }_{\substack{104 \\ 208}}^{\substack{\text { 20 }}}$		$\underset{\substack{230 \\ 350}}{\substack{20}}$			${ }^{30}$			5																																	
		${ }^{\text {che }}$			03	2			（	${ }^{128}$		220			＂	${ }^{23}$		${ }^{\text {it }}$		132818	${ }_{5} 5$.		0^{998}		007			${ }^{1838}$		$0_{0} 0.86$	O8809	No	wo	0.0					0.14	No	104	${ }^{28}$	${ }^{139}$	${ }_{68}{ }^{8}$	${ }^{77}$	${ }^{21}$	${ }_{31}$	42		No	${ }_{0} 00$	${ }_{5152}$
	comer focomew	${ }^{\text {che }}$		${ }^{\text {and }}$							${ }^{\frac{18}{188}}$		¢80．																																				${ }^{752}$			
	Comer Racome wer		${ }^{\text {TVa32000 }}$	${ }^{\frac{1220}{1200}}$	${ }^{0} 8$	${ }^{45}$			${ }^{02}$																																											
	Comen Racome wer	${ }^{207532^{2}}$			${ }^{198}$			10	${ }_{\substack{0.4 \\ 0.4}}$						${ }_{4}^{46}$		，	${ }^{\frac{70}{70}}$		cose	${ }_{1}^{158}$		${ }^{0,168}$		${ }^{\text {OOS344 }}$					${ }_{0}^{0.1624}$		${ }_{\substack{000 \\ 0.5}}$	${ }_{\text {No }}^{\text {Noo }}$	${ }_{0}^{0.00}$						$\stackrel{\text { No }}{\substack{\text { No }}}$		${ }_{\text {398 }}^{402}$	${ }_{\substack{89 \\ 796}}$	${ }_{\text {atas }}^{\text {gat }}$	${ }_{\substack{988 \\ 988}}$	${ }_{\text {5，5 }}^{\substack{39}}$		${ }_{48}^{48}$				
	Comen Racome wer			${ }^{1245}$	${ }^{02}$				${ }^{02}$	${ }^{185}$			${ }^{\frac{227}{255}}$						${ }^{68}$	${ }^{20}$			0008		0.078					0.8			0.5	${ }_{0} 03$																		
，	Comere facone wer	Ste		${ }^{\frac{124}{124}}$	${ }^{0.108}$	$\stackrel{0}{0}$			－${ }^{02}$		${ }_{\text {c }}^{\substack{168 \\ 188}}$							$\frac{.85}{14}$																																		
	Comer facome wer		$\xrightarrow{\text { Hotiow }}$	${ }^{122}$	${ }_{4}^{4.68}$	${ }^{185999}$			${ }^{02}$		${ }_{\substack{108 \\ 108}}^{\substack{18}}$							${ }_{20}^{10}$																																		
，	comer focmewer wer	${ }^{20}$			${ }_{\text {ckic }}^{46}$			－	${ }^{\frac{0}{0.3}}$	${ }^{15}$	${ }^{114}$	200	188		7		${ }^{212}$	6	42	${ }^{1300} 8$	，		0.12		009					0.18	（1888	0.1	008	coss					0.	No	2	${ }^{36}$	\bigcirc	${ }^{2}$	86	2	42	${ }_{5}$		No		${ }^{6}$
								\bigcirc	${ }^{\text {¢ }}$	${ }^{120}$	${ }^{127}$	${ }^{2000}$	1982				${ }^{96}$	${ }^{6}$		1008			${ }^{0.15}$		${ }^{1088}$					${ }^{0.24}$	${ }_{\text {l }}^{1.1084}$	0.	0.05	${ }^{2008}$						No	${ }^{3}$	${ }_{4}^{4}$	59	\％	94	$\stackrel{2}{2}$	42	${ }_{5}^{5}$		No		
$\frac{1}{1205088}$	Comer Racome weir	${ }^{\text {202ase }}$ 2085		${ }_{\text {cose }}^{10}$	${ }_{8}^{8,78}$					${ }^{125}$	${ }^{128}$	${ }_{\text {2000 }}^{2180}$	1780		$\stackrel{10}{2}$		${ }^{31.14}$	6		coile			${ }^{0.14}$		0082		${ }^{1.6}$			${ }^{026}$	${ }^{095}$		${ }_{0}^{0.065}$	${ }_{\text {dens }}^{\text {dis }}$						${ }_{\text {No }}^{\text {No }}$	$\stackrel{3}{4}$	${ }_{4}^{4 .}$	${ }^{67}$	${ }_{\substack{100 \\ 100}}^{10}$	10	$\stackrel{2}{2}$	${ }_{4}^{42}$	${ }_{5}^{57}$		${ }_{\text {No }}^{\substack{\text { No }}}$		${ }^{\text {in }}$
Sose		${ }^{202385}$	${ }^{20120204}$	${ }_{\text {a }}^{10.68}$	${ }^{6.1}$					${ }^{125}$		$\underbrace{1850}_{\substack{1880 \\ 1800}}$			¢																		${ }^{0065}$	cios						－	$\stackrel{4}{4}$				${ }^{\frac{10}{90}}$		${ }^{4.4}$	${ }_{\text {c }}^{5}$				
	（e）				${ }^{\frac{8.73}{6.13}}$					${ }^{\frac{125}{125}}$	${ }^{120}$	${ }^{\frac{18}{1380}} \mathbf{1 0 0}$	${ }^{1384}$		${ }^{10} 10$		${ }^{87}{ }^{173}$	${ }^{2}$		边			${ }_{0} 0006$		0.064		${ }_{\text {L }}^{1.776}$			${ }_{0} 027$	O8859	$\frac{0.1}{0.1}$	${ }^{0.05}$	${ }_{\text {cos }}^{\substack{\text { cos } \\ \text { cos }}}$					${ }_{0}$	No	4	${ }_{4}^{46}$	${ }_{75}$	${ }_{100}^{100}$	10	$\stackrel{2}{2}$	${ }_{4}^{4}$	${ }_{5}^{6}$		No		${ }_{69}$
	comer focomew wer	${ }^{\text {andeat }}$		${ }_{\text {and }}^{200}$	${ }^{\text {ens }}$			－	0.	${ }^{30}$	${ }^{133}$	1150	${ }^{1204}$		\bigcirc		${ }^{89}{ }^{73}$	6		${ }^{60}{ }^{\circ} 8$	${ }^{13}$		0.065		007					025	${ }_{\text {cose }}$	0.1	005	coss					0.1	No	$\stackrel{4}{4}$	5	${ }^{23}$	${ }^{10}$	10	2	${ }^{43}$	50		No	0.1	\cdots
	为	${ }^{202034}$								${ }^{184}$	${ }^{184}$	${ }^{48}$	${ }_{\substack{53 \\ 60}}$		2		${ }^{42}$	$\frac{74}{75}$	$7{ }^{75}$	132	${ }^{23}$		0038		0.168		${ }_{10,58}^{1.068}$			${ }^{0097}$	0483	0．11	005	${ }^{203}$					02	No		${ }^{48}$	10	${ }^{18}$			${ }^{43}$	6		No		

Your Friend in the Field

Equipment Report - TPS 90FLT Water Quality Meter

This Water Quality Meter has been performance checked / calibrated* as follows

* Calibration solution traceability information is available upon request

Date: \qquad Checked by: \qquad Signed: \qquad
Please check that the following items are received and that all items are cleaned and decontaminated before return. A minimum $\$ 20$ cleaning / service / repair charge may be applied to any unclean or damaged items. Items not returned will be billed for at the full replacement cost.

Sent	Received	Returned	Item
	\square	\square	$90 F L T$ Unit.

Processors Signature/ Initials

EE Quote Reference	5351 ,	Condition on return
Customer Ref		
Equipment ID	90 FLTA	
Equipment serial no.		
Return Date	1	1
Return Time		

| Melbourne | Sydney | Brisbane | Perth |
| :---: | :---: | :---: | :---: | Auckland \quad Koala Lumper

ENVIROEQUIP RENTALS

Your Friend in the Field

Equipment Report - TPS WP88 Turbidity Meter
This Water Quality Meter has been performance checked / calibrated* as follows:

* Calibration solution traceability information is available upon request.

Date: \qquad Checked by: \qquad
Signed \qquad Hones

Please check that the following items are received and that all items are cleaned and decontaminated before return. A minimum $\$ 30$ cleaning / service / repair charge may be applied to any unclean or damaged items. Items not returned will be billed for at the full replacement cost.

Sent	Received	Returned	Item

2995
 ENVIROEQUIP RENTALS

Your Friend in the Field

Equipment Report - TPS 90FLT Water Quality Meter

This Water Quality Meter has been performance checked / calibrated* as follows: pH
Conductivity
IDS
Turbidity
Dissolved Oxygen

- Electrodes cleaned/checked
Def 6.88
$0.0 \mathrm{mS} / \mathrm{cm}$
60.0 ppk
cor NTU
$\square \mathrm{pH} 7.00$
$\square 2.76 \mathrm{mS} / \mathrm{cm}$
[-36 pp
\square 90NTU
[G.0 0ppm in Sodium Sulphite
Q Charged $7.7 \mathrm{~V}(\min 7.2 \mathrm{~V})$
a pH 4.00
$\square 12.88 \mathrm{~ms} / \mathrm{cm}$
\square
pp
$\square \mathrm{pH} 10.00$
$\square \mathrm{pH}$

Redo \qquad $\mathrm{mS} / \mathrm{cm}$
$\mathrm{a} \quad \mathrm{mV}$
\qquad

- 100% Saturation in Air cT temperature
* Calibration solution traceability information is available upon request

Date:

HAN

Signed:
\square
Please check that the following items are receive and tall return. A minimum $\$ 20$ cleaning / service / repair chargat all items are cleaned and decontaminated before Items not returned will be billed for at the full replacement cost.

EE Quote Reference	$6 Q R 1$	Condition on return
Customer Ref		
Equipment ID	90 FLT	
Equipment serial no.		
Return Date	1	1
Return Time		

[^19]
ENVIROEQUIP RENTALS

Your Friend in the Field

Equipment Report - TPS 90FLMV Water Quality Meter

This Water Quality Meter has been performance checked / calibrated* as follows: pH
Conductivity TBS
Dissolved Oxygen
Redox (ORP)**
E Electrodes cleaned/checked
(pH 6.88 $0.0 \mathrm{mS} / \mathrm{cm}$ © 0.0 ppk

D pH 7.00
$\square 2.76 \mathrm{~ms} / \mathrm{cm}$

- -36 ppk

0 p 44.00
$\square 12.88 \mathrm{mS} / \mathrm{cm}$
$\square \mathrm{pH} 10.00$ E pH
$58.6 \mathrm{~ms} / \mathrm{cm}$ or $\mathrm{ms} / \mathrm{cm}$
0.00 ppm in Sodium Sulphate EElectrode operability test $240 \mathrm{mV}+1-10 \%$. Actual: $2+5100 \%$ Sa

> GCharged

* Calibration solution traceability information is available upon request.
*this meter uses an Ag/AgCl ORP electrode. To convertreadinge to
further infombition, teller to www.enviroequip. com/quilinotes/ORP.htm. SHE (Standard Hydrogen Electrode), add 199 mV to the mV reading. For

Date: \qquad Checked by: \qquad Signed: \qquad $-$ Please check that the following items are received and that all items are cleaned and decontaminated before return. A minimum $\$ 20$ cleaning / service / repair charge may be applied to any unclean or damaged items. teems not returned will be billed for at the full replacement cost. applied to any unclean or damaged items.

Processors Signature/ Initials

EE Quote Reference	7705	Condition on return
Customer Ref		
Equipment ID	90 FLMV 7	
Equipment serial no.		
Return Date	1	1
Return Time		

suwiert Santos Stream Assess.
Project/Task No:
File Structure/Doc No: By: H. Frock

Date:
$30-6-08$
Date:
Verified By:

ENVIROEQUIP RENTALS

Your Friend in the Field

Equipment Report - TPS 90FLT Water Quality Meter

This Water Quality Meter has been performance checked / calibrated* as follows:

* Calibration solution traceability information is available upon request.
${ }^{* *}$ This meter uses an Ag/AgCl ORP electrode. To convert readings to SHE (Standard Hydrogen Electrode), add 199 mV to the mV reading. For further information, refer to www.enviroequip.com/quipnotes/ORP.htm.

Date: \qquad Checked by: \qquad
Signed \qquad
Please check that the following items are received and that all items are cleaned and decontaminated before return. A minimum $\$ 30$ cleaning / service / repair charge may be applied to any unclean or damaged items. Items not returned will be billed for at the full replacement cost.

Sent	Received
Returned	Item
pH sensor 5 m	
Conductivity / TDS / Temperature $\mathrm{k}=10$ sensor 5 m	

Processors Signature/ Initials

EE Quote Reference	8602	Condition on return
Customer Ref	$73 C$	
Equipment ID	$90 F L T W A 1$	
Equipment serial no.	U4348	1
Return Date	1	1
Return Time		

| Melbourne | Sydney | Brisbane | Perth |
| :---: | :---: | :---: | :---: | Auckland \quad Koala Lumper

ENVIROEQUIP RENTALS

Your Friend in the Field

Equipment Report - TPS 90FLT Water Quality Meter

This Water Quality Meter has been performance checked / calibrated* as follows:

* Calibration solution traceability information is available upon request

Date
 -
Signed: \qquad *
Checked by: \qquad

Please check that the following items are received and that all items are cleaned and decontaminated before return. A minimum $\$ 20$ cleaning / service / repair charge may be applied to any unclean or damaged items. Items not returned will be billed for at the full replacement cost.

Received Returned | Item |
| :--- |
| Conductivity / TDS / Temperature $\mathrm{k}=10$ sensor 5 m |
| Dissolved Oxygen YSI5739 sensor 5 m |

Melbourne	Sydney	Brisbane	Perth	Auckland
Sydney - Unit 1, 28 Marco St, Chatswood NSW 2067 Australia				
Tel: $+61-2-9417-1513$	Fax: $+61-2-9417-7669$			
	Email: rentals.syd@enviroequip.com	Internet: www rentals.enviroequip.com		

Your Friend in the Field

Equipment Report - TPS 90FLT Water Quality Meter

This Water Quality Meter has been performance checked / calibrated* as follows:
pH
Conductivity
TD
Turbidity
Dissolved Oxygen
[-Électrodes cleaned/checked
w- 6.6 .88
$0.0 \mathrm{mS} / \mathrm{cm}$
0.0 ppk
$\square 0.0 \mathrm{NTU}$
0.00 ppm in Sodium Sulphate
cenarged $8.16 v(\min 7.2 \mathrm{~V})$
[pH 10.00
« $58.6 \mathrm{~ms} / \mathrm{cm} \quad \mathrm{mS} / \mathrm{cm}$
Redo
$0.25 / \mathrm{mv}$
\square \qquad
(1) 00% Saturation in Air日隹emperature

* Calibration solution traceability information is available upon request.

Date: \qquad Checked by: \qquad PETER

Signed:

Please check that the following items are received and that all items are cleaned and decontaminated before return. A minimum $\$ 20$ cleaning / service / repair charge may be applied to any unclean or damaged items. Items not returned will be billed for at the full replacement cost.

Sent	Received	Returned	Item

Full Statistics of Associated Water Quality Fairview and Roma Fields

Fairview Field Associated Water Quality Statistics (all unit mg/L unless specified)

Variable
Conductivity
Total Dissolved Salt
Total Dissolved Solids
Total Dissolved Solids:
Total Dissolved Solids:
Dissolved O2
Turbidity
Redox Potential
Chemical Oxygen Demand
Specific Gravity
Suspended Solids
Total Residue
Aggressive CO2
Free CO2
Tot Alkalinity
Bicarbonate Alkalinity
Carbonate Alkalinity
Hydroxide Alkalinity
Residual Alkali
Alkalinity-Phenolp
Total Hardness
Carbonate Hardness
Non-Carbonate Hardness
Ammonia N
Nitrate
Nitrate N by FIA (Calc)
Nitrite
Nitrite N by FIA
Nitrite N for NO3 only (Nitrite+Nitrate as N
Total Organic Carbon as
Dissolved Organic Carbon
Aluminium
Antimony
Arsenic
Barium
Beryllium
Boron as B
Bromide
Cadmium
Calcium
Chloride
Chromium
Cobalt
Copper
Cyanide
Fluoride by ISE
Iron
Iron (Soluble)
Lead
Lithium
Magnesium
Manganese
Manganese (Soluble)
Mercury
Molybdenum
Nickel
Phosphorous
Ortho Phosphorus
Potassium
Selenium
Silica
Silver
Sodium
Sodium Adsorption Ratio
Strontium
Sulphate
Sulphide
Sulphur as SO4
Tellurium
Variable

N	Mean	SE Mean	StDev	Minimum	Q1	Median	Q3	Maximum
1702	8.5165	0.00952	0.3928	5.0000	8.3000	8.6000	8.7600	10.0000
2	0.880	0.120	0.170	0.760	*	0.880	*	1.000
3929	2422	52.5	3290	0.0	1419	1840	2458	121800
309	6.089	0.197	3.464	0.008	4.760	6.020	7.190	41.700
122	2425	437	4824	87	905	1168	1774	29248
57	2862	427	3227	114	1420	2000	2985	16350
1201	1218.8	22.5	779.6	0.0	843.2	975.1	1285.6	9241.2
309	1299.7	46.7	821.7	146.0	895.0	1070.0	1350.0	7000.0
127	4.244	0.129	1.456	1.000	3.400	4.100	5.000	11.950
4	1.025	0.494	0.988	0.100	0.225	0.800	2.050	2.400
127	93.62	5.01	56.48	3.30	47.70	89.50	139.90	247.00
54	484	152	1115	5	23	72	546	7300
6	1.000	0.365	0.894	0.000	0.000	1.000	2.000	2.000
192	2403	740	10257	5	5	10	209	87307
1	0.90000	*	*	0.90000	*	0.90000	*	0.90000
193	1.363	0.123	1.712	1.000	1.000	1.000	1.000	16.000
193	5.326	0.606	8.413	1.000	2.000	3.000	5.000	72.000
566	958.7	21.6	513.2	18.3	750.8	861.5	1040.0	6430.2
608	862.5	14.9	367.5	18.0	691.0	788.0	958.8	4554.0
605	76.84	7.84	192.73	1.00	36.00	60.00	88.00	4039.00
558	3.96	2.21	52.30	1.00	1.00	1.00	1.00	1130.00
2	20.50	9.40	13.29	11.10	*	20.50	*	29.90
48	40.04	9.97	69.10	1.00	20.40	30.35	38.63	501.18
310	5.396	0.336	5.919	1.000	2.000	4.000	7.000	73.000
5	1.60	1.60	3.58	0.00	0.00	0.00	4.00	8.00
4	0.1500	0.0289	0.0577	0.1000	0.1000	0.1500	0.2000	0.2000
426	0.5399	0.0308	0.6356	0.0040	0.3200	0.4125	0.5845	7.8500
171	0.171	0.133	1.744	0.010	0.010	0.010	0.030	22.800
236	0.01995	0.00221	0.03402	0.01000	0.01000	0.01000	0.01000	0.33300
49	0.002204	0.000167	0.001172	0.002000	0.002000	0.002000	0.002000	0.010000
140	0.03834	0.00543	0.06421	0.00200	0.02000	0.02000	0.02000	0.46000
48	0.002000	0.000000	0.000000	0.002000	0.002000	0.002000	0.002000	0.002000
196	0.03962	0.00552	0.07727	0.00200	0.00525	0.02000	0.02000	0.47000
48	0.01688	0.00336	0.02329	0.00200	0.00425	0.00900	0.01875	0.13900
64	95.0	30.8	246.6	0.5	7.6	21.0	61.0	1785.0
64	31.9	16.8	134.8	0.5	1.1	3.4	7.0	980.0
411	6.01	2.05	41.53	0.01	0.02	0.09	0.22	580.00
11	0.001818	0.000818	0.002714	0.001000	0.001000	0.001000	0.001000	0.010000
410	0.01778	0.00247	0.05008	0.00100	0.00500	0.01000	0.01000	0.62900
68	2.321	0.975	8.037	0.041	0.281	0.604	1.887	65.165
391	0.006870	0.000519	0.010254	0.001000	0.005000	0.005000	0.010000	0.150000
430	0.8595	0.0374	0.7758	0.0200	0.5160	0.7105	1.0193	11.5370
57	2.190	0.489	3.691	0.100	0.300	0.900	2.200	20.000
427	0.002659	0.000340	0.007029	0.000100	0.001000	0.001000	0.005000	0.131000
608	10.16	2.67	65.93	0.14	1.00	1.20	2.46	1137.24
359	171.2	19.0	360.4	1.0	20.0	55.0	125.0	2640.0
405	0.02601	0.00631	0.12693	0.00100	0.00100	0.00100	0.01000	1.19600
384	0.01177	0.00250	0.04890	0.00100	0.00200	0.00200	0.01000	0.61700
434	0.235	0.103	2.139	0.001	0.002	0.005	0.020	30.806
10	0.010000	0.000000	0.000000	0.010000	0.010000	0.010000	0.010000	0.010000
602	2.2193	0.0586	1.4379	0.0500	1.4000	1.9000	2.7125	16.6400
605	20.88	5.66	139.28	0.01	0.10	0.27	0.81	2300.00
57	0.914	0.419	3.165	0.005	0.091	0.226	0.647	23.810
323	0.0652	0.0102	0.1827	0.0010	0.0050	0.0090	0.0400	2.1800
1	0.030000	*	*	0.030000	*	0.030000	*	0.030000
564	3.028	0.770	18.292	0.100	0.897	1.000	1.000	296.114
432	0.724	0.225	4.670	0.001	0.004	0.010	0.022	57.000
56	0.289	0.263	1.969	0.001	0.006	0.016	0.031	14.760
408	0.05195	0.00687	0.13869	0.00010	0.00010	0.00060	0.10000	1.40103
413	0.01053	0.00116	0.02357	0.00100	0.00500	0.00500	0.01000	0.35800
414	0.02055	0.00475	0.09655	0.00100	0.00200	0.00300	0.01000	1.23500
180	0.05683	0.00834	0.11184	0.01000	0.02000	0.04000	0.06000	1.41000
243	0.05565	0.00458	0.07137	0.00200	0.02000	0.02800	0.06400	0.64400
608	121.7	64.8	1596.8	0.5	2.0	2.4	4.6	33915.5
394	0.009553	0.000579	0.011489	0.003000	0.005000	0.010000	0.010000	0.125000
62	66.68	9.88	77.81	6.24	23.64	37.67	80.73	467.80
10	0.001000	0.000000	0.000000	0.001000	0.001000	0.001000	0.001000	0.001000
560	619.8	25.7	608.0	2.1	366.3	466.2	657.0	9402.8
358	149.6	14.9	281.8	2.9	84.6	106.0	122.0	2160.5
70	2.499	0.714	5.971	0.029	0.359	0.902	2.225	45.600
3	1.500	0.500	0.866	1.000	1.000	1.000	2.500	2.500
9	0.10000	0.000000	0.000000	0.10000	0.10000	0.10000	0.10000	0.10000
559	4.371	0.913	21.580	1.000	1.000	2.000	2.000	393.436
1	0.000500	*	*	0.000500	*	0.000500	*	0.000500
N	Mean	SE Mean	StDev	Minimum	Q1	Median	Q3	Maximum
10	0.001000	0.000000	0.000000	0.001000	0.001000	0.001000	0.001000	0.001000

Full Statistics of Associated Water Quality Fairview and Roma Fields

Appendix E

Total Cyanide Uranium
Vanadium
Zinc
Colif. (MF)
Colif. Faecal
Colif. Pres Coliforms Faecal (MF) Escherichia coli
1,2,4 Trimethylbenzene 1,3,5 Trimethylbenzene 2,3,4,6 Tetrachloropheno 2,4 Dichlorophenol
2,4 Dimethylphenol
2,4,5 Trichlorophenol
2,4,6 Trichlorophenol
2,6 Dichlorophenol
2-Chlorophenol
2-Methylphenol
2-Nitrophenol
3 \& 4 Methylphenol 4-Chloro-3-Methylphenol
Acenaphthalene
Acenaphthene
Anthracene
Benz (a) anthracene Benzene
Benzo (a) pyrene Benzo(b) \& (k) fluoranthene Benzo(g,h,i) perylene
C10-C14 Fraction C15-C28 Fraction C29-C36 Fraction
C6-C9 Fraction
Chlorobenzene
Chrysene
Dibenz (a,h) anthracene
Ethyl Benzene
HPC
Ideno (1,2,3-cd) pyrene
meta \& para-Xylene
Fluoranthene
Fluorene
Naphthalene
Ortho-Xylene
PCB
PCB by Aroclor
Pentachlorophenol
Phenol
Phenanthrene
Polyaromatic Hydroca
Pyrene
Speciated Phenols
Toluene

10
141
382
41
17
6
10
11
16
49
49
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
49
10
10
10
49
49
49
49
49
10
10
10
10
10
10
49
10
10
10
40
49
10
10
0.010000 0.001000 0.02487
1.235
1.0000
1.000
1.0000
1.0000
0.001020 0.001020 0.002000 0.001000 0.001000
0.001000 0.001000 0.001000 0.001000 0.001000 0.001000 0.002000 0.001000 0.001000 0.001000 0.001000 0.001000 1.0000 0.001000 0.002000 0.001000
0.0643
0.1420
0.0616 0.010204 0.002041 0.001000 0.001000 0.001020 0.001000 0.002041 0.001000 0.001000 0.001000 0.001020 0.001000 0.001000 0.002000 0.001000 0.001000 0.002000 0.001000 0.002000 0.002041
0.000000
0.000000 0.000000
0.00859 $\begin{array}{ll}0.000000 & 0.010000 \\ 0.000000 & 0.001000\end{array}$ 0.01
0.0
0.

0.010000	0.010000
0.001000	0.001000
0.00500	0.00500

0.001000 .001000 .01000
0.0600
0.010000 $\begin{array}{r}0.01000 \\ \hline \quad 2.30100\end{array}$ 8.3580
$1.000 \quad 5.000$
$1.0000 \quad 1.0000$
$1.0000 \quad 8.000$
$1.0000 \quad 1.0000$
$0.001000 \quad 0.002000$
0.002000
0.002000 0.001000 0.001000 0.001000 0.001000 0.001000 0.001000 0.001000 0.001000 0.002000 0.001000 0.001000
0.001000 0.001000
0.001000 2.0000 0.001000 0.002000 0.7000 4.0000 0.5700
0.020000
0.004000
0.001000 0.001000
0.002000 2800
1000 0.001000 0.001000 0.001000 0.001000 0.001000 0.001000 0.002000 0.001000 0.001000 0.002000 0.001000 0.002000
0.004000

Note - Nutrient (NOx) results removed due to uncertainties in analytical methods and reporting standards (see below):

Variable	N	Mean	SE Mean	StDev	Minimum	Q1	Median	Maximum	
Nitrate		171	0.171	0.133	1.744	0.010	0.010	0.010	0.030
Nitrate N by FIA (Calc)	236	0.01995	0.00221	0.03402	0.01000	0.01000	0.01000	0.01000	0.33300
Nitrite		49	0.002204	0.000167	0.001172	0.002000	0.002000	0.002000	0.002000
Nitrite N by FIA		140	0.03834	0.00543	0.06421	0.00200	0.02000	0.02000	0.02000
Nitrite N for NO3 only	0.0000								
Nitrite Nitrate as N	48	0.002000	0.000000	0.000000	0.002000	0.002000	0.002000	0.002000	0.002000
NOX for NO3 only (Calc)	48	0.01688	0.00336	0.02329	0.00200	0.00425	0.00900	0.01875	0.13900

Full Statistics of Associated Water Quality Fairview and Roma Fields

Roma Field Associated Water Quality Statistics (all units mg/L unless specified)

Variable	N	Mean	SE Mean	StDev	Minimum	Q1	Median	Q3	Maximum
Top Depth (m RT)	66	305.9	22.3	180.8	99.0	142.0	293.0	305.0	782.3
Bottom Depth (m RT)	92	545.0	15.8	151.3	150.0	409.0	575.0	665.2	857.0
Na	103	855.6	35.5	359.9	233.0	630.0	792.0	950.0	1980.0
K	103	710	178	1807	2	4	47	769	14800
Ca	103	112.6	21.7	220.7	0.5	3.0	10.1	73.4	870.0
Mg	101	26.39	5.20	52.23	0.10	0.90	4.00	24.00	290.00
Fe	80	121.6	27.9	249.9	0.0	0.1	3.0	117.5	1200.0
Sr	57	9.47	1.95	14.68	0.33	1.01	2.45	9.94	66.00
Ba	7	0.2804	0.0479	0.1266	0.1350	0.2230	0.2460	0.3090	0.5410
Cl	103	1614	399	4046	78	555	701	1130	39200
HCO 3	103	842.6	33.7	341.9	10.0	651.0	821.0	991.0	1864.0
CO 3	103	75.60	7.32	74.26	0.90	28.00	58.00	95.00	436.00
SO4	103	16.76	3.48	35.31	0.90	1.66	4.00	18.00	244.00
F	100	2.650	0.765	7.654	0.000	1.162	2.000	2.797	77.869
NO3 (Nitrite+Nitrate)	34	0.0479	0.0187	0.1091	0.0020	0.0090	0.0190	0.0200	0.6000
OH	103	1.2087	0.0943	0.9567	0.9000	0.9000	1.0000	1.0000	7.0000
Conductivity uS/cm @25 C	103	7065	1472	14943	1200	3200	3610	6200	115000
Resistivity ohm.m@25 C	54	2.625	0.134	0.986	0.110	2.428	2.799	3.125	4.630
Reaction - pH	102	8.6361	0.0582	0.5875	5.1000	8.4425	8.7000	8.9000	9.7000
TDS (EC)	97	3964	704	6935	740	1918	2300	4040	66000
TDS ($\mathrm{HCO} 3=\mathrm{CO} 3)$	31	5819	2254	12547	1390	1840	2180	4810	71300

Condamine-Balonne Catchment Water Quality

Data

Appendix A

Table A1
Condamine-Balonne Catchment URS Water Quality Parameters
Table A2 Condamine-Balonne Catchment URS Analytical Results Summary
Table A3 Condamine-Balonne Catchment URS Analytical Results
Table A4 Condamine-Balonne Catchment DNRW Water Quality Results Summary
Table A5 Condamine-Balonne Catchment DNRW Water Quality Results Bungil Creek at Tabers
Table A6 Condamine-Balonne Catchment DNRW Water Quality Results Balonne River at Surat
Table A7 Condamine-Balonne Catchment DNRW Water Quality Results Yuleba Creek at Forestry

Upper Dawson Catchment Water Quality Data

Table B1 Upper Dawson River URS Water Quality Parameters
Table B2 Upper Dawson River URS Water Quality Analytical Results
Table B3 Upper Dawson River Water Quality Data
Table B4 Baffle Creek Water Quality Data
Table B5 Dawson River Downstream Baffle Creek Water Quality Data
Table B6 Hutton Creek Water Quality Data
Table B7 Dawson R - Hutton Creek to Yebna Crossing Water Quality Data
Table B8 Dawson R at Taroom Water Quality Data
Table B9 Dawson R at Utopia Water Quality Data

Comet-Brown Catchment Water Quality Data

Appendix C

Table C1	Comet Catchment URS Surface Water Parameters
Table C2	Comet Catchment URS Analytical Results
Table C3	Comet Catchment Surface Water Data Summary
Table C4	Comet Catchment Surface Water Data Results - Brown River
Table C5	Comet Catchment Surface Water Data Results - Carnarvon Creek
Table C6	Comet Catchment Surface Water Data Results - Comet River at Rolleston
Table C7	Comet Catchment Surface Water Data Results - Meteor Creek
Table C8	Comet Catchment Surface Water Data Results - Planet Creek
Table C9	Comet Catchment Surface Water Data Results - Comet River Downstream Rolleston
Table C10	Comet Catchment Surface Water Data Results - Humboldt and Rockland Creeks
Table C11	Comet Catchment Surface Water Data Results - Comet River at Comet Weir

Full Statistics of Associated Water Quality Fairview and Roma Fields

Fairview Field Associated Water Quality Statistics (all unit mg/L unless specified)
Variable
pH
Colour - True
Conductivity
Resistivity
Total Dissolved Salt
Total Dissolved Solids
Total Dissolved Solids:
Total Dissolved Solids:
Dissolved O2
Turbidity
Redox Potential
Chemical Oxygen Demand
Specific Gravity
Suspended Solids
Total Residue
Aggressive CO2
Free CO2
Tot Alkalinity
Bicarbonate Alkalinity
Carbonate Alkalinity
Hydroxide Alkalinity
Residual Alkali
Alkalinitty--henolp
Total Hardness
Carbonate Hardness
Non-Carbonate Hardness
Ammonia N
Nitrate
Nitrate N by FIA (Calc)
Nitrite
Nitrite N by FIA
Nitrite N for NO3 only (
Nitritte+Nitrate as N
NOX for NO3 only (Calc)
Total Organic Carbon as
Dissolved Organic Carbon
Aluminium
Antimony
Arsenic
Barium
Beryllium
Boron as B
Bromide
Cadmium
Calcium
Chloride
Chromium
Cobalt
Copper
Cyanide
Fluoride by ISE
Iron
Iron (Soluble)
Lead
Lithium
Magnesium
Manganese
Manganese (Soluble)
Mercury
Molybdenum
Nickel
Phosphorous
Ortho Phosphorus
Potassium
Selenium
Silica
Silver
Sodium
Sodium Adsorption Ratio
Strontium
Sulphate
Sulphide
Sulphur as so4
Tellurium
Variable
Thallium

Full Statistics of Associated Water Quality -
 Fairview and Roma Fields

Total Cyanide
Uranium
Vanadium
Zinc
Colif. (MF)
Colif. Faecal
Colif. Pres
Coliforms Faecal (MF)
Escherichia coli
1,2,4 Trimethylbenzene
1,3,5 Trimethylbenzene
2,3,4,6 Tetrachloropheno
2,4 Dichlorophenol
2,4 Dimethylphenol
2,4,5 Trichlorophenol
2,4,6 Trichlorophenol
2,6 Dichlorophenol
2-Chlorophenol
2-Methylphenol
2-Nitrophenol
3 \& 4 Methylphenol 4-Chloro-3-Methylphenol
Acenaphthalene
Acenaphthene
Anthracene
Benz(a)anthracene
Benzene
Benzo(a)pyrene
Benzo(b)\&(k)fluoranthene
Benzo(g,h,i)perylene
C10-C14 Fraction
C15-C28 Fraction
C29-C36 Fraction
C6-C9 Fraction
Chlorobenzene
Chrysene
Dibenz(a,h)anthracene
Ethyl Benzene
HPC
Ideno(1,2,3-cd)pyrene
meta \& para-Xylene
Fluoranthene
Fluorene
Naphthalene
Ortho-Xylene
PCB
PCB by Aroclor
Pentachlorophenol
Phenol
Phenanthrene
Polyaromatic Hydroca
Pyrene
Speciated Phenols
Toluene
10
141
382
441
17
6
10
10
11
16
49
49
10
10
10
10
10
10
10
10
10
10
10
10
10 0
0.
0.

0.02487	0.000000	0.000000	0.001000
0.1127	0.0273	0.16779	0.00500

0. .001000

0.00500
0.
0.010000
0.001000
0.00500
$0.0060 \quad 0.0180$
$1.000 \quad 1.000$
$\begin{array}{rr}1.0000 & 1.0000 \\ 1.000 & 1.000\end{array}$
$\begin{array}{rr}1.000 & 1.000 \\ 1.0000 & 1.0000\end{array}$
$\begin{array}{ll}1.0000 & 1.0000 \\ 1.0000\end{array}$
0.001000
0.001000
0.001000 0.002000 0.001000 0.001000
0.001000 0.001000 1.0000 0.001000 0.002000
0.001000 0.0500 0.0500 0.010000 0.002000 0.001000 0.001000 0.001000
10 0.001000 0.002000 0.00100 0.001000
0.001000 0.001000 0.001000 0.001000 0.001000
0.002000
$\begin{array}{ll}0.001000 & 0.001000 \\ 0.001000 & 0.001000\end{array}$ $0.001000 \quad 0.001000 \quad 0.001000$ $\begin{array}{lll}0.001000 & 0.001000 & 0.001000 \\ 0.002000 & 0.002000 & 0.002000\end{array}$ $0.002000 \quad 0.002000 \quad 0.002000$ $\begin{array}{lll}0.001000 & 0.001000 & 0.001000 \\ 0.001000 & 0.001000 & 0.001000\end{array}$ $\begin{array}{lll}0.001000 & 0.001000 & 0.001000 \\ 0.001000 & 0.001000 & 0.001000\end{array}$ $0.001000 \quad 0.001000 \quad 0.001000$ $0.002000 \quad 0.002000$ $0.001000 \quad 0.001000$ $0.002000 \quad 0.002000 \quad 0.002000$ $\begin{array}{lll}0.001000 & 0.001000 & 0.001000 \\ 0.002000 & 0.002000 & 0.002000\end{array}$ $0.002000 \quad 0.002000 \quad 0.004000$

10000	0.
0.001000	0.001000
0.01000	2.30100
0.0600	8.3580
1.000	5.000
1.0000	1.0000
1.000	8.000
1.0000	1.0000
1.0000	1.0000
0.001000	0.002000
0.001000	0.002000
0.002000	0.002000
0.001000	0.001000
0.001000	0.001000
0.001000	0.001000
0.001000	0.001000
0.001000	0.001000
0.001000	0.001000
0.001000	0.001000
0.001000	0.001000
0.002000	0.002000
0.001000	0.001000
0.001000	0.001000
0.001000	0.001000
0.001000	0.001000
0.001000	0.001000
1.0000	2.0000
0.001000	0.001000
0.002000	0.002000
0.001000	0.001000
0.0500	0.7000
0.0500	4.0000
0.0500	0.5700
0.010000	0.020000
0.002000	0.004000
0.001000	0.001000
0.001000	0.001000
0.001000	0.002000
510	2800
0.001000	0.001000
0.002000	0.004000
0.001000	0.001000
0.001000	0.001000
0.001000	0.001000
0.001000	0.002000
0.001000	0.001000
0.001000	0.001000
0.002000	0.002000
0.001000	0.001000
0.001000	0.001000
0.002000	0.002000
0.001000	0.001000
0.002000	0.002000
0.002000	0.004000

Note - Nutrient (NOx) results removed due to uncertainties in analytical methods and reporting standards (see below):

Variable	N	Mean	SE Mean	StDev	Minimum	Q1	Median	Q3
Nitrate	171	0.171	0.133	1.744	0.010	0.010	0.010	0.030
Nitrate N by FIA (Calc)	236	0.01995	0.00221	0.03402	0.01000	0.01000	0.01000	0.01000
Nitrite	49	0.002204	0.000167	0.001172	0.002000	0.002000	0.002000	0.002000
Nitrite N by FIA	0.010000							
Nitrite N for NO3 only								
Nitrite	140	0.03834	0.00543	0.06421	0.00200	0.02000	0.02000	0.02000
Nitrate as N	48	0.002000	0.000000	0.000000	0.002000	0.002000	0.002000	0.002000
NOX for NO3 only (Calc)	196	0.03962	0.00552	0.07727	0.00200	0.00525	0.02000	0.02000

GLNG PROJECTENVIRONMENTAL VALUES AND ASSOCIATED WATER QUALITY
 Full Statistics of Associated Water Quality Fairview and Roma Fields

Roma Field Associated Water Quality Statistics (all units mg/L unless specified)

Variable	N	Mean	SE Mean	StDev	Minimum	Q1	Median	Q3	Maximum
Top Depth (m RT)	66	305.9	22.3	180.8	99.0	142.0	293.0	305.0	782.3
Bottom Depth (m RT)	92	545.0	15.8	151.3	150.0	409.0	575.0	665.2	857.0
Na	103	855.6	35.5	359.9	233.0	630.0	792.0	950.0	1980.0
K	103	710	178	1807	2	4	47	769	14800
Ca	103	112.6	21.7	220.7	0.5	3.0	10.1	73.4	870.0
Mg	101	26.39	5.20	52.23	0.10	0.90	4.00	24.00	290.00
Fe	80	121.6	27.9	249.9	0.0	0.1	3.0	117.5	1200.0
Sr	57	9.47	1.95	14.68	0.33	1.01	2.45	9.94	66.00
Ba	7	0.2804	0.0479	0.1266	0.1350	0.2230	0.2460	0.3090	0.5410
Cl	103	1614	399	4046	78	555	701	1130	39200
HCO3	103	842.6	33.7	341.9	10.0	651.0	821.0	991.0	1864.0
C03	103	75.60	7.32	74.26	0.90	28.00	58.00	95.00	436.00
S04	103	16.76	3.48	35.31	0.90	1.66	4.00	18.00	244.00
F	100	2.650	0.765	7.654	0.000	1.162	2.000	2.797	77.869
NO3 (Nitrite+Nitrate)	34	0.0479	0.0187	0.1091	0.0020	0.0090	0.0190	0.0200	0.6000
OH	103	1.2087	0.0943	0.9567	0.9000	0.9000	1.0000	1.0000	7.0000
Conductivity uS/cm @25 C	103	7065	1472	14943	1200	3200	3610	6200	115000
Resistivity ohm.m@25 C	54	2.625	0.134	0.986	0.110	2.428	2.799	3.125	4.630
Reaction - pH	102	8.6361	0.0582	0.5875	5.1000	8.4425	8.7000	8.9000	9.7000
TDS(EC)	97	3964	704	6935	740	1918	2300	4040	66000
TDS ($\mathrm{HCO}=\mathrm{CO} 3)$	31	5819	2254	12547	1390	1840	2180	4810	71300

Figures

Condamine-Balonne Catchment Water Quality

Table A1
Table A2 Condamine-Balonne Catchment URS Analytical Results Summary
Table A3 Condamine-Balonne Catchment URS Analytical Results
Table A4 Condamine-Balonne Catchment DNRW Water Quality Results Summary
Table A5 Condamine-Balonne Catchment DNRW Water Quality Results Bungil Creek at Tabers
Table A6 Condamine-Balonne Catchment DNRW Water Quality Results Balonne River at Surat
Table A7 Condamine-Balonne Catchment DNRW Water Quality Results Yuleba Creek at Forestry

Table A1
Upper Balonne Catchment - URS Water Quality Parameters
GLNG CSG Surface Water

Site ID		Date/Time	Water Quality Parameters					
Number	Name	Date	$\begin{aligned} & \text { Time } \\ & \text { (EST) } \end{aligned}$	EC ($\mu \mathrm{S} / \mathrm{cm}$)	$\begin{gathered} \mathrm{DO} \\ (\mathrm{mg} / \mathrm{L}) \end{gathered}$	pH	Turbidity (NTU)	Temp (${ }^{\circ} \mathrm{C}$)
			WQO	325	na	6.5-8.0	50	na
Bungil Creek \& Tributaries								
R005	Eumamurrin Ck @ Carnarvon Hwy	31-Jan-08	10:00	244	4.35	6.97	24	24.3
R005	Eumamurrin Ck @ Carnarvon Hwy	04-Mar-08	11:00	135	3.8	6.8	145	23.6
R005	Eumamurrin Ck @ Carnarvon Hwy	14-May-08	11:26	198	4.64	7.58	150	16.9
R006	Bungil Ck @ Euminah Rd	31-Jan-08	10:25	225	4.22	6.8	38	25.7
R006	Bungil Ck @ Euminah Rd	04-Mar-08	10:00	105	2.64	6.7	212	22.8
R006	Bungil Ck @ Euminah Rd	14-May-08	10:52	-	-	-	-	
R028	Bungil Ck @ Tabers	04-Mar-08	17:40	232	6.93	6.93	307	24.1
R028	Bungil Ck @ Tabers	14-May-08	10:01	1287	6.37	8.19	27	15.7
R003	Mooga Mooga Ck @ Roma-Taroom Rd	31-Jan-08	9:00	285	2.3	6.64	66	26.3
R003	Mooga Mooga Ck @ Roma-Taroom Rd	04-Mar-08	9:30	500	2.24	6.6	47	23.4
R003	Mooga Mooga Ck @ Roma-Taroom Rd	14-May-08	9:34		-	-	-	
R002	Bungil Ck @ Burton Rd	31-Jan-08	8:30	744	6.12	7.35	10	24
R002	Bungil Ck @ Burton Rd	04-Mar-08	8:10	275	5.2	7.2	280	20.5
R004	Bungil Ck @ Carnarvon Hwy	31-Jan-08	-	568	6.65	7.25	10	24.9
R004	Bungil Ck @ Carnarvon Hwy	04-Mar-08	15:00	148	6.3	7.8	223	24.5
R004	Bungil Ck@ Carnarvon Hwy	14-May-08	9:22	1418	3.05	7.32		14.9
R001	Bungil Ck @ Warrego Hwy	31-Jan-08	7:29	367	2.4	6.9	116	24
R001	Bungil Ck @ Warrego Hwy	04-Mar-08	-	193	4.32	7.39	151	23.9
R001	Bungil Ck @ Warrego Hwy	15-May-08	8:45	350	3.37	6.72	58	15.9
R012	Bungil Ck @ Dunkeld Rd	31-Jan-08	15:05	201	5.73	7.35	1122	27
R012	Bungil Ck @ Dunkeld Rd	05-Mar-08	12:00	288	6.31	7.12	218	21.5
R012	Bungil Ck @ Dunkeld Rd	14-May-08	16:17	305	2.9	6.35	108	18.7
R013	Bungil Ck @ Maranoa Rd	31-Jan-08	16:00	172	5.42	6.97	1645	27.7
R013	Bungil Ck @ Maranoa Rd	05-Mar-08	12:40	201	6.65	7.32	429	22.6
R013	Bungil Ck @ Maranoa Rd	15-May-08	14:03	327	7.44	6.96	117	19.2
Bungeworgorai Creek \& Tributaries								
R007	Spring Ck @ Orallo Rd	31-Jan-08	11:20	199	5.14	7.2	278	27.5
R007	Spring Ck @ Orallo Rd	04-Mar-08	12:00	301	5.8	7.9	98	28.7
R007	Spring Ck @ Orallo Rd	14-May-08	12:05	-	-	-	-	-
R008	Bungeworgorai Ck @ Orallo Rd	04-Mar-08	12:20	446	5.7	8	76	26.8
R008	Bungeworgorai Ck@ Orallo Rd	31-Jan-08	11:45	283	6.74	7.2	62	27.5
R008	Bungeworgorai Ck @ Orallo Rd	00-Jan-00	12:25	467	11.84	8.03	30	20.5
R024	Bungeworgorai Ck @ Six Mile Rd	01-Feb-08	18:43	363	6.2	7.21	228	28.2
R024	Bungeworgorai Ck@ Six Mile Rd	05-Mar-08	10:20	348	7.9	7.48	119	20.6
R024	Bungeworgorai Ck @ Six Mile Rd	14-May-08	15:12	535	7.22	6.7	27	21.2
R010	Dargal Ck @ Hodgsons Lane North	31-Jan-08		205	3.12	6.48	671	26.8
R010	Dargal Ck @ Hodgsons Lane North	04-Mar-08	13:15	3	2.6	6.9	535	24.3
R010	Dargal Ck @ Hodgsons Lane North	14-May-08	13:30	292	2.32	6.5	>1000	16.5
R009	Bungeworgorai Ck @ Dargal Rd	31-Jan-08	12:33	334	6.15	7.2	98	26.8
R009	Bungeworgorai Ck@ Dargal Rd	04-Mar-08	14:15	251	6.02	7.76	51	24
R009	Bungeworgorai Ck @ Dargal Rd	14-May-08	14:05	-	-	-	-	-
Wallumbilla Creek \& Tributaries								
R014	Wallumbilla Ck @ Roma Condamine Rd	31-Jan-08	17:30	178	4.73	6.85	282	27.7
R014	Wallumbilla Ck @ Roma Condamine Rd	04-Mar-08	12:40	202	1.92	7.13	282	19.8
R014	Wallumbilla Ck @ Roma Condamine Rd	15-May-08	12:00	321	3.53	6.6	187	16.3
R016	Wallumbilla Ck @ Yarrawonga Rd	01-Feb-08	10:00	206	6.22	6.91	164	28.3
R016	Wallumbilla Ck@ Yarrawonga Rd	04-Mar-08	11:30	261	6.64	7.23	71	22.6
R016	Wallumbilla Ck @ Yarrawonga Rd	15-May-08	9:45	376	6.63	6.25	277	177
R017	Wallumbilla Ck @ Donnabar	04-Mar-08	15:05	156	3.58	6.66	86	23
R017	Wallumbilla Ck @ Donnabar	01-Feb-08		-	-	-	-	-
R017	Wallumbilla Ck @ Donnabar	15-May-08	10:40	188	6.51	5.99	119	18.8
R018	Pickanjinnie Ck @ Wallumbilla to Roma Condamine Rd	01-Feb-08	10:41	123	2.98	6.39	700	25.3
R018	Pickanjinnie Ck @ Wallumbilla to Roma Condamine Rd	04-Mar-08	11:50	192	6.2	7.27	102	24.4
R018	Pickanjinnie Ck @ Wallumbilla to Roma Condamine Rd	15-May-08	11:15	308	7.03	6.67	77	18.6
Yuleba Creek \& Tributaries								
R023	Cattle Ck @ Cattle Ck Rd	01-Feb-08	15:25	112	5.09	6.51	84	29
R023	Cattle Ck @ Cattle Ck Rd	05-Mar-08	15:45	112	7.7	7.29	78	25.7
R023	Cattle Ck @ Cattle Ck Rd	15-May-08	11:50	92	6.95	6.61	250	18.7
R022	Kangaroo Ck @ Wallumbilla North Rd	01-Feb-08	15:00	130	2.8	6.58	160	28.2
R022	Kangaroo Ck @ Wallumbilla North Rd	05-Mar-08	15:00	114	1.92	6.98	124	22.5
R022	Kangaroo Ck @ Wallumbilla North Rd	15-May-08	11:20	162	7.04	7	92	18.8
R021	Yuleba Ck @ Warrego Hwy	01-Feb-08		-	-	-	-	-
R021	Yuleba Ck @ Warrego Hwy	06-Mar-08	9:20	126	3.77	6.3	202	19.2
R021	Yuleba Ck @ Warrego Hwy	13-May-08		178	2.66	6.12	108	15.8
R019	Yuleba Ck @ Roma Condamine Rd	01-Feb-08	11:32	124	3.61	6.5	434	25.1
R019	Yuleba Ck @ Roma Condamine Rd	04-Mar-08	13:20	213	4	7.22	366	23.6
R019	Yuleba Ck @ Roma Condamine Rd	15-May-08	12:45	989	2.53	7.2	471	18.4
Blyth Creek \& Tributaries								
R026	Blyth Ck @ Coxon Ck Rd\#1	05-Feb-08	17:15	333	10.58	8.55	88	31
R026	Blyth Ck @ Coxon Ck Rd \#1	05-Mar-08	17:15	397	7.03	7.83	3268	26.8
R026	Blyth Ck @ Coxon Ck Rd \#2	05-Feb-08	17:15	259	8.35	8.55	83	32.1
R026	Blyth Ck @ Coxon Ck Rd\#1-2	15-May-08	10:40	-	-	-	-	-
R027	Coxon Ck @ Coxon Ck Rd	05-Feb-08		-	-	-	-	-
R027	Coxon Ck @ Coxon Ck Rd	15-May-08	10:05	-	-	-	-	-
R025	Blyth Ck @ Nth Pickanjinee Rd	05-Feb-08	9:30	267	5.29	7.83	-	32.5
R025	Blyth Ck @ Nth Pickanjinee Rd	05-Mar-08	16:50	-	-	-	-	-
R025	Blyth Ck @ Nth Pickanjinee Rd	15-May-08	10:20	-	-	-	-	-
R015	Blyth Ck @ Warrego Hwy	01-Feb-08	9:00					
R015	Blyth Ck @ Warrego Hwy	04-Mar-08	10:00	193	6.65	6.78	72	21.4
R015	Blyth Ck @ Warrego Hwy	15-May-08	9:15	-	-	-	-	-
R011	Blyth Ck @ Carnarvon Hwy	31-Jan-08	14:36	156	5.45	6.76	227	28.1
R011	Blyth Ck @ Carnarvon Hwy	14-May-08	16:50	280	8.47	6.17	78	18.2

Notes:
Parameters not taken, creek dry or no access possible
Bold Greater than relevant WQO (refer table xx)

Table A2
Roma - URS Surface Water Anaiytical Results Summary

Max
$\frac{\text { NOTES }}{}$

For the purposes of calcula
MTV - minimum trigger value

Table A3
Roma - URS Surface Water Analytical Results

NOTES
CHK-Lab Dupicate sample
LOR- Limito of reporting
LOR- Linit of reporting
MTV - minimum triger value

Table A4
GLNG CSG Surface Water
Roma - DNRW Surface Water Analytical Results Summary

Parameter	Physico-Chemical Parameters												Nutrients									
	Colour True	Conductivity @ 25C	Conductivity @ 25C FLD	Dissolved Oxygen FLD	pH	pH FLD	Air Temp	Water Temp	Turbidity	Turbidity FLD	Total Diss. Solids	Total Suspended Solids	Chlorophyll- a	Nitrate as NO3	Nitrate + nitrite as N - total	$\begin{gathered} \text { Ammonia } \\ \text { as } N- \\ \text { soluble } \end{gathered}$	Faecal Coliform	Kjeldahl Nitrogen	Total Nitrogen	Nitrate + nitrite as N - soluble	Total React P sol	Total Phosphorus as P
Units	Hazen units	$u 5 / \mathrm{cm}$	uS/cm	mg/L	pH units	pH units	${ }^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{C}$	NTU	NTU	mg/L	mg/L	ug/L	mg/L	mg/L	mg/L	$\begin{gathered} \hline \text { CFU/100 } \\ \mathrm{ml} \end{gathered}$	mg/L	mg/L	mg/L	mg/L	mg/L
WQO	325	325	325		6.5-8.0	6.5-8.0		$\begin{array}{\|c\|} \hline \text { 20\%ile- } \\ 80 \% \text { ile } \\ \hline \end{array}$	50	50	500	10	5	0.05		0.01			0.5			0.05
Bungil Creek Tabers																						
Number	31	41	30	21	40	24	21	40	34	21	41	42	0	30	1	2	0	10	17	2	2	27
Minimum	4.00	66.30	65	3.70	6.80	6.60	8.50	8.70	1.10	4.70	41	5	0	0.27	0.34	0.002	0	0.39	0.43	0.002	0.06	0.01
Median	30	160.3	227	6.9	7.5	7.8	23.8	22.15	100	58.05	110	96.5		1.9	0.3356	0.002		0.83	1.212	0.002	0.0615	0.2
Maximum	200	1890	1647	14.20	8.50	8.70	34.50	28.40	700	>1000	1306	1500	0	4.20	0.34	0.002	0	2.93	2.51	0.002	0.06	0.68
Balonne River Surat																						
Number	6	6	0	0	6	0	0	0	6	0	6	6	0	6	0	1	0	0	9	1	1	9
Minimum	2	74	\#REF!	\#REF!	6.81	\#REF!	\#REF!	0	583		53	148		1.40		0.01			0.92	0.39	0.04	0.32
Median	9	95			6.88				1295		67	857.5		2.35		0.009			1.7	0.39	0.0355	0.62
Maximum	14	154	\#REF!	\#REF!	7.24	\#REF!	\#REF!	0	3620		97	2810		3.80		0.01			3.60	0.39	0.04	1.60
Yuleba Creek Forestry																						
Number	5	21	1	1	17	1	5	20	15	1	11	14	2	10	1	3	3	2	3	3	3	5
Minimum	16	72	\#REF!	\#REF!	6.6	\#REF!	22.1	12	80		54	10	9	0.5		0.018	18	1.255	1.6	0.037	0.008	0.27
Median	70	164			7.4		29.4	24.95	245		107	107	18.5	1.475		0.02	70	1.4915	1.9	0.07	0.014	0.39
Maximum	92	455	\#REF!	\#REF!	7.9	\#REF!	38.9	29.5	802		250	360	28	4		0.037	110	1.728	2.1	0.25	0.03	0.55

Table A4
GLNG CSG
Roma - DNF

	Major Ions								Metals								Alkalinity					
Parameter	Calcium as Ca soluble	Chloride as Cl	Hydrogen as H	Magnesium as Mg soluble	Potassium as K	$\left\lvert\, \begin{gathered} \text { Sodium as } \\ \mathrm{Na} \end{gathered}\right.$	Sulphate as SO4	Total Diss. Ions	$\begin{gathered} \text { Aluminium } \\ \text { as AI } \\ \text { soluble } \end{gathered}$	$\begin{aligned} & \text { Boron } \\ & \text { as B } \end{aligned}$	Copper as Cu soluble	Flouride as F	Iron as Fe soluble	$\begin{array}{\|c\|} \hline \text { Manganese } \\ \text { as Mn soluble } \\ (\mathrm{mg} / \mathrm{L}) \end{array}$	$=\begin{gathered} \text { Silica as } \\ \mathrm{SiO}_{2} \\ \text { soluble } \end{gathered}$	Zinc as Zn soluble	Total Alkalinity as CaCO 3	Total Alkalinity as CaCO3 FLD	Hydroxide as OH	Carbonate as CO3	Bicarbonate as HCO 3	Hardness as CaCO 3
Units	mg/L	mg / L	mg / L	mg/L	mg / L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L											
WQO	1000	175				115	400		0.055	0.37	0.0014	1	0.2			0.008						
Bungil Creel Number	41	38	2	40	40	41	37	41	22	23	16	34	0	0	0	0	41	2	11	32	41	40
Minimum	4.30	2.55	0.10	1.10	2.2	5.6	1	50.16	0.01	<0.02	<0.01	<0.02	0	0	0	0	25.00	70.80	0.01	0.02	21.50	15.50
Median	14.6	10.65	1.35	3.25	5	19	6.3	132.7	0.05	0.05	0.01	0.1					71.4	134.4	0.01	0.39	86.9	53.2
Maximum	130.2	350	2.60	22	11	320	558	1458.3	0.24	0.14	0.07	0.50	0	0	0	0	422.2	198.0	0.03	15.5	502.9	402.2
Balonne Riv Number	6	6	0	6	6	6	6	6	6	6	6	6	0	0	0	0	6	0	0	1	6	6
Minimum	2.60	<4	0	1.30	3.6	8	4	58	0.05	0.05	<0.03	<0.1					24.00		0	0.10	29	12
Median	2.95	11		1.65	4	12.5	5	72.5	0.05	0.05		0.1					30			0.1	36.5	14.5
Maximum	7.70	11	0	3.70	4.2	15	6	112	0.08	<0.1	<0.03	0.10					52.00		0	0.10	64	35
Yuleba Cree Number	11	11	1	11	11	11	11	11	2	6	2	8	8	5	11	2	13	1	1	7	11	1
Minimum	4	4.2		1.8	3.4	9	1	57	0	0	0	0.09	0	0	10	0.01	20			0.06	24	
Median	8.2	16.17		.	5.3	18.7	7.52	122.51	0.91	0.03	0.005	0.1	1.95	0.01	20	0.03	52.41			0.1	55	
Maximum	25	64		11	8.1	45	14	318.2	1.81	0.1	0.01	0.13	5.7	0.03	63	0.05	124			0.4	150	

${ }^{\frac{\text { Nouess }}{123}}$ Giaearer han woo

Table A6
GLNG csG Surface Water
Roma - DNRW Surface Water Analytical Results Summary
422220A Balonne River @ Surat

123 Greater than wao

Roma - DN Surface Water
422219 A Yuleba Creek @ Forestry

date					Physico-Chemical Parameters								Nutrients									Major Ions							Metals								Akalinity		
	TIME	$\begin{array}{\|c} \substack{\text { Stream } \\ \text { Water } \\ \text { Level }} \\ \hline \end{array}$	Stream	Depth	Colour Tue	$\begin{gathered} \text { Conductivity } \\ \text { @ } 25 \mathrm{Sc} \end{gathered}$	pH	$\underset{\text { Temp }}{\text { Air }}$	$\underset{\substack{\text { Water } \\ \text { Temp }}}{\text { a }}$	Turbidity	$\begin{gathered} \text { Total } \\ \text { Siss } \\ \text { Solids } \end{gathered}$	$\begin{gathered} \text { Total } \\ \text { Suspended } \\ \text { Solids } \end{gathered}$	Chlorophylla	Nitrate as No3	$\left\|\begin{array}{l} \text { Ammonia } \\ \text { as } \\ \text { soluble } \end{array}\right\|$		(kildan	Nitrogen		$\left\|\begin{array}{c} \text { Total } \\ \text { Reacac } \\ \text { sol } \end{array}\right\|$	$\left\lvert\, \begin{gathered} \text { Toatal } \\ \text { Phosphorus } \\ \text { as P P } \end{gathered}\right.$	$\left.s=\begin{gathered} \text { calcium } \\ \text { saciua } \\ \text { solube } \end{gathered} \right\rvert\,$	Chloride as Cl	$\begin{gathered} \text { Magnesium } \\ \text { as } \mathrm{Mg} \\ \text { soluble } \end{gathered}$	$\underset{\substack{\text { Potassium } \\ \text { as } k}}{ }$	Sodium as Na	Suphate	$\begin{array}{\|c\|c\|c\|c\|c\|} \hline \text { Dotas } \\ \text { iliss } \\ \text { lons } \end{array}$	$\begin{gathered} \text { Aluminum } \\ \text { soliule } \\ \text { solum } \end{gathered}$	${ }_{\text {B }}^{\text {Bron }}$ a	$\begin{gathered} \text { coper } \\ \text { coscu } \\ \text { socoube } \end{gathered}$	(llourde	$\begin{gathered} \text { ron as } \\ \text { soubl } \\ \text { soluble } \end{gathered}$	$\begin{gathered} \text { Manganese } \\ \text { as un } \\ \text { soluble } \\ \text { (maglL } \end{gathered}$		$\left\lvert\, \begin{gathered} \text { Znin as } \\ \text { soluble } \end{gathered}\right.$	$\begin{array}{\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|l\|l\|l\|} \text { as caco } \\ \text { as } \end{array}$	${ }_{\substack{\text { Carbonate } \\ \text { as co3 }}}$	$\begin{array}{\|l\|l\|} \hline \text { Bieatbonate } \\ \text { as HCOO3 } \end{array}$
	Units	m	Cumecs	m	${ }_{\substack{\text { Hazen } \\ \text { units }}}^{\text {and }}$	uScm	${ }_{\substack{\text { pHits } \\ \text { unit }}}$	${ }^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{C}$	ntu	mgh	mg/	ugh	mgL	mgh	$\underset{\substack{\text { cFUT100 } \\ m}}{ }$	mg/	mg/	mg/	mg/	mgh	mg/	mg/	mgh	mgh	mg/	mgh	mgl	mgh	mg/	mg/	mgh	mgh	mgh	mgh	mgL	mgh	mgl	mg/
	wao					325	${ }_{\text {c. }}^{6.5} 8$.		coin	50	<500	10	5	0.05	${ }^{0.01}$			${ }^{0.5}$			0.05	1000	<175			115	400		0.055	0.37	0.0014	1	0.2			0.008			
${ }^{2110191973}$	${ }^{1705}$	1.17	0.089	0.1		164	7				107	252										10	30	${ }_{5} 5$	${ }^{3.4}$	18.7	1	127.7				0.11	5		${ }^{12}$		${ }^{44}$		54
21001973	${ }^{1705}$	1.103	0.007						${ }_{20}^{20}$																														
180111975	1200	1.245	0.309						${ }^{27}$																														
1880111976	${ }^{1240}$	${ }^{1.55}$	${ }^{1.276}$						26		${ }^{7}$			07								55		23		${ }^{12}$	7	${ }^{67}$							15		${ }^{20}$		${ }^{24}$
(130191978	${ }^{11455}$			0.1		105	6.6		14		70	175		0.7								5.5	11	${ }^{2.3}$	4.5	12	7	67							15		${ }^{20}$		${ }^{24}$
(50271982	${ }_{1420}^{1420}$	1.14	0.006	0.1		150	7.7		29	100	110	50		4								8	${ }^{13}$	${ }^{4.3}$	${ }^{5.3}$	17	10	116.8				0.09			${ }^{23}$		45	0.1	55
29055/1983	1430	7.65	125	0.1		72	7.9			100	54	360		4								4	4.2	1.8	4	9	${ }^{3} 7$	57				0.1	0.6	0.01	11		21	0.1	25.5
${ }^{2770711983}$	1550 1550 1	1.28	0.223	0.1		250	7.5		12		200	${ }^{58}$		${ }^{3.3}$								13	31	${ }^{6.3}$	4.9	${ }^{28}$	11	182.4		0.06			${ }^{5.7}$	0.01	${ }^{63}$		${ }^{65}$	${ }^{0.1}$	79
2701711983	${ }^{1550}$	1.31	0.213	0.1	20	455	7.6		12		250	10		0.6								25	${ }^{64}$	11	8.1	45	14	318.2		0.03		0.1			10		124	0.4	150
97111983	${ }^{1515}$								${ }_{27}^{27}$																														
31108/1984	1600	1.35	0.286	0.1	70	205	7.2			${ }^{80}$	140	10		2.2								9	28	4	5.5	26	12	161.8		0.02			2		20		60	0.1	73
$30111 / 1984$ 17111986	${ }^{1700}$	1.04 1.01	0						${ }^{27}$																														
${ }^{1711111986}$	1230 1230 1	1.31	0.379	0.1	70	115 106	7.2		22	100	${ }^{93}$	300		0.5								5.7	7.1	${ }^{2.7}$	5.5	10	7.7	82.8		0.03		0.1	${ }^{3} .5$	0.03	${ }^{34}$		${ }^{33}$		40
${ }^{2110511988}$	1040 1040	1.13	0.008	0.1		115 88 8	6.9		${ }^{13}$	100	${ }^{85}$	154		1.6								5.8	${ }^{7.3}$	${ }^{2.7}$	${ }^{4.3}$	13	6.1	84.3				0.1	1.9		${ }^{24}$		${ }^{34}$		41.5
290551989	1147	1.165	0.061			132			15																														
99011992	${ }^{1115}$	${ }^{1.25}$	${ }^{0.39}$			${ }^{94}$			${ }^{25}$																														
${ }_{\text {10, }}^{19121211995}$	${ }^{11455}$	$\stackrel{1.248}{1.288}$	0.202 0.142			209 202	${ }_{7}^{7.8}$	${ }_{36.3}^{29.4}$	${ }_{26.2}^{24.9}$	189																													
811011996	${ }^{1415}$	${ }^{1.181}$	${ }^{0.021}$			190 112	7.4		$1{ }^{19}$	${ }^{213}$																													
${ }^{\text {27/0551997 }}$	${ }^{1645}$	$\stackrel{1.077}{ }$	${ }^{1.329}$	0.2	16	116	7.4 7.25	28.2		${ }_{323} 8$	105.67	${ }^{51}$		1.35								8.2	16.17	${ }^{3.6}$	${ }^{6.2}$	19	3.98	122.51	0	0.00	0.01	0.13	0.00	0.00	15.60	0.01	52.41	0.06	${ }^{63.82}$
${ }^{272051 / 1997}$	${ }^{1645}$					173	${ }^{2}$	221									1.255				0.268																		
$27 / 11 / 1997$	1405	1.17	0	0.1	92	238	7.21			327	148.05	${ }^{84}$		1.19								11.9	26.26	5.5	7.7	29.4	7.52	167.74	1.81	0.1	0	0.12	1.06	0	20	0.05	64.12	0.07	78.07
$\frac{2771111997}{27 / 111997}$	1405 1405					245	7.4	38.9	29.5	245							1.728				0.39																72		
120011/1999 12011999	${ }_{930}^{930}$											200						2.1			${ }^{0.36}$																		
120111999	930														0.02				0.25	0.03																			
1210111999 120411999	930 1300									680		130				70																							
1200411999	1300																	1.9			0.55																		
120411999 12041999	1300 1300												${ }^{28}$		0.037				0.037	0.014																			
1204111999	1300															110																							
-1071999	0									500		75						1.6			0.48																		
10771999	\bigcirc												9		0.018				0.07	0.008																			
110711999	0															18																							

Notes Bold Greater than wao

Upper Dawson Catchment Water Quality Data

Table B1
Table B2
Table B3 Upper Dawson River Water Quality Data
Table B4 Baffle Creek Water Quality Data
Table B5 Dawson River Downstream Baffle Creek Water Quality Data
Table B6 Hutton Creek Water Quality Data
Table B7 Dawson R - Hutton Creek to Yebna Crossing Water Quality Data
Table B8 Dawson R at Taroom Water Quality Data
Table B9 Dawson R at Utopia Water Quality Data

Table B1
URS Water Quality Parameters Upper Dawson Catchment

Site ID		Date/Time	Water Quality Parameters					
Number	Name	Date	Time (EST)	EC ($\mu \mathrm{S} / \mathrm{cm}$)	$\begin{array}{\|c\|} \hline \mathrm{DO} \\ (\mathrm{mg} / \mathrm{L}) \end{array}$	pH	Turbidity (NTU)	Temp (oC)
			MTV	340		6.5-8	50	
D002	Dawson River @ Yebna Crossing	05-Mar-08	12:00	107	6.2	7.1	270	23.9
D002	Dawson River @ Yebna Crossing	02-Feb-08	10:35	264	5.47	6.76	166	25.4
D002	Dawson River @ Yebna Crossing	14-May-08	16:20	265	11.3	7.5	9	17.3
D003	Pine Creek @ Phelps Rd	05-Mar-08	-	-	-	-	-	-
D003	Pine Creek @ Phelps Rd	02-Feb-08	12:20	227.2	4	6.59	266	29.2
D003	Pine Creek @ Phelps Rd	13-May-08	15:45	-	-	-	-	-
D004	Dawson River @ Taroom-Roma Rd	05-Mar-08	16:40	150	6.01	7.73	555	23.3
D004	Dawson River @ Taroom-Roma Rd	02-Feb-08	13:36	270	5.23	6.82	215	27.3
D004	Dawson River @ Taroom-Roma Rd	13-May-08	10:55	368	9.84	7.78	14	14.6
D005	Eurombah @ Hornet Bank Rd	05-Mar-08	17:10	118	6.15	7.5	492	24.4
D005	Eurombah @ Hornet Bank Rd	02-Feb-08	14:15	317	5.95	7.16	191	28.8
D005	Eurombah @ Hornet Bank Rd	13-May-08	10:00	340	6.22	7.3	13	16.1
D006	Bridge/Ram Creek @ Roma Rd	05-Mar-08	16:30	192	7.43	8.41	111	28.1
D006	Bridge/Ram Creek @ Roma Rd	02-Feb-08	14:43	271	6.18	7.51	32	30.9
D006	Bridge/Ram Creek @ Roma Rd	13-May-08	11:30	-	-	-	-	-
D007	Paddys Creek @ Roma Rd	05-Mar-08	16:05	65.3	8.62	8.41	2	31.2
D007	Paddys Creek @ Roma Rd	02-Feb-08	14:56	232	4.57	8.05	408	30.8
D007	Paddys Creek @ Roma Rd	13-May-08	11:45	265	7.9	7.4	240	17.4
D008	Middle Creek @ Roma Rd	05-Mar-08	15:40	186	6.4	8.5	152	28.6
D008	Middle Creek @ Roma Rd	02-Feb-08	15:30	234	8.58	8.34	54	33.7
D008	Middle Creek @ Roma Rd	13-May-08	12:15	488	11.3	8.5	160	20.7
D009	Juandah Creek @ Roma Rd	05-Mar-08	15:20	120.2	2.26	7.14	473	28.5
D009	Juandah Creek @ Roma Rd	02-Feb-08	15:46	244	6.04	8.06	163	30.4
D009	Juandah Creek @ Roma Rd	13-May-08	12:30	218	6.36	6.8	410	20.5
D010	Dawson River @ Old Taroom Bridge	05-Mar-08	14:50	157.2	5.39	7.42	427	24.2
D010	Dawson River @ Old Taroom Bridge	02-Feb-08	16:23	225.1	4.15	6.98	243	27.8
D010	Dawson River @ Old Taroom Bridge	13-May-08	13:35	420	8.22	7.77		18.9
D011	Kinnoul Creek @ Taroom Rd	05-Mar-08	10:50	104	4.3	7.2	30	25.1
D011	Kinnoul Creek @ Taroom Rd	02-Feb-08	17:00	245	6.48	7.49	28	28.8
D011	Kinnoul Creek @ Taroom Rd	13-May-08	14:10	205	9.5	7.43	28	20.2
D012	Hutton Creek @ Carnarvon Hwy	05-Mar-08	-	-	-	-	-	-
D012	Hutton Creek @ Carnarvon Hwy	03-Feb-08	9:00	485	4.5	7.2	5	26.8
D012	Hutton Creek @ Carnarvon Hwy	13-May-08	9:15	260	6.7	6.98	22	14.9
D013	Dawson River @ Arcadia Valley Rd	06-Mar-08	10:00	136	-	7.1	-	-
D013	Dawson River @ Arcadia Valley Rd	03-Feb-08		222.9	6.33	7	31	25.5
D014	Dawson River @ Hornet Bank Rd	02-Feb-08	14:00	-	-	-	-	-
D015	Dawson River @ Baralaba	04-Feb-08	12:45	132	7.88	6.58	180	27.6
D016	Dawson River @ Carnavon Hwy	03-Feb-08		-	-	-	-	-

[^20]Table B2
Upper Dawson Catchment - URS Surface Water Analytical Results

	Sample ID	$\begin{gathered} \text { Date } \\ \text { Sampled } \end{gathered}$	Analyte	Physico-Chemical Parameters				Metals (Total)									Nutrients				Major Ions										Alkalinity			
			$\begin{gathered} \text { Sample } \\ \text { Type } \end{gathered}$			$\begin{array}{\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|crc:c} \\ \text { Carbon } \end{array}$	(Suspended	Arsenic	3oron	Cadmium	Chromium	Copper	ron	Lead	Nickel	Znc	($\begin{gathered}\text { Nitate and } \\ \text { Nitite as }\end{gathered}$		$\begin{array}{\|c\|} \hline \text { Photal } \\ \text { Phoshorus } \\ \text { as } \mathrm{P} \end{array}$	$\begin{array}{\|c\|} \hline \text { Nitotoane as } \\ \mathrm{N} \end{array}$	alcium	Choride	Fluoride	Magnesium	Potassium	Sodium	Suphate	($\begin{gathered}\text { Total } \\ \text { Anions }\end{gathered}$	(Total	(lonic		$\begin{gathered} \text { Carbonate } \\ \text { Alkaninty } \\ \text { Cacos } \\ \text { ancos } \end{gathered}$	${ }^{\text {Bicartonate }}$	
			Units	mgh	mg/	mg/	mg/	mgl	mgl	mgl	mg/	mg $/$	mg	mgl	mgl	mgl	mg/	mg/	mg	mgl	mg/	mg/	mg/	mg/	mg/	mg/	mg	meq/	meq/	\%	mg/	mg/	mg/	mg/
			LOR		5	1	1	0.001	0.1	0.0001	0.001	0.001	0.05	0.001	0.001	0.005	0.01	0.1	0.01	0.1	1		0.1	1	1		1	0.01	0.01	0.01	1	1	1	1
			MTV	na	na	${ }^{\text {na }}$	10	0.0240 .013	0.37	0.0002	0.05	0.0014	0.2	0.0034	0.011	0.008	na	na	0.05	0.5	1000	175	1	${ }^{\text {na }}$	${ }^{\text {na }}$	115	400	na	na	na	na	na	${ }^{\text {na }}$	${ }^{\text {na }}$
0002	D0020550308	${ }^{510320008}$	Ps		${ }^{31}$	8	${ }_{152}^{146}$	0.002	${ }^{0.1}$	0.0002	0.004	0.005		0.004	0.004	0.016	0.141	1	0.2	1.1	${ }^{12}$	8	${ }^{0.1}$	4	6	${ }^{20}$	$\stackrel{2}{2}$	1.74	1.9		<1	<1	${ }^{73}$	${ }^{73}$
${ }^{0} 002$	D022_05030308CHK	${ }^{5 / 3322008}$	Lo			-	146														${ }^{12}$			4	5	${ }^{22}$	1							
D002	D002_1305098	130512008	Ps	<5	1		,	<0.001	$0^{2} 0.05$	<0.0001	<0.001	<0.001	0.67	<0.001	<0.001	${ }^{0.005}$	<0.01	0.4	0.02	0.4	19	${ }^{25}$	0.1	7	3		31	2.93	2.97					
D004	D004-05030308	510312008	Ps		${ }^{47}$	10	152	0.002	00.1	0.0001	0.006	0.008		0.007	0.008	0.031	0.174	0.9	0.19	1.1	18	16	0.1	5	6	${ }^{28}$	2	2.54	2.68	.	4	<1	102	102
0004		5/33/2008 $5 / 032008$	${ }_{\text {L }}^{\text {LD }}$	-	49	$\stackrel{10}{<1}$	290	0.003	<0.1	0.0018	0.009	0.008		0.007	0.008	0.04	0.149	1.4	0.19	1.6	16	15	0.1	4	${ }_{5}$	${ }^{28}$	2	2.51	2.52		:		102	102
D004	D004_13/5508	13/052008	PS	49	2	.	,	${ }^{<0.001}$	${ }^{2} 0.05$	<0.000	<0.001	${ }^{20.001}$	0.4	<0.001	<0.001	<0.005	$\stackrel{0}{601}$	0.1	${ }_{0}^{0.03}$	0.1	${ }^{27}$	35	<0.1	9	4		${ }^{43}$	${ }_{3.94}$	4.02	1.05				
D004	D004_13050508CHK	130522008	Lo		2												0.012				${ }^{28}$			9	4		49							
0005	D005 05050308	5/0322008	Ps	.	44	<1	270	0.002	0.1	0.0007	0.003	0.009		0.005	0.005	0.028	0.28	0.8	0.21	1.1	16		0.1	3	6	${ }^{20}$	2	1.93	2.05		<1	<1	${ }^{82}$	${ }^{82}$
D005	D005 1310508	13/052008	PS	<5	7	.	5	<0.001	0.08	<0.000	<0.001	<0.001	0.23	<0.001	0.001	<0.005	<0.01	0.8	0.05	0.8	35	19	0.2	6	6		${ }^{33}$	3.69	3.83	1.82	.			
0007	D007_050308	5/0312008	PS		54	<1	74	0.002	0.1	<0.0001	0.003	0.007		0.003	0.004	0.02	<0.01	1.8	0.56	1.8	${ }^{13}$	8	0.1	2	9	20	2	1.84	1.95		<1	${ }^{<1}$	78	78
0007	D0071310508	13/0512008	PS	${ }^{28}$	9	-	119	0.002	0.05	<0.0001	0.002	0.002	2.91	0.001	0.002	<0.005	0.012	1.2	0.22	1.2	${ }^{24}$	14	0.4	5	9		25	2.88	2.92					
0007	D007_131051088CHK	13/052008	LD																0.2			14	0.3											
0009	D009 05010308	5/0312008	PS	.	49	<1	214	0.004	<0.1	0.0002	0.005	0.01		0.006	0.007	0.034	${ }^{0.353}$	1.7	0.42	${ }^{2} .1$	12	6	${ }^{0.1}$	2	${ }^{8}$	${ }^{23}$	3	1.89	2	.	<1	<1	${ }^{83}$	${ }^{83}$
D009	D009 1310508	13/052008	PS	16	7	.	122	0.002	<0.05	<0.000	0.005	0.007	9.62	0.005	0.006	0.025	0.177	1.4	0.37	1.6	17	9	0.2	4	7		26	2.23	2.41	-	.			
0009	D009 131050108CHK $^{\text {a }}$	13/052008	LD	14		-																												
0010	001005030308	5/1322008	PS		42	<1	260	0.002	<0.1	0.0002	0.005	0.007	-	0.006	0.005	0.025	0.182	1.3	0.17	1.5	13	16	0.2	3	6	35	2	2.53	2.63		<1	<1	102	102
0010	D010_05030308CHK	5/0312008	${ }^{\circ}$		${ }^{42}$																	15	0.2								<1	<1	102	102
0010	${ }^{00101013135098}$	${ }_{\text {13052008 }}{ }^{1032008}$	$\stackrel{\text { Ps }}{\text { PS }}$	<5	${ }^{82}$	4	26	${ }^{<0.001}$	${ }^{20.05}$	<0.0001	${ }_{0}^{20.001}$	${ }^{20.001}$	0.28	${ }^{<0.001}$	${ }^{20.001}$	${ }^{<0.005}$	${ }^{<0.01}$	${ }^{0.3}$	${ }^{<0.01}$	0.3	${ }^{28}$	39	0.2	10	5		${ }_{4}^{49}$	4.34	4.45	1.18	-	1		
${ }^{\text {D }} 0011$	Dol1-113030308	${ }^{5 / 13352008}$	${ }^{\text {PS }}$	8	82 7	<1	${ }_{26}^{26}$	0.002 0.001	${ }_{0}^{0.05}$	${ }^{20.0001}$	${ }^{20.001}$	${ }^{0.003}$	0.81	${ }^{20.001}$	${ }^{0.002}$	${ }_{\text {¢ }}{ }_{\text {¢0.005 }}$	${ }_{0}^{0.0015}$	1 0.7	0.3 0.09	1 0.7	${ }_{21}^{14}$	$\stackrel{1}{<1}$	<0.1 0.1	${ }_{4}^{4}$	${ }_{7}^{8}$	17	${ }_{1}^{16}$	1.74 2.02	${ }_{2.92}^{1.22}$		<1	<1		
0012	D012_140508	1410512008	PS	45	10	.	13	${ }^{0.001}$	${ }^{2} 0.05$	0.0001	<0.01	${ }_{0}^{0.003}$	${ }^{0.21}$	<0.01	0.002	${ }^{\text {<0.005 }}$	<0.01	0.9	0.07	0.9	${ }^{26}$	12	0.2	7	8		${ }^{26}$	${ }_{3.09}$	${ }_{3.2}$	1.69				
012	D12 141050808 CH	140512008	LD														<0.01						0.1				25							

NOTES
MTV- minimum triger value
BoLD
greater than MTV
PS - Primary Sample
FD - Field Dupicicate Sample

Upper Dawson Catchment-Upsen

Water Quality Data Summary

Sample CollectionPoint	${ }_{\substack{\text { Sample } \\ \text { Date }}}^{\text {ate }}$	Time	Physical									Cations				Anions				Nutrients				Trace Elements													Physical Appearance	
			$\begin{array}{\|c\|} \hline \text { Teir } \\ \text { Aen } \end{array}$		pH		(mgl) ${ }_{\text {po }}$	$\underset{\text { sat }}{\substack{\text { poot } \\ \text { sat }}}$	${ }_{\substack{\text { ros } \\ \text { (mgl) }}}^{\text {den }}$		(Turbitity	(${ }_{\text {Sodium }}^{\substack{\text { (mgl) }}}$	$\underset{\substack{\text { Potassium } \\ \text { (mgL) }}}{\text { ata }}$	(calcium	$\begin{array}{\|c\|c\|c\|c\|c\|c\|c\|c\|} \\ \text { (mgsium } \end{array}$	Bicarbonate as $\mathrm{HCO}^{(\mathrm{mg} / \mathrm{L})}$ (mg	$\left.\begin{array}{c} \text { chhoride } \\ \text { (mg }(L L L) \end{array}\right)$	(matice	$\begin{gathered} \text { Sulphate } \\ \text { (mgLL } \end{gathered}$	$\underset{\text { (1) }}{\substack{\text { (ug) }}}$	(ugl)	Ammond	$\begin{array}{\|c\|} \hline \text { Nitrate as } \\ \mathrm{NO}_{3} \\ (\mu \mathrm{~g} / \mathrm{L}) \\ \hline \end{array}$		(1) $\begin{gathered}\text { Boron } \\ \text { (ugl) }\end{gathered}$	Cadiomm	$\begin{aligned} & \text { Chromium } \\ & (\mu \mathrm{g} / \mathrm{L}) \end{aligned}$	coper	$\left.\right\|_{\substack{\text { roma } \\(\text { mglu }}}$	$\begin{array}{\|l\|l\|l\|l\|l\|l\|l\|l\|l\|l\|l\|l\|l\|l\|l\|l\|l\|l\|} \end{array}$	${ }_{\text {Mercury }}^{\substack{\text { Magl) }}}$	$\left.\begin{array}{\|c\|c\|c\|c\|ccl} \text { Negll } \end{array}\right)$	(zinc		Level	Velocity		(Data source
		MTV	${ }^{\text {na }}$		6.5.8.0	340	na	85-110	${ }^{\text {na }}$	10	50	115	${ }^{n a}$	1000	${ }^{n 9}$		${ }^{175}$	${ }_{1,2}$	${ }^{400}$	500	${ }^{50}$	${ }^{20}$		${ }^{24173}$	${ }^{370}$	0.2	${ }_{50}$	1.4	200	${ }_{3.4}$	${ }_{0}^{0.6}$	11	${ }^{8}$	${ }^{5}$	${ }^{\text {na }}$	${ }^{\text {na }}$		
Upeer Baffe Creek	40552002	15.40				1585			1078 108 108																												Clear	s
Upper Baffe creek	1017202	10.30		- ${ }_{2}^{24}{ }_{2}$		1570 1570			(10681068 108																												Siligh loudy brown	s
Upper Bafle Creek	10112002	14.35		${ }^{25}$		147			100																												Sot fowing - Yelow Brown	s
Upeer Bafte Criek	10112002	13.35		${ }^{27}$		128			${ }^{87}$																												Slight fow, mudy	s
Upeer Bafte criek	10172022					${ }_{9}^{97}$			${ }_{68}^{66}$																													s
Upper Batfe creek	1012002			${ }_{2}^{29}$		115 114			78 98 98																												Stight fow, muddy	s ${ }_{\text {s }}$
Upper aftere riek	220682001								\bigcirc																												No fow	
Uperer Bafte creek	250562001								0																												$\xrightarrow{\text { Nofow }}$ Noflow	s
Upper Baffec creek	${ }^{2010420001} 8$								\bigcirc																												$\xrightarrow{\text { Nof fow }}$	s
Uperer Baffe creek									0																													s
Upper Baffec creek	${ }^{5} 5$								\bigcirc																												$\frac{\text { No fow }}{\text { No fow }}$	s
Uperer Bafte creek	130772000	14.29		${ }^{24}$		142			97																												Cloud, some sediment	s
Upper Batfe creek	${ }^{1515062000}$	${ }^{14.22} 10$		$\stackrel{24}{19}$		(1296			${ }^{881}{ }^{829}$																												Cloud, some sediment	s
Upper Bafte creek	290422000	10.30		21		1490			1013																												Slight cloudy brown	s
Upper Batfec cieek	${ }^{101042000}$	10.30		${ }^{24}{ }_{24}^{24}$		(1456			${ }_{998}^{998}$																												Stight loudy bown	s
Upeer Batfe criek	300112000	${ }^{1030}$		${ }^{24}$		1856			1262																												Slight cloudy brown	
						${ }_{2}^{200}$			${ }^{136}$																													
Upper baffe cieek	${ }^{290110190999}$	${ }_{15}^{15.72}$		${ }_{2}^{24}$		280 460			${ }_{313}^{190}$																												Not Fowing	s
Uperer Bafte creek	3009919999			${ }^{21}$		${ }^{211}$			${ }^{143}$																												Not Fowing	s
Upper Batif Creek	${ }^{290771999}$			15 19 19		185 191 191			${ }^{126}$																												Nof Fow	s
Uperer Bafte creek	106/1999	14.00		14		162			${ }^{110}$																												Not Fowing	s
		16:00				${ }^{86}$			${ }^{58}$																												Not Fowing	
Upper Batif creek	${ }^{504049999}$			${ }^{27} 17.5$	6.8	${ }_{\text {c }}^{98}$		94	${ }_{43}^{67}$					1	2			0.1	${ }^{<}$						<100					-					Mod		sight fow, muky	
Upeer Bafte Creek	210422004			26.5	6.6	152	12.30	${ }^{155}$	64	${ }^{6}$		${ }^{8}$	6	6	4	77	7	< 1	<10	1350	60				500										Low	Low		
Upeer Bafle Criek	161112004			32.7	7.8	134	8.60	119	${ }^{84}$	49		${ }^{<1}$	7	4	3	${ }^{67}$	7	0.32	<10		1000	100			<100										Low	Low		
Upoer Batif Creek					${ }^{7.4}$	108 212 21			${ }^{114}$	30 48	${ }^{105}$	${ }_{5}^{5}$	${ }_{5}$	11	4	9	${ }_{6}^{6}$	0.43	<10	810	50 40 4	30 40 40			-100				${ }^{1800}$			4			Mod	${ }_{\text {Low }}^{\text {Low }}$		
Upper Saffe creek	${ }^{2204420007}$		27.5	2.9	${ }_{7} 7.6$	${ }_{1} 138$	${ }_{7} 7.23$	${ }_{85}$	${ }_{160}$	${ }_{49}$		${ }^{17}$	12	15	7	${ }_{93}$	5	${ }_{0}^{0.32}$	$\stackrel{\text { < }}{ }$	${ }_{1100}$	$\stackrel{4}{20}$	${ }_{77}$	${ }^{3188^{*}}$	<1	${ }^{25}$	$\stackrel{4}{4}$	$\stackrel{4}{4}$	$\stackrel{1}{<2}$	${ }_{750}$	$\stackrel{1}{4}$	${ }_{<0.5}^{0.1}$	${ }_{<} \times$	${ }_{8.3}$	${ }^{6.5}$				
${ }^{\text {Bafle Creek }}$	70172022					1520			${ }^{1034}$																												Clear	${ }_{s}$
	- ${ }_{\text {5112000 }}^{121202001}$			${ }_{22}^{22}$		(1384			941 109																												Brown tige Brown tinge	s
$\frac{\text { Bafle Creek }}{\text { Bafte }}$	${ }_{\substack{29082001 \\ 1072001}}$			${ }^{23}$		(1484			1009 1040 1																												$\frac{\text { Brown tige }}{\text { Clears Sight brow tinge }}$	s
Batfe Creekeouttow	50041999	11.50		${ }_{23}^{22}$		${ }_{7} 715$			${ }_{527}$																												Stion	
Baffle Creek outtow	405512002								0																												Notested	${ }_{5}$
Baffe Creek outtow	101012002								0																												Not ested	
Baftic Creak outtow	10112002					${ }^{188}$			${ }^{128}$																												Stow fow- muky	${ }_{5}$
	${ }^{101012002}$ 2082001	11:30		${ }_{19}^{27}$					223 887																												${ }_{\text {Might filuow, mudydy }}^{\text {Siown }}$	
	${ }^{250552001}$			23 ${ }_{25}$		1340 1350 1380			${ }^{911}$																												Slighty coudy Brown	s
Batie Creek outiow	${ }^{2004204201} 8$			${ }_{26}^{25}$		(1359			${ }^{918}$																												Slight couay Brown	${ }_{\text {s }}$
Baffle Creak outtow	50992000								0																												No sample	s
Batife Creek outiow	${ }^{\text {230872000 }}$								0																												No sample	s
Baffle Creak outtow	${ }^{15060272000}$								0																												No sample	s
	10420000	13.00		${ }^{21}$		${ }_{1150}$			${ }^{782}$																												${ }_{\text {Slight couxdy brown }}$	s
Bafte Creak outtow	10.4202000	$13: 00$		19		1348			917																												Slight coudy brown	
Bathe Creek outiow	${ }^{20332000}$	13.00		${ }^{24}$		1252			${ }_{851}$																												${ }_{\text {Slight tousted }}^{\text {brown }}$	${ }^{\text {s }}$
Bafte Creak outtow	301211999								0																												Not Fowing	
Bathe Creek outiow	${ }^{29} 291110919999$	${ }^{9} 9$		${ }_{21}^{22}$		${ }_{880}^{880}$			${ }^{585}$																												Not Fowing	s
Batife Creek outiow	3010919999			18		1281			871																												Slow Fow	s
Batfe creek outiow	${ }^{298071999}$			${ }_{13}^{16}$		¢888			${ }^{598}$																												Slow tow- muryy	s
Baffle Creek outtow	10661999	12:13		14		553			${ }^{376}$																												Slow flow- muky	s
Batfe Creek outiow	${ }^{7} 705199999$			${ }_{26}^{19}$		${ }_{649}^{621}$			${ }_{441}^{422}$																												${ }_{\text {Sow-Med. Fow }}^{\text {Slow-med fow }}$	s
Batite Creek outiow	91102003			19		1444	7.30	79	${ }^{225}$			${ }^{347}$	4	1	,	${ }^{2} 26$	${ }_{5} 5$	2	${ }^{<}$						200										Low	Low		${ }_{\text {RH }}$
	22042004			${ }_{20}^{20}$		年 1403	${ }^{5.10}$	56	${ }_{852}^{612}$	${ }^{37}$		(162	${ }_{8}^{5}$	${ }_{5}^{5}$	${ }_{2}$	916 623		1	<10	${ }_{3}^{3900}$	${ }_{350}^{220}$				700 400										Low	Low		${ }_{\text {RH }}^{\text {RH }}$
Batfle Creak outiow	210552005			14		1373	10.10	${ }^{98}$	1030	10		${ }^{34}$	6	<1		664	${ }^{68}$	2	<10	${ }^{720}$	150	${ }^{120}$			500				6013						Low	Low		RH
Bafte Creek outtow	50992006			12		1884	7.90	73	1168	39	154	${ }_{437}^{437}$	6	1	2	${ }^{723}$	${ }^{93}$	2	24	770	<10	<10		9	600	0.1	16	3	${ }^{362}$	${ }^{8}$	80.1	${ }^{3}$	14		Mod	Low		RH

BoLD | Geater than minimum tigger |
| :---: |
| MTV minimum tiggervalue |

TV. minimutrige vaue

Baffle Creen
s- santos

Table 85

Sample Collection Point	Sample	Physical									Cations				Anions				Nutrients				Trace Elements										Eiologica	Physical Appearance	Data
		Time	$\begin{gathered} \text { Air } \\ \text { Temp } \\ \text { ecc) } \end{gathered}$	$\begin{array}{\|c\|c\|c\|c\|c\|c\|} \substack{\text { Tomer } \\ \text { (efoc) } \\ \hline} \\ \hline \end{array}$	pH	$\underset{(H S / m)}{\text { EC }}$	$\begin{gathered} \hline \mathrm{Do} \\ (\mathrm{mglL}) \end{gathered}$	$\begin{array}{\|c} \substack{\text { ooq o } \\ \text { sat }} \end{array}$	$\left\|\begin{array}{c} \mathrm{TDS} \\ (\mathrm{mglL}) \end{array}\right\|$	$\begin{array}{\|c\|} \hline \text { Tss } \\ (\mathrm{mglL}) \end{array}$	$\begin{gathered} \text { Sodium } \\ \text { (mglL) } \end{gathered}$	$\begin{gathered} \text { Potassium } \\ (\text { mg LL }) \end{gathered}$	$\begin{array}{\|c\|} \hline \text { Calcium } \\ (\mathrm{mg} \mathrm{~L}) \end{array}$	$\underset{\substack{\text { Magnesium } \\(\text { mgLL })}}{ }$	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Bicarbonate } \\ \text { as } \mathrm{HCO} \\ (\mathrm{mg} / \mathrm{L}) \end{array} \\ \hline \end{array}$	$\begin{aligned} & \text { Chloride } \\ & (\mathrm{mg} / L) \end{aligned}$	$\begin{array}{\|c} \text { Fluoride } \\ (\mathrm{mg} L) \end{array}$	$\begin{gathered} \text { Sulphate } \\ (\mathrm{mg} / \mathrm{L}) \end{gathered}$	$\begin{array}{\|c\|} \hline \cos _{(\mu \mathrm{g}(\mathrm{~L})} \end{array}$	$\left.\begin{array}{\|c} (\mathrm{Tp} \\ (\mathrm{ggLL} \end{array}\right)$	$\underset{(\mu \mathrm{g} / \mathrm{L})}{\text { Ammana }}$	$\begin{gathered} \begin{array}{c} \text { Nitrate as } \\ \text { No } \\ (n g \mathrm{LLL} \end{array} \\ \hline \end{gathered}$	$\begin{array}{\|c} \hline \begin{array}{c} \text { Arsenic } \\ (\mu \mathrm{g} / \mathrm{L} \end{array} \\ \hline \end{array}$	$\begin{array}{\|c\|c\|c\|c\|c\|c\|} \hline \text { (ugl }) \end{array}$	$\underset{(\mathrm{Cg} / \mathrm{L})}{\text { Cadmium }}$	$\underset{(\mu \mathrm{g} / \mathrm{L})}{\text { Chromium }}$	$\begin{array}{\|l\|l\|} \hline \begin{array}{l} \text { copper } \\ \text { (HggL) } \end{array} \end{array}$	$\begin{array}{\|l\|l\|} \hline \text { Iron } \\ (\text { (HgLL) } \end{array}$	$\begin{array}{\|l\|l\|} \hline \text { Lead } \\ (\text { egLL } \end{array}$	$\begin{array}{\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|} \hline \text { Mecury } \end{array}$	$\begin{array}{\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|} \hline(\mu g L L) \end{array}$	$\begin{aligned} & \text { zinc } \\ & (\operatorname{sigl}) \end{aligned}$	$\begin{aligned} & \text { Chl-a } \\ & (\mu \mathrm{g} / \mathrm{L}) \end{aligned}$		
		MTV	${ }^{\text {na }}$		6.5.8.0	${ }^{340}$	${ }^{\text {na }}$	85-110	na	10	115	na	1000	na	na	${ }^{175}$	1,2	400	500	50	20	700	${ }^{24 / 13}$	370	0.2	50	1.4	200	${ }^{3.4}$	0.6	11	8	5		
Dawson Downstream Bafle	40512002 11012022																																	$\frac{\text { Not tested }}{\text { Not tested }}$	s ${ }_{\text {s }}$
Dawson Downstram Baffe	10112002																																	Not tested	
Dawson Downstream Baftle	${ }^{2206612001}$			${ }_{19}^{19}$		${ }^{1130}$			${ }_{668} 76$																									Silty cloudy Brown	
Dawson Downstream Bafle	${ }_{\text {2505062001 }}^{22001}$	11:00		23 24 24		980 844			666 574 57																									Stity coudy frown	
Davson Dowstream Bafe	${ }^{2220662001}$	${ }_{12}^{12: 15}$		${ }_{26}$		${ }_{853}$			${ }_{580}^{584}$																									Sownow, mudy	
Dawson Downstream Baffle	220612001					182			${ }^{124}$																									Slow fow-lt Brown	
Dasson Downstream Bafte	${ }^{222006272001}$	11:05		${ }_{2}^{26}$		783 83 53			532 240 20																									Stit fow, muddy Mod fow, mudy	
Davson Dowsstram Bate	2200622001			${ }^{28}$		${ }_{673} 6$			${ }_{458}^{240}$																									Sow- med fow	
Dawson Downstram Baftle	200420001			${ }^{24}$		800			544																									Silty cloudy Brown	
Davson Dowstream Batile	80322001 51102000	10:30		${ }_{2}^{25}$		${ }_{1388}^{288}$			196 930 10																									$\frac{\text { Clear, sit brown tinge }}{\text { Cliar, stitsediment }}$	
Dawson Downstream Baffe	50992000	10:00		${ }^{24}$		1498			1019																									Clear, sts sediment	
Dawson Downstream Baftle	${ }^{308212000}$	10:00		20		${ }^{1358}$			${ }^{923}$																									Clear, stst sediment	
Dawson Downstream Bafle Dawson Downstram Bafle	${ }^{2350720000}$																																	$\xrightarrow{\text { No Sample }}$ No Sample	
Dawson Downstream Baffle	20682000																																		
Davson Downstram Baftle	290422000																																		
Dawson Downstream Batile	${ }^{104042000}$	1.00PM		${ }_{24}^{24}$		${ }_{1156}^{1060}$			${ }_{783}^{721}$																									Sily doudy brown	
Dawson Downstream Baffle	300112000																																		
Davson Downstraam Bafle	${ }^{3112111999}$	${ }^{2}$		${ }_{22}^{21}$		${ }_{880}^{1050}$			714 598																									Slow fow- Ltyellow	
Davson Downstream Bafle	2911019999	10.52		${ }^{21}$		910			619																									Slow flow L Lt yelow	
Dawson Dowsstream Batie Dawson Downstram Batie	${ }^{3010911999}$			18 15 15		1402 872			${ }_{593}^{993}$																									Slow fow - murcky	
Dawson Downstream Bafle	2900711999			15		1319			897																									Slow flow - Lt yellow	
Dawson Dowsstream Batife Dawson Downstram Bafte	${ }^{1706519999}$	11:30		13 19 19		556 664			378 452																									Slow fow- - Ltyellow	
Dawson Downstream Baftle	254407		24.6	19.5	8.3	1296	6.05	67.0	990	99.0	280.0	10	10	5.5	820	120	1.4	<1	1600.0	90.0	82.0	305^{*}	3.4	480.0	<1	8.3	$\stackrel{2}{ }$	1700	<1	<0.5	4.2	1.5	15	Slow low-Ltyelow	$\stackrel{\text { RH }}{ }$

Samples collected
s- S.
RHintiver
Healt

ONR - Department of Natural Reso
by calcuation fiom Nitrate as N

$\begin{gathered} \text { Sample Collection } \\ \text { Point } \end{gathered}$	Sample Date	Physical										Cations				Anions				Nutrients				Trace Elements										Biologica	Fow		
		Time		$\begin{array}{\|c} \hline \text { Water } \\ \text { Temp } \\ \left({ }^{\circ} \mathrm{C}\right) \\ \hline \end{array}$	pH	EC ((s/m)	Do (mgl)	D0\% sat	TDS (mgl)		${ }^{\text {a }}$	$\begin{array}{\|c} \begin{array}{c} \text { sodium } \\ \text { (mglL) } \end{array} \\ \hline \end{array}$	$\begin{gathered} \text { Potassium } \\ (\text { mglL }) \\ \hline \end{gathered}$	$\begin{array}{\|l\|l} \hline \begin{array}{c} \text { calcicum } \\ \text { (mad } \end{array} \end{array}$	$\begin{aligned} & \text { Magnesium } \\ & \text { (mg/L) } \end{aligned}$		$\begin{gathered} \substack{\text { chioride } \\ \text { (malL }} \end{gathered}$	$\begin{array}{\|c} \begin{array}{c} \text { Fuboride } \\ \text { (mglu) } \end{array} \end{array}$	$\begin{array}{\|c} \text { Suphate } \\ \text { (masLL) } \end{array}$		$\begin{gathered} \substack{\text { Total } \\ \text { phosphorous } \\ \text { (hglL }} \\ \hline \end{gathered}$	$\begin{gathered} \text { Ammonia } \\ (\text { gelL } \end{gathered}$		$\begin{array}{\|l\|l\|} \hline \text { Arsenic } \\ (\text { egll } \end{array}$	$\begin{array}{\|l\|l} \hline \text { Boron } \\ \text { (uglu) } \end{array}$	$\begin{array}{\|c} \substack{\text { Cadmium } \\ \text { (uglL }} \\ \hline \end{array}$	$\underbrace{}_{\substack{\text { chromium } \\ \text { (egll }}}$	$\begin{gathered} \substack{\text { copper } \\ \text { (egLL }} \\ \hline \end{gathered}$	$\begin{array}{\|l\|l\|} \substack{\text { (egn } \\ \hline} \end{array}$	$\underset{\substack{\text { Lead } \\ \text { (egl) } \\ \hline}}{ }$	$\begin{array}{\|l\|l\|} \hline \text { mercury } \\ \text { (1gLL) } \end{array}$		(ug)	$\underset{\substack{\text { chia } \\ \text { (ugl) }}}{\substack{\text { a }}}$	Level	ty	Dota
Upeer Hutuon Creek	91102003	MTV	na	${ }^{0.880} 0$	$\frac{6.5 .8}{7.9}$	${ }_{\substack{340 \\ 1478}}^{\text {10, }}$	${ }_{\text {n }}^{\text {na }}$	${ }_{85}^{85110} 9$	$\frac{n 9}{1139}$	10	50	${ }_{1}^{135}$	${ }_{9}{ }_{9} 9$	1000 91	${ }^{\text {na }}$	${ }_{31}$	${ }_{275}^{178}$	$\frac{1.2}{0.1}$	400 120 10			20		2413	${ }_{\text {ckion }}^{370}$	0.2	50	1.4	200	3.4	0.6	11	8	5	${ }_{\text {na }}^{\text {Lisaled }}$	na	
Upper tutuon Creek	2504242007		27.7	22.5	${ }^{6.6}$	${ }^{156}$	4.31	49	190	570		${ }^{14}$		${ }^{20}$			${ }^{6}$	0.31	<1	1800	${ }^{170}$	51	${ }^{168^{*}}$	<1	${ }^{32}$	${ }^{4}$	${ }^{4}$	2	1900	4.8	<0.5	${ }^{6.3}$	1.5	13			${ }^{\text {RH }}$
Hutuo Criek Huton Creak	190042004			24.4	7.2	${ }_{358}$	3.60	${ }^{41}$	${ }^{292}$	${ }^{10}$		${ }^{27}$	7.0 100 10	${ }^{27}$	7	${ }_{1}^{171}$	${ }^{28}$	<	<10 <10		70 100				800 8100										Modeate Low Low	${ }_{\text {Low }}^{\text {Low }}$	$\underset{\substack{\text { RH } \\ \text { RH } \\ \hline}}{ }$
${ }_{\substack{\text { Hutto Creek } \\ \text { Huton } \\ \text { creek }}}$				${ }^{23.7}$	$\stackrel{7.6}{7}$	${ }_{195}^{461}$	${ }_{\text {5.60 }}^{5.90}$	- ${ }_{88}^{66}$	${ }_{195}^{284}$	36 170 170		${ }^{39} 18$	10.0 7.0	${ }^{30}$	9	190 87	${ }^{39}$ 12	-	<10	(1300	100 230	${ }^{240}$			${ }_{<100}$				2358						Low	${ }_{\text {Low }}$	${ }_{\text {RH }}^{\text {RH }}$
Hutton Creek	500822006			14.9	${ }^{6.6}$	183	8.00	\%	116	${ }_{123}^{12}$	116	${ }^{24}$	6.0	5	2	${ }_{83}$	${ }^{12}$	0.2	5	680	<10	<10		2	<100	${ }^{0.1}$	5	${ }^{4}$	62	2	<0.1	${ }^{4}$	<10		Mod	Low	${ }_{\text {RH }}$
Hutuon Creek	2110412007		34.3	21.3	7.1	273	3.49	${ }^{39}$	220	${ }_{32}$		59	7.4	12	4	130	20	0.31	${ }^{<1}$	1200	76	${ }^{93}$	101*	1.6	79	$\stackrel{1}{4}$	<	<2	2300	<1	${ }^{0.5}$	<3	${ }^{20}$	${ }^{6.6}$			${ }_{\text {RH }}$
$\pm \begin{aligned} & \text { Hutto Cieek } \\ & \text { Huton } \\ & \text { creek }\end{aligned}$	80881973	${ }^{1350}$		${ }_{31}^{19}$	8.1 7.9	155 300 30			$\begin{array}{r}\text { ¢ } \\ \hline 198 \\ \hline 18\end{array}$	${ }^{116}$		14 30	${ }_{6}^{5.4}$	${ }_{\text {11 }}^{11}$	${ }_{7}$	- 145	10 87	0.14 0.5 0.5	4				1200														${ }_{\text {ONRW }}^{\text {ONRW }}$
	${ }^{\text {cosion }}$	${ }^{1405}$			${ }_{8.2}$	${ }_{2} 215$			${ }^{198}$	10	75		${ }^{6.8}$	${ }^{36}$	4	${ }^{148}$	${ }^{15}$	0.1	${ }_{5}^{4}$				${ }_{4}{ }_{4000}$														${ }_{\text {ONRW }}^{\text {ONT }}$
Hutoon Creek	${ }^{250331982}$	1405		${ }_{2}$	8	160			97	200	100	12	4.2	12	3	77	8		5.4				2100														DNRW
Hutuon Creek	$161 / 21983$	930		24	8.2	${ }^{195}$			${ }_{1} 130$	${ }^{20}$	${ }^{25}$	17	4.6	16	4	${ }_{90}$	${ }^{15}$		${ }^{2.7}$				${ }^{1200}$		20												
Hutto Cieek Huton Creek	200391984	${ }^{1400}$		${ }_{14}^{27}$	${ }_{7}^{7.8}$	250 270			- 150	10 5	12	${ }_{22}^{20}$	4.9 4.8	20 22	5	110 135	25 19	0.1 0.1	6.3 3 1.3						${ }_{20}^{20}$												
Hutton Creek	1910101984	1500		20	7.9	570			${ }^{320}$	5		70	1.6	${ }^{34}$	11	185	${ }_{81}$	0.1	${ }^{12}$				1100		10												${ }_{\text {ONRW }}$
Hutuon Creek	150119895	${ }^{920}$		${ }^{24}$	7.8	${ }^{200}$			${ }^{120}$	445	100	17	5.2	15	4	${ }^{88}$	16	0.1	2				1100		${ }^{20}$												${ }_{\text {ONRW }}$
	${ }^{20010191985}$	1025 1099		20 25	8.2	$\substack{390 \\ 131}$			1010 84	${ }_{630}^{10}$	$\stackrel{1}{100}$	${ }_{9}^{175}$	$\stackrel{4.5}{4.3}$	-85	67	${ }_{6}^{275}$	$\underset{4}{355}$	${ }_{0}^{0.3}$	$\stackrel{170}{12}$				(100 10												

BOLD $\begin{gathered}\text { Greater than minimum trigge value (refer ENviommental Values Table) } \\ \text { MTV minimum }\end{gathered}$
Samples collecected oownstream of xexsining associated waier discharge poins

$s-$ Santos
RH -River tea

RNR- Department of Nawural Resources

\begin{tabular}{|c|}
\hline \multirow[t]{2}{*}{} \& \multirow[b]{2}{*}{Sample ate} \& \multicolumn{10}{|c|}{Physical} \& \multicolumn{4}{|c|}{Cations} \& \multicolumn{4}{|c|}{Anions} \& \multicolumn{4}{|c|}{Nutriens} \& \multicolumn{9}{|l|}{\multirow[t]{2}{*}{}} \& \multicolumn{2}{|r|}{Biological} \& \multicolumn{2}{|c|}{Fow} \& \multirow[b]{2}{*}{Physical Appearance} \& \multirow[b]{2}{*}{Data} \\
\hline \& \& Time \& \& \& pH \& \& (ngl) \& \& (ma) \({ }_{\text {Tos }}^{\text {(n) }}\) \& Tss (mgl) \& \& Sodium \& \(\underbrace{\text { a }}_{\substack{\text { Potassium } \\ \text { (maL) }}}\) \& \(\underset{\substack{\text { calcium } \\ \text { (mal) }}}{\substack{\text { a }}}\) \& \({ }_{\text {Magnesium }}^{\substack{\text { max } \\ \text { mmL) }}}\) \& \[
\begin{array}{|c}
\hline \text { Bicarbonate } \\
\text { as HCO3 } \\
\text { (mg/L) }
\end{array}
\] \& \({ }_{\substack{\text { charide } \\ \text { (mal) }}}^{\text {a }}\) \& \& \({ }_{\substack{\text { sulpate } \\ \text { (mal) }}}^{\text {a }}\) \& TN (Mg) \& TP (mg) \& \({ }_{\substack{\text { Ammonia } \\ \text { (9al) }}}^{\text {a }}\) \& \[
\begin{gathered}
\text { Nitatato as } \\
\text { Nos } \\
\text { (ngol }
\end{gathered}
\] \& \({ }_{\text {A }}^{\substack{\text { Asemic } \\ \text { (ugl) }}}\) \& (e) \begin{tabular}{c}
Bron \\
(egl) \\
\hline
\end{tabular} \& \& chemin \& \({ }_{\substack{\text { copeor } \\ \text { (egul) }}}^{\substack{\text { ata }}}\) \& \& \& \& Nomed \& Zinc (wgl) \& \({ }_{\text {chem }}^{\substack{\text { chata } \\ \text { (ugl) } \\ \hline}}\) \& Level \& Veloctiy \& \& \\
\hline \& \& MTV \& ne \& 0.80\%2040 \& \({ }_{6}^{6.580}\) \& \({ }^{340}\) \& \({ }_{49}{ }^{\text {na }}\) \& \({ }_{85}^{85 \cdot 10}\) \& \({ }_{\text {nas }}^{\text {ne }}\) \& \({ }^{10}\) \& 50 \& \(\frac{115}{20}\) \& \(\stackrel{\text { na }}{ }\) \& \({ }^{1000}\) \& \(\frac{n 9}{6}\) \& \({ }_{\text {na }}^{138}\) \& \(\frac{175}{14}\) \& \(\frac{1,2}{4}\) \& - 400 \& \({ }_{\substack{500 \\ 1050}}\) \& \({ }_{1}^{50}\) \& \({ }^{20}\) \& \& 2413 \& \({ }_{400}^{370}\) \& 0.2 \& 50 \& \({ }^{1.4}\) \& 200 \& 3.4 \& 0.6 \& \({ }^{11}\) \& 8 \& 5 \& \(\frac{n a}{\text { Modeate }}\) \& \(\frac{n a}{\text { Nodeate }}\) \& \& \\
\hline \& 19112004 \& \& \& \({ }_{22,1}^{22,}\) \& 7 \& \({ }^{2129}\) \& \({ }_{7}^{4.00}\) \& 91 \& \({ }_{88}\) \& \({ }_{316}\) \& \& \({ }_{15}^{20}\) \& \({ }_{5}\) \& 1 \& \({ }^{2}\) \& \({ }_{54}\) \& 8 \& \({ }_{\text {- }}^{\substack{\text { < } \\ 0.1 \\ \hline}}\) \& <10 \& 4100 \& \({ }_{\text {cois }}^{\substack{190 \\ \hline 80}}\) \& \& \& \& \({ }_{400}^{400}\) \& \& \& \& \& \& \& \& \& \& \({ }_{\text {Moderale }}^{\text {Moseate }}\) \& \(\frac{\text { Modeale }}{\text { Moderate }}\) \& \& \({ }_{\text {RH }}^{\text {RH }}\) \\
\hline Dinaso dis stuto-1 \& 220552005 \& \& \& \({ }^{9} 3\) \& 7.4 \& 266 \& 13.40 \& 116 \& 180 \& 3 \& \& \({ }^{21}\) \& 3 \& \({ }^{15}\) \& 8 \& \({ }^{111}\) \& \({ }^{14}\) \& 0.21 \& \(<10\) \& 120 \& \({ }^{50}\) \& <10 \& \& \& \(<100\) \& \& \& \& \& \& \& \& \& \& Notow \& \& \& \\
\hline \& \({ }_{\text {2 }}\) \& \& \& \({ }_{1}^{12.4}\) \& \({ }_{7}{ }_{7}{ }^{6}\) \& 265
226 \& \({ }_{7}^{8.20}\) \& \({ }_{70}^{75}\) \& \({ }_{108}^{143}\) \& \begin{tabular}{|c}
3 \\
15 \\
\hline
\end{tabular} \& 6 \& \({ }^{21}\) \& \({ }_{3}^{3}\) \& \({ }^{16}\) \& 9 \& \({ }_{104}^{113}\) \& \begin{tabular}{l}
16 \\
\hline 10
\end{tabular} \& \begin{tabular}{l}
0.2 \\
0.2 \\
\hline
\end{tabular} \& -10 \& 170
80 \& - 500 \& \({ }_{\substack{40 \\<10}}\) \& \& \({ }^{4}\) \& - \& \({ }_{0} 0.1\) \& \({ }^{<}\) \& < \& \({ }^{60}\) \& \({ }_{4}\) \& \({ }^{0.1}\) \& \({ }_{4}\) \& <10 \& \& \({ }_{\text {cosem }}^{\substack{\text { Lom-Mod } \\ \text { Mod }}}\) \& \({ }_{\text {Low }}^{\text {Lod }}\) \& \& \({ }_{\text {RH }}^{\text {RH }}\) \\
\hline Dawsond ds tutuo-1 \& \& \& 3.9 \& 22.5 \& 6.9 \& \({ }^{265}\) \& 4.16 \& 49 \& 160 \& 9 \& \& \({ }^{23}\) \& 3 \& 21 \& 9 \& \({ }^{150}\) \& 11 \& 0.21 \& <1 \& 550 \& <20 \& 30 \& \({ }^{4} 44^{+}\) \& \(<1\) \& 16 \& \(<1\) \& \(<\) \& \(\stackrel{2}{ }\) \& \& \({ }_{4}\) \& C0.5 \& \({ }^{4}\) \& 17 \& \({ }^{4}\) \& \& \& \& \\
\hline Daxson dis sutuon-2 \& \({ }^{330420004}\) \& \& \& \({ }^{25.1}\) \& \({ }^{7} 7\) \& \({ }^{260}\) \& 5.40 \& \({ }^{66}\) \& \({ }^{132}\) \& \({ }^{20}\) \& \& \({ }^{20}\) \& \({ }^{3}\) \& \({ }^{14}\) \& \({ }_{2}^{6}\) \& \({ }_{\substack{138 \\{ }_{5}^{18} \\ \hline}}\) \& \({ }^{14}\) \& <1 \& \({ }_{<10}\) \& \({ }^{290}\) \& \({ }_{\substack{10 \\ 180}}\) \& \& \& \& 400 \& \& \& \& \& \& \& \& \& \& Low \& Mode \& \& \({ }^{\mathrm{RH}}\) \\
\hline Jansond ds tutuo-2 \& \({ }^{1921120204}\) \& \& \& 22.7 \& 7.2 \& \({ }_{29}^{134}\) \& \({ }^{8.00}\) \& \({ }_{93}^{93}\) \& \({ }^{922}\) \& \& \& \({ }^{15}\) \& \({ }^{6}\) \& 16 \& \({ }_{9}\) \& \({ }_{\substack{56 \\ 111}}^{50}\) \& \({ }_{14}^{8}\) \& \({ }_{0}^{0.08}\) \& <10 \& \({ }^{3100} 10\) \& (680 \& <10 \& \& \& c100 \& \& \& \& \({ }^{66}\) \& \& \& \& \& \& \& \& \& \\
\hline Dawsonds thuto-2 \& 24012006 \& \& \& \({ }^{15.4}\) \& 7.6 \& \({ }_{228}^{29}\) \& \({ }_{7}\) \& 71 \& \({ }_{124}\) \& 11 \& 4 \& 19 \& 3 \& 14 \& 7 \& 106 \& 12 \& 0.2 \& 4 \& \({ }_{60}\) \& <10 \& <10 \& \& \({ }^{1}\) \& \(<100\) \& \({ }^{0.1}\) \& \({ }^{<}\) \& \({ }^{1}\) \& \({ }^{97}\) \& \({ }_{4}\) \& 0.1 \& \({ }_{4}\) \& <10 \& \& Mod \& Mod \& \& \({ }_{\text {RH }}\) \\
\hline Davson ds stutuon-2 \& \& \& 3.5 \& 21.8 \& 7 \& 282 \& 5.93 \& \({ }_{68}\) \& 180 \& 3 \& \& \({ }^{28}\) \& \& \({ }^{26}\) \& 11 \& \& \& \& \& \({ }^{560}\) \& 220 \& \({ }_{6} 6\) \& \({ }^{44}\) \& \(<1\) \& 15 \& \({ }^{4}\) \& \(\leq 1\) \& \(\llcorner 2\) \& \& 4 \& \({ }^{0.5}\) \& \({ }_{4}\) \& \({ }^{4}\) \& 4 \& \& \& \& \\
\hline Doavos Bend \& \({ }^{\text {and }}\) \& \& \& \({ }^{19,2}\) \& \({ }_{6}^{6.7}\) \& 2280 \& \({ }_{4.50}^{5.5}\) \& \({ }_{5}^{55}\) \& \({ }_{95}^{95}\) \& \& \& \({ }_{21}^{27}\) \& \({ }_{3}^{2}\) \& \(\stackrel{14}{14}\) \& 7 \& \({ }_{\substack{157 \\ 131}}^{1}\) \& \({ }^{12}\) \& \(\stackrel{0.1}{\substack{\text { ¢ }}}\) \& \(\stackrel{\text { c }}{<10}\) \& 270 \& 60 \& \& \& \& <100 \& \& \& \& \& \& \& \& \& \& \(\frac{\text { Low }}{\text { Low }}\) \& \(\frac{\text { Low }}{\text { Low }}\) \& \& \({ }_{\text {RH }}^{\text {RH }}\) \\
\hline Dawsons Bend \& 191112004 \& \& \& 21.2 \& 6.9 \& \({ }^{136}\) \& \& \({ }_{84}\) \& 136 \& \({ }^{366}\) \& \& 15 \& 5 \& \& 4 \& \({ }_{55}\) \& 9 \& 0.17 \& \(<10\) \& 3400 \& \({ }_{750}\) \& \& \& \& \& \& \& \& \& \& \& \& \& \& Wodeate \& \& \& \\
\hline Davsons Bend \& 244552005 \& \& \& 17.9 \& 7.1 \& \({ }^{244}\) \& 8.40 \& \({ }^{89}\) \& \({ }^{148}\) \& 4 \& \& \({ }^{21}\) \& \({ }^{3}\) \& 14 \& 9 \& \({ }^{106}\) \& 15 \& 0.21 \& \(<10\) \& 40 \& \({ }^{50}\) \& <10 \& \& \& \(<100\) \& \& \& \& \({ }^{62}\) \& \& \& \& \& \& \& \& \& \({ }_{\text {RH }}\) \\
\hline Dansons Eend \& \& \& \& 16.7 \& \({ }^{7.3}\) \& \({ }^{228}\) \& \& \({ }^{2}\) \& 122 \& \({ }^{10}\) \& 2 \& \({ }^{21}\) \& \({ }^{3}\) \& \({ }^{13}\) \& 8 \& \({ }^{102}\) \& \({ }^{13}\) \& \({ }^{0.2}\) \& \(\stackrel{4}{4}\) \& \({ }^{90}\) \& \({ }^{20}\) \& <10 \& \& \(\stackrel{4}{4}\) \& <100 \& \({ }^{0.1}\) \& \(\stackrel{4}{4}\) \& \({ }_{<}\) \& \({ }^{23}\) \& \({ }_{4}\) \& \({ }^{0.1}\) \& \({ }_{4}\) \& \({ }_{\text {c }}^{4}\) \& \& Mod \& Mod \& \& \({ }_{\text {RH }}^{\text {RH }}\) \\
\hline \(\frac{\text { Oavsons end }}{\substack{\text { Yeona cosing }}}\) \& \({ }_{\text {23042007 }}^{\text {310909 } 199}\) \& \& \({ }^{23.1}\) \& \({ }^{24,1}\) \& 6.9 \& \({ }_{430}^{273}\) \& 5.03 \& \({ }^{6}\) \& \({ }^{220}\)\begin{tabular}{l}
292 \\
\hline
\end{tabular} \& 14 \& \& \({ }^{22}\) \& \({ }^{3}\) \& 19 \& 9 \& \({ }^{130}\) \& 14 \& 028 \& \(<1\) \& \({ }_{540}\) \& \({ }_{4}\) \& \({ }^{6}\) \& \({ }^{444^{*}}\) \& \(<1\) \& \& 4 \& \& \(<2\) \& \& <1 \& \& \& \& 4 \& \& \& Slow Fow \& \\
\hline \& \({ }^{\text {a }}\) \& 15.00 \& \& 22 \& \& \({ }^{182}\) \& \& \& \& Slighly coudd brown \& \begin{tabular}{l}
s \\
\hline
\end{tabular} \\
\hline Yebna Cossing \& 110121202 \& 15.00 \& \& \({ }^{25}\) \& \& \({ }^{318}\) \& \& \& 216 \& Vens sight coudy brown \& \({ }^{\text {s }}\) \\
\hline Y Yenac Cossing \& \(\xrightarrow{1011202}\) \& \& \& \({ }_{21}^{25}\) \& \& \({ }_{\text {318 }}^{334}\) \& \& \& \({ }_{159}^{216}\) \& Vey silit colouy biown \& \\
\hline Yenan Crossing \& 1010102001 \& \& \& \& \& \({ }^{234}\) \& \& \& 159 \& Claer \& \\
\hline \& \({ }^{298082001} 10\) \& \& \& \({ }_{21}^{22}\) \& \& \({ }_{2}^{241}\) \& \& \& \& \({ }_{\text {clear }}^{\text {Cliart }}\) \& \\
\hline \({ }^{\text {Veban Cosssig }}\) \& \({ }^{220652000}{ }^{25550201}\) \& \& \& \(\begin{array}{r}18 \\ \hline 18 \\ \hline 2\end{array}\) \& \& \begin{tabular}{l}
215 \\
165 \\
\hline
\end{tabular} \& \& \& 146
14
14 \& \(\underbrace{\text { Slighty Mury }}\) \& \\
\hline Yenon Cososing \& 20042001 \& \& \& \({ }_{24}^{24}\) \& \& 1160 \& \& \& 109 \& Sighy mary \& \\
\hline Y Yeona Cosossing \& \({ }^{\text {8032001 }} 402001\) \& 15.00 \& \& \begin{tabular}{|l}
25 \\
\\
\\
26
\end{tabular} \& \& \({ }_{1}^{1768}\) \& \& \& \({ }_{120}^{120}\) \& \({ }_{\text {Slighly } \text { coudy }}\) \& \\
\hline Yena Cososing \& \({ }^{230112000}\) \& 14.00 \& \& \({ }^{25}\) \& \& \({ }_{151}^{151}\) \& \& \& \({ }^{103}\) \& Stiole \& \\
\hline Y Yenaca crossing \& \({ }^{1912122000}\) \& \({ }_{\substack{1600 \\ 13.00}}^{\text {180 }}\) \& \& \({ }^{25}{ }_{26}^{26}\) \& \& \({ }_{226}^{249}\) \& \& \& +169 \({ }_{181}\) \& \(\frac{\text { Slighty }}{\text { Claur }}\) \& \\
\hline ¢ \& (10102000 \& \& \& \({ }^{25}{ }_{25}^{25}\) \& \& \& \& \& \({ }_{202}^{197}\) \& \(\xrightarrow{\text { Cliear }}\) Cliar \& \\
\hline Yenna cososing \& 3082000 \& \({ }_{1437}\) \& \& \({ }^{25}\) \& \& \({ }_{2}^{257}\) \& \& \& \({ }^{175}\) \& Clear \& \\
\hline \& \({ }^{230772000}\) \& \({ }^{14.32}\) \& \& \({ }^{25}\) \& \& \({ }_{2}^{266}\) \& \& \& \({ }_{\substack{181 \\ 187}}\) \& \({ }_{\text {Cliar }}^{\text {Cliar }}\) \& \\
\hline Yena Cosssis \& \({ }^{1404042000}\) \& \begin{tabular}{|c}
15.50 \\
1200 \\
1200
\end{tabular} \& \& 25

22
22 \& \& ${ }_{205}^{241}$ \& \& \& ${ }^{164}$ \& Vers silit coudy brown \&

\hline Yeona Cosssig \& ${ }^{21406250000} 1$ \& ${ }^{12350} 12$ \& \& ${ }^{22}$ \& \& cis

279 \& \& \& ${ }_{100}^{207}$ \& \&

\hline Yeona Cossing \& \& \& \& ${ }^{24}$ \& \& ${ }^{344}$ \& \& \& \& Vers sight olouy bown \&

\hline Yroba Cossing \& ${ }^{3012012000} 3$ \& ${ }^{12.30} 10.45$ \& \& ${ }_{20}^{25}$ \& \& ${ }^{282}$ \& \& \& +192 \& $\underset{\text { vers sight coury biown }}{\text { flow }}$ \&

\hline Yeona Cossing \& ${ }^{20171999}$ \& ${ }^{16,35}$ \& \& ${ }_{22}^{22}$ \& \& \& \& \& \& ${ }_{\text {fow }}^{\text {fow }}$ \&

\hline Yenona Cosssing \& 290711999 \& \& \& ${ }_{15}$ \& \& ${ }_{348}$ \& \& \& ${ }^{237}$ \& Stow fow -muty \&

\hline Yeena crossing \& $\xrightarrow{2907071999} 1$ \& 8.00 \& \& ${ }_{12}^{17}$ \& \& ${ }^{435}$ \& \& \& ${ }_{107}^{296}$ \& \&

\hline Yenaa corssing \& 88051999 \& 9.30 \& \& ${ }^{18}$ \& \& 194 \& 4.00 \& \& 132 \& Mod fow- muky \&

\hline \& ${ }^{\text {23020219999 }}$ \& ${ }_{\substack{9.500}}^{\substack{\text { a.0. }}}$ \& \& ${ }^{28}$ \& \& ${ }_{1}^{187}$ \& \& \& ${ }^{127} 12$ \& \&

\hline Yeona Cossing \& ${ }^{230211999}$ \& \& \& ${ }_{17}^{26}$ \& \& ${ }^{231}$ \& \& \& ${ }_{1}^{157}$ \& Mod fow, muday \&

\hline Yeona a cosssising \& ${ }^{281111998}$ \& ${ }^{14.30}$ \& \& ${ }_{28}$ \& \& ${ }_{200}^{200}$ \& \& \& \& Wedoflow mumy \&

\hline ${ }_{\text {Veban Cossing }}^{\substack{\text { Vena coissing }}}$ \& ${ }^{28111909}$ \& 15.00 \& \& \& \& \& \& \& ${ }_{89}^{120}$ \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& 4100 \& \& \& \& \& \& \& \& \& \& \& \& Med flow- Brown \&

\hline Yeena Cossing \& \& \& \& ${ }^{20.8}$ \& ${ }_{7}^{72}$ \& ${ }_{2}^{292}$ \& ${ }^{7} 200$ \& ${ }_{81}^{81}$ \& ${ }^{92}$ \& \& \& ${ }_{27}^{27}$ \& ${ }^{3}$ \& 14 \& 6 \& ${ }_{124}^{124}$ \& ${ }^{22}$ \& < ${ }_{5}$ \& $<$ \& ${ }_{500}$ \& ${ }^{40}$ \& \& \& \& ${ }_{600}$ \& \& \& \& \& \& \& \& \& \& Modeaere \& ${ }_{\text {Notear }}^{\text {Low }}$ \& \&

\hline Venoa Cosssing \& ${ }^{1851125000}$ \& \& \& ${ }^{246}$ \& ${ }_{7,7}^{7.3}$ \& ${ }_{2}^{226}$ \& 13000 \& ${ }^{124}$ \& ${ }^{1127}$ \& ${ }^{142}$ \& \& ${ }^{29}$ \& ${ }^{6}$ \& $\stackrel{7}{11}$ \& ${ }^{5}$ \& | 103 |
| :---: |
| 88 |
| 88 | \& ${ }^{19}$ \& - ${ }_{0}^{0.23}$ \& <10 \& ${ }^{1100}$ \& 2200 \& \& \& \& ci100 \& \& \& \& \& \& \& \& \& \& Noctigh \& ¢ \& \&

\hline \& \& \& \& ${ }_{21}^{13.6}$ \& ${ }^{7.8}$ \& ${ }_{242}^{228}$ \& ${ }_{\text {l }}^{14.30}$ \& ${ }^{135}$ \& ${ }_{180}^{134}$ \& ${ }^{8}$ \& 4 \& ${ }^{27}$ \& ${ }_{4}$ \& $\stackrel{9}{17}$ \& \& ${ }^{87}$ \& ${ }^{21}$ \& 0.1
0.22 \& $\stackrel{4}{<1}$ \& (300 \& ¢ <10 \& <10 \& ${ }^{444^{+}}$ \& $\stackrel{4}{4}$ \& <100 \& $\stackrel{\substack{0.1 \\<1}}{ }$ \& $\stackrel{<1}{<1}$ \& $\stackrel{<}{<1}$ \& 76
300 \& ${ }_{<1}$ \& ${ }_{\substack{0.1 \\ 0.5}}$ \& ${ }_{<1}^{<1}$ \& ${ }_{<10}^{<10}$ \& 4 \& Mod \& Mod \& \& $\underset{\text { RH }}{\text { RH }}$

\hline \&

\hline
\end{tabular}

NR - Oenatmento oN Natural Resource

Water Quality Data Summar

Some	Socte						(ect					(ros ${ }^{\text {mos }}$				Potas	${ }^{\substack{\text { caicum } \\ \text { cmal) }}}$	Manesum		${ }_{\text {chen }}^{\substack{\text { chorate } \\ \text { max }}}$		$\underbrace{\substack{\text { sumate } \\ \text { motu }}}_{\text {sumpate }}$	$\xrightarrow{\text { Toank }}$	(oatp					coicce	${ }_{\text {cosen }}^{\substack{\text { Roon } \\ \text { uelt }}}$	${ }_{\text {coin }}^{\substack{\text { coper } \\ \text { (a) }}}$	${ }^{\substack{\text { mon } \\ \text { mon) }}}$		(e)			(tatares		(enter	(tan		${ }_{\substack{\text { Oata }}}^{\text {suace }}$
					urv	${ }^{\text {na }}$	20.8080	${ }_{\text {c }}^{80}$	${ }_{3}^{30}$	${ }^{\text {na }}$	88510	${ }^{\text {na }}$	${ }^{10}$	${ }_{50}$	${ }_{175}$	${ }^{\text {na }}$	1000	${ }^{\text {na }}$	${ }^{\text {na }}$	${ }^{175}$	${ }_{1}, 2$	${ }_{40}$	50	${ }_{50}$		${ }^{20}$	${ }^{200}$	${ }^{5}$		${ }^{371}$	${ }_{1}$	200			\bigcirc							
Onemer		140					${ }^{19}$		${ }_{4}^{45}$			${ }^{\frac{33}{63}}$																														s
demosor Taom	vatanoz	${ }^{1245}$					19		${ }^{257}$			175																														s
Damenon Taomm	Nata202	1800					${ }^{28}$		${ }_{30}$			${ }^{204}$																													Mod toun mouter	
Oamenotaom	$1{ }^{1042}$	1700							${ }^{193}$			${ }^{131}$																														s
Damanomamem	1042020	1:10					${ }^{25}$		${ }^{117}$			${ }^{80}$																													Mod fory, muatey	
Oamontraom	varano	1130					${ }^{27}$		${ }_{140}$			${ }^{95}$																													Mod tomomuxy	s
Damono Troom	varane2						${ }^{27}$		${ }^{258}$			${ }^{175}$																													Wod foum muxy	
Oemen	,	(1800					${ }_{24}^{24}$		$\underbrace{}_{\substack{216 \\ 27 \\ 27}}$																																	
Oeamer foiom		1600					${ }_{2}^{24}$		${ }_{\substack{24 \\ 24 \\ 24}}$																																	
	,						${ }^{22}$					$\underbrace{\substack{16}}_{\substack{165 \\ 140}}$																													come	
							($\underset{\substack { 190 \\ \begin{subarray}{c}{105{ 1 9 0 \\ \begin{subarray} { c } { 1 0 5 } } \\{105}\end{subarray}}{\text { 10, }}$																														
							- ${ }_{\text {24 }}^{24}$																																		come	
		130					28		${ }^{364}$																																	
	${ }^{2020}$						${ }_{\substack{26 \\ 26}}^{\substack{26}}$		${ }_{\substack{231 \\ 208}}$			(in																													coil	
							$c2424$	-	${ }^{\frac{204}{324}}$			$\underbrace{\substack{20}}_{\substack{20 \\ 20}}$																													emar	
Oemen frowe	3020200	20.					24		${ }^{39}$			${ }^{205}$																													Comat	
${ }^{\text {omamonomamm }}$	${ }^{220727200}$	${ }^{1438}$					${ }^{24}$		${ }^{297}$			${ }^{202}$																														
Doamo froum	20068200	${ }_{\substack{14,60}}^{14,0}$					${ }^{24}$		${ }^{294}$																																	s
Somen		${ }^{11.4}$					$\stackrel{22}{21}$		${ }_{4}^{410}$			${ }^{219}$																													$\substack{\text { coer } \\ \text { coer }}$	
Onem		11.4					${ }^{\frac{23}{24}}$					${ }^{256}$																														
Oemen Tosem	${ }_{\text {and }}^{\text {and }}$						${ }^{22}$		${ }^{300}$																																${ }_{\substack{\text { four } \\ \text { fow }}}^{\text {for }}$	
Oameno Traom	23071999						${ }_{16}$		${ }_{36} 3$			${ }_{20}$																														
Ommon Tasom	20871989						17		450			${ }_{30}{ }^{6}$																														
Oamson Tasom	10661998	9.10					${ }^{14}$		${ }^{319}$			${ }^{27}$																													Nomer	s
Doamon Tasom	avelige	${ }^{1100}$					19		${ }^{20}$			${ }_{12}$																														
(1anseat	${ }^{11272763}$	${ }_{\text {l }}^{1285}$	${ }^{0.87}$	O.60	${ }_{0}^{0.10}$			${ }_{\substack{8,0 \\ 8.0}}$	${ }_{\substack{200 \\ 24}}$			${ }_{\substack{200 \\ 148}}^{\substack{18}}$			${ }_{\text {c }}^{\substack{36 \\ 36}}$		${ }^{\frac{2}{210}}$	${ }_{\text {110 }}^{110}$		${ }_{\substack{36 \\ 32}}$	O20	${ }_{20}^{20}$															000			${ }_{\substack{2462 \\ 246.6}}$		
			${ }^{0.65}$	(ent	(0.00				${ }^{\substack{287 \\ 30 \\ 30}}$			${ }_{\substack{188 \\ 184}}^{\substack{19 \\ \hline}}$					(i80	($\underbrace{}_{\substack { 188 \\ \begin{subarray}{c}{195{ 1 8 8 \\ \begin{subarray} { c } { 1 9 5 } } \\{\hline 195}\end{subarray}}$	${ }_{\substack{32 \\ 32}}^{\substack{32}}$	¢0.00 0.00 0.0	${ }^{10}$														(iseo	${ }_{0}^{000}$		${ }_{\substack{68 \\ 10}}^{18}$			(inco
		${ }^{80}$	0.71	020	0.10		${ }^{20}$	820												${ }^{32}$																						
		cosise	${ }_{0}^{088}$	$0_{0.18}^{0.18}$	0.10		${ }^{24}$	${ }_{780}^{280}$	${ }^{1812}$						${ }^{22}$		${ }_{190}^{190}$	${ }_{50}^{50}$	${ }^{93}$	${ }^{12}$	${ }_{0}^{0.15}$	${ }_{40}^{10}$														${ }^{2600}$			${ }_{68}{ }_{68}$			(ind
(10024		${ }^{1065}$	0.88	${ }_{0}^{0.18}$	0.10		17	${ }_{720}{ }^{180}$	${ }_{\text {136 }}^{138}$						${ }^{22}$		${ }^{190}$	${ }^{50}$	${ }^{120}$	${ }^{14}$	${ }_{0}^{0.10}$	4.														8200			${ }_{158}$			(inden
		${ }_{\substack{380}}^{\substack{380}}$	${ }^{\text {0,74 }}$		0.00		${ }^{18}$	${ }_{720}^{20}$	${ }^{35}$						${ }^{35}$		${ }_{3}^{420}$	${ }_{100}^{100}$	${ }^{20} 189$	${ }_{\text {30 }}^{30}$	${ }_{0}^{0.15}$															15550	000		${ }^{121}$			(incon
coser	${ }^{20808989}$	${ }_{\substack{180 \\ \hline 85}}^{185}$			0.0		${ }^{17}$		30						${ }^{5}$		${ }^{32}$	100	${ }^{189}$	${ }^{30}$	0.5																					
			${ }^{0.65}$	${ }^{002}$	0.10			270	${ }^{212}$						${ }^{30}$		${ }^{230}$	60	${ }^{122}$	${ }^{24}$	020															1160	000		${ }^{82}$	${ }^{262}$		(inco
		${ }_{\text {a }}^{885}$	0.68	0.14	0.10		析	720	${ }^{165}$			${ }^{113}$	${ }^{197}$		${ }^{15}$	${ }^{67}$	${ }^{145}$	${ }^{35}$	${ }^{93}$	10	0.9						1000			∞		${ }^{200}$		200		7600			51	${ }_{1332}^{132}$		(incm
		${ }_{\substack{1880}}^{1200}$	${ }^{086}$	${ }^{136}$	0.10		,	${ }^{280}$	${ }^{180}$			${ }^{115}$	2		${ }^{18}$	${ }^{52}$	${ }^{137}$	${ }^{35}$	${ }^{13}$	${ }^{18}$		${ }^{20}$										2200		${ }^{1330}$		800		02	49	${ }^{141.1}$		(incon
		${ }_{\substack{180 \\ 180}}^{\substack{180}}$	0.0	022	0.10		${ }^{29}$	${ }^{7} 8.8$	${ }^{230}$			${ }^{134}$	70		${ }^{18}$	${ }^{6} 1$	220	${ }^{4 .}$	${ }^{116}$	${ }^{16}$	0.17											${ }^{300}$		1000		5000	0.00	04	14	${ }^{188}$		
			0.70	024	0.10		${ }^{25}$	270	30			${ }^{204}$	20		${ }^{36}$	${ }^{68}$	220	${ }^{8.5}$	110	${ }^{28}$	0.3													${ }_{1}^{1400}$		${ }^{12000}$	0.00	0.5	${ }^{102}$	276		
-		${ }_{170}^{170}$	0.78	0.52	0.10		${ }_{15}$	720	${ }^{265}$			${ }^{152}$	${ }^{85}$		${ }^{28}$	${ }^{65}$	200	${ }^{63}$	${ }^{122}$	${ }^{24}$	0.15													${ }^{900}$		1000	000	。	12	${ }^{265}$		
		${ }^{1720} 170$	0.6	021	0.10		${ }^{19}$	780	${ }^{315}$			${ }^{175}$			${ }^{37}$	${ }^{37}$	${ }^{180}$	70	${ }^{146}$	${ }^{34}$	${ }^{027}$													300		${ }^{12000}$	000	\bigcirc				
		${ }^{1088}$	${ }_{\substack{0.89 \\ 0.69}}^{\substack{\text { 0. }}}$	${ }_{0}^{025}$	0.10		2	${ }^{270}$	${ }^{200}$			${ }^{188}$			3	${ }^{33}$	170	6	${ }^{129}$	${ }^{30}$	0.17													200			000	\bigcirc				
		${ }_{\text {a }}^{\substack{1065 \\ 1065}}$	${ }^{0.58}$		0.10		${ }^{30}$	${ }^{230}$	${ }^{310}$			${ }^{192}$	3		32	${ }^{63}$	${ }^{195}$	${ }^{68}$	${ }^{196}$	${ }^{30}$	0^{022}													${ }^{3000}$		11200	${ }^{000}$	-		2208		,
	${ }^{2077495}$	${ }^{1065}$	${ }^{\text {O. }}$		010		${ }_{18}$		20			40	14																													
(10032A		${ }^{1245}$	0.59	${ }^{003}$	0.0		${ }^{16}$	${ }_{720}$	${ }^{261}$			${ }^{100}$	${ }^{20}$		${ }_{31}$	${ }^{36}$	${ }^{120}$	${ }_{5}^{57}$	${ }^{115}$	${ }^{26}$	0.10													${ }^{200}$		\%	000	-	${ }^{69}$	3, ${ }^{3 / 1}$		
		1880	0.58	${ }^{003}$			${ }^{\frac{23}{24}}$																																			owew
		${ }_{\text {cex }}^{1060}$	${ }^{0.85}$	${ }_{\substack{185 \\ 1.85}}$	020		${ }^{27}$	8.15	${ }^{268}$			${ }^{188}$	n		${ }^{23}$	64	${ }^{210}$	${ }^{6}$	${ }^{115}$	${ }^{22}$	${ }^{020}$	30					${ }^{2200}$									\%6000		${ }^{08}$	${ }^{78}$			Sonem
	$\underbrace{13097976}$	$\underbrace{\substack{182}}_{\substack{182 \\ 1820}}$	${ }_{0}^{064}$	${ }_{\text {c, }}^{0.16}$	${ }^{0.10} 0$			${ }^{8.50}$	${ }^{\frac{30}{20}}$			${ }^{\frac{201}{188}}$	130		${ }^{48}$	${ }^{34}{ }^{34}$	${ }^{240}$	${ }^{78}$	${ }^{165}$	${ }^{38}$	0.70	${ }^{20}$					${ }_{\substack{200 \\ 1700}}$							${ }^{120}$			(000	${ }^{\frac{32}{0.1}}$	${ }^{\frac{92}{60}}$			
			0.98	0.40	0.0		${ }^{24}$	800	310			${ }^{12}$	27		${ }^{28}$	${ }^{57}$	${ }^{240}$	${ }^{12}$	${ }^{120}$	${ }^{26}$	0.10	${ }^{60}$					${ }^{200}$							1860		10000		0.	\bigcirc	2714		
		${ }_{\text {2120 }}^{12120}$	0.80	0.12	0.10		${ }^{24}$	820	${ }^{335}$			${ }^{174}$			${ }^{4}$	${ }^{34}$	${ }^{130}$	${ }^{78}$	112	${ }^{33}$	020						${ }^{20}$							${ }_{4.00}$		${ }^{18300}$		${ }^{1.1}$	${ }_{6}$	24.7		Nomen
	${ }^{122049898}$	${ }_{\text {cose }}^{1248}$	0.2	0^{021}	0.10			${ }^{200}$	${ }^{20}$			${ }^{199}$	${ }^{19}$		${ }^{21}$	${ }^{50}$	210	${ }^{58}$	${ }^{128}$	${ }^{18}$	020	25					${ }^{20}$							${ }^{1100}$		1060		0.6	${ }^{76}$	${ }^{203}$		
		${ }_{\text {ces }}^{1205}$	${ }^{0.89}$	$\underbrace{0.48}_{0} 0$			- ${ }^{14}$																																			
	Sill	${ }_{\substack{104 \\ 104 \\ 104}}^{104}$	${ }^{128}$	273	0.10		${ }^{25}$	${ }^{750}$	${ }^{200}$			${ }^{122}$	${ }^{1270}$		${ }^{16}$	74	17.0	4.5	${ }^{95}$	7	0.10	50					500							${ }^{1330}$		${ }^{7800}$		02	${ }^{6}$	1688		(in
		120	${ }^{\text {O.7 }}$	${ }_{0}^{0.4}$	0.0			7.70	30			${ }^{189}$	10	${ }^{13}$	${ }^{34}$	${ }_{42}$	250	${ }^{26}$	${ }^{160}$	${ }^{30}$	0.10	1.0					200							${ }_{60}$		${ }^{13200}$		0.5	${ }^{4}$	${ }^{294}$		Now
		${ }^{1940}$	${ }^{1.19}$	147	0.10		17	${ }^{290}$	${ }^{160}$			101	${ }^{50}$	${ }^{100}$	${ }^{13}$	${ }^{53}$	${ }^{120}$	${ }^{31}$	${ }^{65}$	11	0.10	80					${ }^{4000}$							${ }^{1200}$		4400		$0^{0.3}$	${ }^{43}$	${ }^{121.8}$		
		${ }_{\substack{140 \\ 800}}^{\text {en }}$	${ }^{0.57}$	${ }^{0.25}$	${ }_{0}^{0.0} 0$			200	${ }_{\substack{40 \\ 300}}$			${ }^{\frac{212}{207}}$	${ }^{10} 10$	${ }_{5}^{5}$	${ }_{4}^{41}$	${ }^{\frac{37}{36}}$	${ }_{2}^{230}$	${ }^{\frac{88}{82}}$	${ }^{\frac{188}{17}}$	${ }^{\frac{34}{34}}$	${ }^{0.10} 0$	500					100							- $\begin{aligned} & \text { 300 } \\ & \text { 300 }\end{aligned}$		$\underbrace{\text { cen }}_{\substack{18200 \\ 18600}}$		${ }^{11} 0$	${ }^{108}$	${ }_{\substack{3225 \\ 235}}$		
	${ }^{2}$		${ }^{0.81}$	${ }^{0.22}$			${ }_{23}^{23}$																																			
		${ }^{1285}$	0.78	0.4	0.10		${ }^{15}$	8.50	${ }^{320}$			${ }_{10}$	-	$\stackrel{2}{2}$	${ }^{36}$	${ }^{37}$	${ }^{21.0}$	${ }^{6}$	${ }^{100}$	${ }^{2}$	0.10	30					${ }_{40}$			${ }^{20}$		${ }^{20}$		100								
		${ }^{105}$	${ }^{0}$	0.2	0.10		${ }^{25}$	8.0	30			10	10	${ }^{8}$	39	${ }^{38}$	${ }^{155}$	${ }_{6}^{66}$	${ }^{100}$	${ }^{34}$	${ }_{0}^{020}$	1.0					${ }_{0}$									${ }^{10000}$			${ }^{6}$			
			${ }^{0.98}$	080	0.10		${ }^{26}$	${ }^{270}$				${ }^{200}$	${ }^{20}$		${ }_{5}^{38}$	49	${ }^{220}$	${ }_{9}{ }^{78}$	10	${ }^{25}$	0.10	${ }^{83}$					${ }^{50}$			${ }^{20}$		${ }^{100}$		14.0		${ }^{10000}$						
			${ }_{656}$	${ }_{97688}$	0.10		${ }^{15}$	720	${ }^{485}$			${ }^{180}$	${ }^{1000}$	${ }^{100}$		\%	${ }^{3} 5$.	6	,	0.0	3								10		460		\%00		7800		${ }^{\text {a }}$	12			
			${ }_{652}$	1505099	0.10		${ }^{13}$	600	${ }^{175}$			${ }^{120}$			${ }^{21}$	${ }^{64}$	100	${ }^{23}$	${ }_{85}$	\bigcirc		,					2200						${ }_{100}$	${ }_{1900}$		now			${ }^{34}$	${ }^{14}$		$\xrightarrow{\text { OnNeN }}$
			${ }^{\frac{6,43}{6.3}}$		${ }^{\frac{0.10}{0.0}}$			¢50,	${ }^{120}$					(100		¢00	${ }^{\frac{8.7}{17}}$	-	¢	$\stackrel{6}{6}$													${ }_{\text {O }}^{0.02}$	${ }^{2000}$		cise			${ }^{30}$	(1026		
,					0.10		${ }^{24}$								${ }^{5}$	${ }^{24}$	260	${ }^{89}$	${ }^{188}$		0.0	${ }^{20}$								${ }_{10}$		20		600				${ }^{12}$	${ }^{102}$			(in
		,	${ }^{08}$	0.15	0.0		23					${ }^{180}$	${ }^{10}$,	${ }^{5}$	${ }_{38}$	${ }_{20}^{20}$.	,	${ }_{3}{ }^{23}$	${ }_{0}$,			\ldots		${ }^{20}$,		12700			${ }^{6}$	3201		

Water Quality Data Summax

												${ }_{\text {ras }}^{\text {mos }}$ Tss						Mamasim		choreme		sumpe	（tan）	Tomal									Is／Trace Eleme $\begin{array}{c}\text { Manganese as } \\ \text { Mn soluble }\end{array}$	Silica as SiO2 sol								${ }_{\substack{\text { Oatab }}}^{\text {sumeco }}$
					NV	${ }^{\text {na }}$	22080 \％ut																																			
			1.07	${ }^{107}$	mv			䧶	${ }^{30}$	na	${ }^{85170}$	${ }^{\text {n90 }}$	${ }_{20}^{10}$	${ }^{50}$	${ }_{36}{ }^{175}$	${ }_{36}$	${ }_{1900}^{190}$	${ }_{\substack{n 9 \\ 64}}$	${ }^{145}$	${ }_{35}^{775}$	${ }_{0}^{1,2}$	${ }^{40}$	50	${ }^{50}$			2700 500			${ }^{37}$		${ }^{20}$	${ }_{0}^{001}$	${ }^{100}$				${ }_{0}^{0.7}$	${ }^{74}$	${ }^{264} 4$		
18002a	Hille		0.92	${ }^{0.38}$			${ }^{\frac{23}{23}}$		${ }_{315}$																																	
，103029		${ }^{1100}$	082	0.12	0.10		${ }^{29}$	120	$\underbrace{}_{\substack{235 \\ 134}}$			${ }^{140}$	8	${ }^{2}$	${ }^{22}$	${ }^{57}$	170	50	10	${ }^{18}$	020	20					${ }_{500}$			30		so	00	1500		9100		${ }_{0} .5$	${ }^{63}$	${ }^{181 / 4}$		（onew
，103029at		${ }^{1227}$	${ }^{0.78}$	${ }^{005}$	0.10		${ }^{23}$	820	${ }^{2275}$			${ }^{150}$	${ }^{105}$	2	${ }^{24}$	50	${ }^{230}$	60	${ }^{130}$	${ }^{17}$	020	${ }^{21}$								30		${ }^{\circ}$		800		10900		${ }^{12}$	${ }^{82}$	${ }^{2086}$		
			081	0.11	0.0		15	8.10	${ }^{315}$			${ }^{180}$	${ }^{20}$	$\stackrel{8}{-}$	${ }^{36}$	50	${ }^{240}$	20	${ }^{185}$	${ }^{30}$	0.10									${ }^{20}$		${ }^{30}$		${ }^{100}$		${ }^{12300}$		${ }^{13}$	${ }^{8}$			
${ }^{103022}$			0.95	007	0.10		${ }^{25}$	8	${ }^{300}$			${ }_{160}$	5	7	${ }^{33}$	${ }^{37}$	${ }^{205}$	${ }^{64}$	${ }^{160}$	${ }^{27}$	0.10									10		${ }^{30}$				${ }^{12600}$		0.	${ }^{18}$			
Sosa	为	${ }^{1349}$	${ }^{080}$	${ }^{003}$	0.10		25	\％	${ }_{\substack{20 \\ 206}}^{\substack{26 \\ 206}}$			${ }^{100}$	${ }^{28}$		${ }^{22}$	${ }^{64}$	220	${ }^{50}$	${ }^{125}$	$\stackrel{16}{17}$	020									${ }^{20}$		3		${ }^{1200}$		${ }^{10350}$		${ }^{04}$	${ }^{13}$	${ }^{108}$		
			${ }^{085}$	${ }^{0.088}$	0.10		${ }^{13}$	200	${ }^{3}$			${ }^{100}$	$\stackrel{5}{142}^{1}$	${ }^{3}$	${ }^{33}$	${ }^{46}$	200 150	${ }^{60}$	${ }^{100}$	${ }^{27}$	0.10 0.10						${ }^{100}$			10		${ }^{20}{ }^{30}$		${ }^{100}$		${ }_{\text {ckeo }}$		0.	${ }_{5}$	${ }_{\substack{2129}}^{209}$		
边	\％		${ }^{329}$	${ }^{0.23}$	010		${ }^{26}$	20				${ }^{120}$	${ }^{13}$	${ }_{100}^{100}$	${ }^{26}$	${ }^{68}$	${ }^{200}$	${ }^{33}$	${ }^{105}$	${ }_{5}^{6}$	${ }_{0} 020$	${ }^{26}$					${ }^{300}$			${ }^{20}$		${ }^{30}$		${ }_{1200}^{100}$		$8{ }^{860}$		0.1	${ }^{64}$	${ }^{1671}$		，
，	Sozerse		${ }^{0.85}$	${ }^{\text {3，20 }}$	0.10		${ }^{23}$	${ }_{7}^{10}$	${ }^{\frac{188}{180}}$			${ }_{10}^{10}$	302	100	${ }^{21}$	${ }^{36}$	${ }^{200}$	${ }_{30}$	10	${ }_{14}$	0.10	${ }^{22}$					${ }_{1000}$					${ }_{30}$		${ }_{141400}^{1200}$		\％700		02	${ }_{4}$	${ }_{1632}$		（iven
2024	2as		\％	${ }^{0.3}$			${ }^{18}$																																			
			${ }^{0.80}$	008	0.10		${ }^{21}$	720	${ }_{\substack{200 \\ 295}}$			${ }^{150}$	\bigcirc	${ }^{36}$	${ }^{29}$	32	200	52	${ }^{125}$	${ }^{23}$	0.10											${ }^{40}$		${ }_{300}$		10400		${ }^{06}$	\cdots	${ }^{2061}$		（inco
			${ }^{146}$	${ }^{443}$	0.10		${ }^{26}$	700	${ }_{\substack{125 \\ 185}}^{\text {185 }}$			${ }^{83}$	${ }^{200}$	100	10	${ }_{5}^{53}$	${ }^{89}$	${ }^{24}$	${ }^{56}$	10	0.10						80					${ }^{1300}$		1900		1860			${ }^{32}$	${ }^{342}$		$\underset{\substack{\text { ONSN } \\ \text { DNRW }}}{\text { and }}$
			${ }^{195}$	${ }^{1178}$	0.10			780				${ }^{180}$	${ }^{124}$	${ }^{100}$	${ }^{19}$	${ }^{74}$	${ }^{155}$	${ }^{4.1}$	${ }^{87}$	19		22					4700					190		${ }^{120}$		${ }^{1200}$			${ }^{56}$			
			097	0.88	0.10			7.70				180	${ }^{100}$	100	${ }^{36}$	${ }^{35}$	${ }^{230}$	${ }^{73}$	${ }_{10}{ }^{0}$	${ }^{36}$	0.10	${ }_{4} 4$					50			${ }^{6}$		${ }^{6}$		${ }^{800}$		11500		${ }^{0.4}$	${ }^{8}$	${ }^{232}$		
${ }^{\text {cosema }}$			${ }^{109}$	${ }_{0}^{1045}$	0.0		${ }^{23}$	780	${ }^{\frac{20}{210}}$			${ }^{124}$	14	200	2	${ }^{65}$	${ }^{143}$	4.5	${ }_{87}$	17	0.14	36					1200			${ }^{20}$		${ }^{\circ}$		1220		${ }^{1200}$	001	${ }_{0} 0$	${ }^{54}$	1365		（in
	边		${ }^{103}$	0,83	0.10		${ }^{10}$	${ }_{\substack{820 \\ 80}}$				${ }^{23}$	${ }^{6}$	${ }^{88}$	4	${ }_{4}^{4 .}$	${ }^{28.1}$	${ }^{92}$	160	${ }^{38}$	0.13	60					${ }^{100}$			10		330		${ }^{17,70}$		${ }^{14140}$	${ }_{0}^{003}$	${ }^{15}$	${ }^{107}$	3012		Nown
			${ }^{084}$	0.3	0.10		${ }^{25}$	\％iso	${ }^{525}$			${ }^{205}$	11	${ }^{8}$	6	${ }^{52}$	${ }^{330}$	${ }^{11,8}$	${ }^{21}$	${ }^{6}$	0.19	${ }^{33}$							${ }^{0.05}$	30	40			${ }^{650}$		18200	0.0	1	${ }^{131}$	${ }^{40}$		
		${ }^{12}$	${ }^{0.08}$	$\stackrel{107}{107}$	0.10		${ }^{2}$		${ }^{\frac{204}{20}}$			${ }^{180}$	$\underbrace{}_{\substack{103 \\ 5}}$	${ }^{100}$	${ }^{32}$	${ }_{64}^{46}$	${ }^{240}$	${ }_{5}^{58}$	${ }^{130}$	${ }_{\substack{27 \\ 16}}$	－0．00	${ }_{4}^{4.8}$					$\underbrace{}_{\substack{\text { Inoo } \\ \text { sob }}}$		0.15 0.04 0.	${ }_{10}^{10}$	${ }_{\substack{20 \\ 40}}$	${ }^{20}$	0.1	${ }_{\substack{1800 \\ 1320}}$	${ }^{10} 10$	$\xrightarrow{\text { lumo }}$	00	${ }^{0.5}$	${ }^{\frac{88}{66}}$	${ }_{\text {cke }}^{\substack{200 \\ 1885}}$		
			0.8	0.13	0.0		${ }^{24}$	（ise	${ }_{\substack { \text { as } \\ \begin{subarray}{c}{20 \\ 305{ \text { as } \\ \begin{subarray} { c } { 2 0 \\ 3 0 5 } }\end{subarray}}$			19	10	5	${ }^{12}$	${ }^{6}$	219	${ }^{75}$	${ }_{185}$	${ }_{37}$	0.15								0.9	10				${ }_{130}$		${ }_{12800}$	${ }^{002}$	08	${ }^{85}$	${ }^{2691}$		（incon
			${ }_{\substack{0.45 \\ 088}}^{\substack{\text { a }}}$	${ }_{0}^{0.47}$	0.0			（im0	${ }_{\substack{404 \\ 404}}^{\text {304 }}$			${ }^{251}$		${ }^{\frac{5}{20}}$	${ }_{\substack{52 \\ 19}}$	${ }^{6.8}$	${ }^{301}$	${ }^{10.4} 4$	${ }^{206}$	$\stackrel{44}{9}$	${ }^{0.18} 0$	19							${ }_{\text {O．}}^{0.08}$		${ }_{\substack{20 \\ 10}}$	${ }_{\substack{20 \\ 190}}^{\substack{\text { a }}}$		${ }_{\text {270 }}^{2740}$	10	$\xrightarrow[\substack{\text { IT000 } \\ 8400}]{ }$	${ }_{\text {or }}^{0.000}$	${ }_{0}^{0.5}$	${ }^{\frac{117}{60}}$	（3358		
${ }^{\text {ligasen }}$			0,78	0.09	0.0		19	8.10	${ }_{30}^{204}$			${ }^{139}$	\％		${ }_{34}$	30	195	${ }^{65}$	${ }^{135}$	${ }^{26}$	0.13	${ }^{0} 4$					100		00					0.50		${ }^{\text {п1300 }}$	${ }^{003}$	${ }^{1.1}$	${ }_{75}$	${ }^{2276}$		（iven
${ }^{\text {120302 }}$			1,18	${ }_{588}$			${ }^{\frac{19}{27}}$	${ }_{7,2}$	${ }^{310}$																																	（inew
			${ }_{0}$	${ }_{0}^{0.13}$	0.10			${ }_{7}^{1760}$	${ }^{\frac{385}{35}}$			${ }^{183}$	12	3	${ }^{37}$	56	215	${ }^{82}$	${ }^{184}$	${ }^{28}$	0.14	${ }^{18}$					${ }^{20}$				10	${ }^{10}$		490	10	12800	0.0	${ }_{0} 4$	8	${ }^{2367}$		
${ }^{\text {cosema }}$	${ }^{23}$		${ }^{148}$	${ }^{588}$	0.0		${ }^{5}$	7	${ }^{289}$			${ }^{156}$	${ }^{1}$	${ }_{36}$	${ }^{22}$	${ }_{6}^{67}$	${ }^{210}$	${ }_{5}^{53}$	${ }^{126}$	${ }^{19}$	0.14	${ }^{15}$					${ }^{3200}$				${ }^{20}$	6		${ }^{1100}$		${ }^{12300}$	0.1	${ }^{02}$	${ }^{74}$	${ }^{204}$		
${ }^{\text {cosema }}$	隹		${ }^{1.088}$	${ }_{\substack{\text { 0．90 } \\ 0.9}}$	0．0．0			${ }_{7}^{70}$	${ }^{268}$			${ }_{\substack{100 \\ 100}}^{\text {¢ }}$	${ }_{4}^{46}$	${ }_{\substack{20 \\ 43}}$	${ }^{\frac{14}{27}}$	${ }^{\frac{8}{64}}$	${ }^{122}$	（ ${ }_{\text {32 }}^{54}$	${ }_{\substack{18 \\ 13}}$	${ }_{19}$	${ }_{0}^{0.11}$	${ }^{23}$							${ }_{0} 0.17$		${ }_{\substack{40 \\ 30}}$	${ }^{130}$		${ }_{\substack{1150 \\ 1500}}$		${ }^{\frac{8}{8300} 0}$	${ }^{\frac{001}{0.00}}$		${ }^{\frac{44}{13}}$			，
	30atiom		07	003	0.0		${ }^{20}$	8.0	${ }^{\frac{314}{314}}$			${ }^{194}$		＋	${ }^{37}$	44	${ }^{195}$	${ }^{63}$		${ }^{27}$	${ }^{011}$	04					${ }^{30}$				10			${ }^{030}$		ก530	001	${ }_{0}$	${ }^{14}$	${ }^{234}$		
	为		，																					${ }^{220}$	000																	
${ }^{\text {12002as }}$			120		0.10			${ }^{720}$	${ }^{268}$			${ }^{138}$	${ }^{120}$	${ }^{200}$	${ }^{35}$	${ }^{48}$	${ }^{150}$	${ }^{4 .}$	${ }^{113}$	${ }^{31}$	${ }_{0} 0.4$	1.		3300			${ }^{1000}$		${ }^{0.37}$		40	${ }^{20}$	${ }^{0.01}$	590	10	${ }^{3300}$		0.1	${ }^{6}$	${ }^{2662}$		$\xrightarrow{\text { Onven }}$
																									0.18	${ }_{50}$		${ }^{200}$														（insen
			${ }^{0.89}$	${ }_{\substack{\text { O．0．} \\ \text { O．90 }}}$	（020	${ }^{25}$	${ }^{20}$	${ }_{\text {l }}^{729}$	${ }^{220}$	${ }^{321}$		${ }_{179}$	7	2	${ }^{38}$	${ }_{60}$	${ }^{202}$	${ }_{6}{ }^{5}$	${ }_{151}$	${ }^{29}$	0.15	0		${ }^{657}$			${ }_{50}$		${ }_{0} 000$			10	${ }^{0.00}$	4.30		${ }^{12480}$	0.0	0.38	n， 13	${ }^{25188}$		（in
${ }^{\text {cosema }}$			${ }_{\substack{083 \\ 800}}^{\substack{\text { a }}}$		（0．00		${ }^{27}$	$\xrightarrow{7,74}$	${ }^{\frac{342}{148}}$			${ }^{8}$	$4{ }^{41}$	${ }^{20}$	14	${ }^{55}$	10.1	${ }^{21}$	${ }^{62}$	8	0.11	${ }^{21}$					400		${ }^{027}$			${ }^{10}$	000	${ }^{1140}$		5150	000	${ }_{0}^{0.05}$	उ383	1085		
																								504	0.16	${ }^{67}$																$\xrightarrow{\text { OnNeN }}$
${ }^{\text {cosem }}$			${ }^{600}$	5000	${ }^{0.20}$		${ }^{23}$	\％	${ }^{136}$					18														${ }^{200}$														
（1anora												${ }^{133}$	${ }_{6}$	${ }^{18}$	${ }^{2}$	${ }^{6} 1$	${ }^{174}$	${ }^{60}$	10	${ }^{14}$	0.13	${ }^{13}$		1134	0.2	${ }^{350}$	1010		0.3		${ }^{50}$	${ }^{8}$	0.02	${ }_{1220}$		9，00	0.02	0.67	${ }^{339}$			（in
${ }^{\text {cosen }}$	$\underbrace{20808989}$		${ }^{0.78}$	028	${ }^{0.30}$		${ }^{27}$	${ }_{\substack{688 \\ 888}}$	${ }^{228}$	${ }^{\frac{378}{3,8}}$																																
			${ }_{0}^{0.44}$		0，30			${ }_{7}^{\text {PTin }}$	${ }^{37}$			${ }^{189}$	15	${ }^{12}$	${ }^{35}$	${ }_{56}$	${ }^{24} 3$	72	${ }^{186}$	${ }^{28}$	0.13	15		${ }^{245}$			${ }^{180}$		0.0		10		0	920	10	${ }^{12900}$	0.0	0.51	${ }^{0023}$	2992		（in
隹			${ }^{0.74}$	${ }^{0.06}$	020		${ }^{21}$	780	$3{ }^{32}$	440				${ }^{15}$											0.	\％																
，	$\underbrace{20}$		${ }_{0}^{0.6}$	${ }_{0}^{0.1}$	（020			${ }_{178}^{178}$	${ }^{\frac{31}{303}}$			$1{ }^{168}$	＂	${ }_{6}^{6}$	${ }^{3}$	${ }^{37}$	${ }_{188}$	59	${ }^{138}$	${ }^{29}$	0.14	0.5		40					${ }_{0} 001$		30		000	${ }^{120}$	10	${ }^{11360}$	001	0.46	n， 17	${ }^{2443}$		（incoum
		${ }_{\text {130 }} 1$	0.73	0.46	020			${ }^{7,7}$	${ }^{288}$			${ }_{18}{ }^{18}$	${ }^{17}$	1	${ }^{37}$	${ }^{37}$	${ }^{203}$	${ }^{64}$	${ }^{141}$	${ }^{29}$	0.12	0		${ }^{4}$	000	${ }^{27.4}$	${ }^{20}$		${ }^{000}$		${ }^{30}$	${ }^{120}$	${ }^{001}$	000		11650	0.0	0.42	${ }_{8680}$	${ }^{2891}$		
																								${ }^{126}$	000	${ }^{303}$																（inco
	${ }_{\text {and }}^{\text {3ntinaes }}$	${ }^{1200}$	${ }^{0.13}$		20， 0.0	${ }^{25}$	${ }^{20}$	${ }_{7}^{780}$	${ }^{\frac{317}{180}}$	${ }^{620}$		${ }^{92}$	${ }^{30}$	${ }_{40}^{11}$	14	${ }^{50}$	${ }^{120}$	${ }_{3} 1$	10	。	0.11	${ }^{11}$					$9{ }^{20}$		0.00		${ }^{40}$		${ }_{0} 00$	${ }^{1220}$		${ }_{5} 520$	${ }_{0} 00$	0.11	${ }_{4269}$	${ }^{11537}$		
	（19965																							3229	0.05	${ }^{6,1}$																
			${ }^{10.2}$	${ }^{50.1}$	${ }_{0}^{0.10}$		2	${ }_{18,}^{180}$	${ }_{\substack{136 \\ 306}}$	，		${ }^{24}$	17	${ }^{39}$	${ }^{42}$	${ }^{62}$	${ }^{268}$	${ }^{83}$	${ }_{180}$	${ }^{32}$	0.15	1.0		${ }^{46}$					${ }_{0} 0.0$		10	40	001	${ }_{1240}$		${ }_{182} 8$	${ }_{0} 001$	${ }_{0} 0$	10.58	3×6		
	${ }^{20}$			0.11			${ }^{24}$			4.11															001	${ }^{63}$																
			0.72		${ }^{020}$			${ }^{294}$	${ }^{24}$			${ }^{128}$	5	${ }^{205}$	${ }^{28}$	${ }^{47}$	${ }^{128}$	${ }^{35}$	${ }^{104}$	${ }^{14}$	0.16	${ }^{18}$		${ }_{138}$			${ }^{130}$		0.00		${ }^{20}$		000	${ }_{1090}$	${ }^{10}$	8550	000	${ }^{0.14}$	${ }_{4}^{63}$	1788		
	$\underbrace{20458969}$	：	0.8	0.31	020	21	${ }^{15}$	${ }^{730}$	${ }^{217}$	${ }^{680}$				${ }^{216}$											0.04	${ }^{422}$										8000						
			${ }^{0.76}$	${ }^{0.14} 0$	0.10			＋${ }^{780}$	${ }^{317}$			${ }_{187}$	${ }^{14}$	．	${ }^{37}$	40	${ }^{196}$	${ }^{63}$	${ }^{141}$	${ }^{28}$	0.11	0.5							0.00			10	．000	${ }_{170}$	${ }^{10}$	11680	001	0.68	${ }^{7} 4,81$	${ }_{26889}$		
							14		，	821														${ }_{166}$	000	${ }^{102}$																
			${ }_{406}$	${ }^{\text {9，100 }}$	0．0．0			${ }^{201}$	${ }^{\frac{16}{12}}$			${ }^{11}$	${ }^{197}$	${ }^{127}$	19	${ }^{2}$	${ }^{10,7}$	25	${ }^{4}$	10	0.08	${ }^{25}$		${ }^{2084}$			${ }^{1100}$		000		10	10	000	1830	s	${ }^{\text {6889 }}$	000	${ }^{0.005}$	${ }^{3689}$	${ }_{137.19}$		
${ }^{13032024}$	为						${ }^{24}$																		0.30	1830																
			${ }^{\text {a06 }}$	${ }^{1380}$	0．00			${ }_{7}{ }_{75}{ }^{\text {a }}$	${ }^{39}$			${ }^{183}$	5	${ }_{6}$	30	${ }^{6} 6$	${ }^{249}$	${ }^{65}$	134	${ }^{20}$	0.13	${ }^{20}$		${ }_{186} 1$			${ }^{132}$		0．00		10		0.00	${ }^{1530}$		${ }^{12850}$	000	${ }^{029}$	${ }^{\text {®8\％}}$	${ }^{2559}$		
	$\underbrace{2083}$	，	0.95	${ }^{198}$	020		${ }^{24}$	780	309	${ }^{500}$				\because											0.04	${ }^{61.8}$																
	${ }^{1200898989}$		${ }^{0.74}$	${ }_{0}^{0.11}$	2020			${ }^{708}$	${ }^{319}$			${ }_{188}$	${ }^{13}$	－	${ }^{37}$	${ }^{42}$	${ }^{20,1}$	${ }_{60}$	${ }^{146}$	${ }^{28}$	${ }_{0} 0.8$	0							0.00		10		0.00	0.80		${ }^{12030}$	000	0,9	${ }_{7}^{7482}$	22153		
																								${ }^{92}$	0.0	${ }^{318}$																
			${ }^{222}$	${ }^{\frac{14149}{14,9}}$	${ }^{0.20} 0$	${ }^{19}$	${ }^{23}$	${ }_{\text {\％}}^{\text {\％}}$	${ }_{\substack{187 \\ 184}}$	${ }^{500}$		${ }_{12}$	${ }^{1944}$	${ }^{2000}$	${ }^{23}$	${ }_{46}$	${ }^{78}$	${ }^{1,7}$	${ }^{6}$	14	0.11	${ }_{48}$					3270		－00		10		000	1270	\cdots	50.10	0.00	0.05	286	${ }^{2023}$		
			074					${ }_{720}$					${ }^{100}$	${ }_{40}$	11	${ }^{75}$	${ }_{195}$		100	10					0.19	${ }^{667}$	${ }^{200}$									8800	000	0.1		\％80		
					0.10			730							11	15		${ }^{4 .}$	100		020	20		3300	${ }^{009}$	${ }^{840}$																
			${ }^{0.74}$	${ }_{0}^{0.07}$	${ }_{0}^{0.00} 0$	${ }^{23}$	${ }^{24}$	${ }_{\substack{128 \\ 8.0}}^{\substack{\text { a }}}$	${ }_{\substack{126 \\ 206}}$	215		140	10	${ }_{\substack{48 \\ 10}}$	${ }^{29}$	${ }_{4}^{4.1}$	${ }_{165}$	${ }_{61}$	${ }^{120}$	${ }^{22}$	0.10	${ }^{20}$					50		${ }_{0}^{005}$	${ }_{10} 0$	${ }^{50}$	${ }^{20}$	${ }_{0} 02$	100	${ }^{20}$	10000	000	0.9	${ }^{62}$	${ }^{20}$		（oven
																								${ }^{20}$	000	${ }_{6} 6$																Onew
${ }^{\text {Pamane }}$		，	0.78	0.14	${ }_{0} 0.30$	．	－	${ }_{72}$	${ }^{265}$	${ }^{2}$		${ }^{141}$	${ }^{14}$	${ }^{20}$	30	${ }^{42}$	164	5.	${ }^{122}$	${ }^{23}$	0.13	0.4	249	${ }^{428}$			210		0.02		10	${ }^{20}$	0.00	1.50		10060	0.0	0^{02}	6139	20.186		（incon
		，	${ }^{0.77}$		O． 0.30	${ }^{28}$	${ }^{18}$	${ }^{7} 7.85$	${ }^{268}$	${ }^{158}$		${ }_{12}^{12}$	${ }^{93}$	${ }_{\substack{24 \\ 100}}^{\substack{\text { a }}}$	${ }^{25}$	${ }^{63}$	184	${ }^{37}$	${ }^{103}$	${ }^{20}$	0.10	${ }^{28}$					100		${ }^{0.00}$		${ }^{20}$		0.0	18.50			000	0.14	$6_{6,13}$	${ }^{178 .}$		
	Soleme							－															1086	${ }^{2565}$	0.10	${ }^{104}$																

Water Quality Oata Summary

	Somp		coin									ros mos	$\begin{array}{\|c\|} \hline \text { rss mosu } \\ \hline 10 \\ \hline \end{array}$				$\begin{array}{\|c\|c\|c\|c\|c\|c\|c\|c\|c\|} \substack{\text { anten }} \\ \hline 1000 \\ \hline \end{array}$			$\frac{\substack{\text { chnorase } \\ \text { mole }}}{\substack{175 \\ \hline 30 \\ \hline 30}}$	$\frac{\substack{\text { Finarae } \\ \text { most }}}{1,2}$										$\underset{\substack{\text { copeat } \\ \text { quat }}}{ }$ 14	（100）								\pm		${ }_{\substack{\text { Oafa }}}^{\substack{\text { saure }}}$		
	源		0.76	0.16	020				330															120.0							0.05					1100		${ }^{13500}$		$0^{\circ 8}$	${ }^{85}$	${ }^{20}$		
	，		${ }^{0.76}$	${ }^{0.16}$	${ }^{020}$		${ }^{25}$	\％	${ }_{40}^{40}$	${ }^{330}$				${ }_{35}^{35}$											004	${ }^{110}$																		
${ }^{120022} 4$			${ }^{208}$	${ }^{18,30}$	0.10			${ }^{758}$	${ }^{145}$			$\%$	${ }^{30}$	${ }^{315}$	${ }^{14}$	${ }^{62}$	100	${ }^{26}$	8	${ }^{6}$	0.10	${ }^{20}$		420.0			${ }^{1500}$		021	100	so	${ }^{20}$	002	1500	${ }^{20}$	6600	000	0.1	${ }^{355}$	${ }^{120}$		（onem		
隹		${ }^{200}$	${ }^{208}$		${ }^{0.10}$	${ }^{24}$	${ }^{26}$	${ }^{265}$	${ }_{\substack{189}}^{200}$	${ }_{547}$		${ }^{120}$	\％	${ }_{\text {col }}^{\substack{\text { s77 } \\ 10}}$			${ }^{140}$			${ }^{13}$					0.12	${ }_{320}$						${ }^{20}$								${ }^{100}$				
隹												${ }^{120}$	8		21	${ }^{69}$	${ }^{140}$	${ }^{39}$	${ }_{6}$	${ }^{13}$	0.10	20		2000			${ }^{1200}$		0.05	100	${ }^{50}$	10	002	${ }^{1400}$	${ }^{20}$	${ }^{8200}$	000	${ }^{0.6}$		${ }^{160}$		$\xrightarrow{\text { OnNeN }}$		
		${ }^{\frac{1720}{120}}$	${ }_{\substack{0.97 \\ 0.78}}$	${ }_{0}^{098}$	${ }^{020}$	${ }_{32}$	${ }^{\frac{28}{13}}$	${ }^{730}$	${ }_{\substack{2313}}^{23}$	${ }^{400}$				${ }^{181}$																												－		
		，	${ }_{4 \times 8}$	${ }^{12214}$	${ }^{0.10}$			${ }^{1745}$	${ }^{\text {che }}$			9	180	${ }^{\frac{12}{25}}$	18	6	${ }^{19}$	${ }^{22}$	${ }_{6}$	7	0.10	20		4500			${ }^{1500}$		${ }^{023}$	${ }^{100}$	50	${ }^{20}$	${ }_{0} 02$	${ }^{1700}$	${ }^{20}$	5300	000	${ }^{0.1}$	${ }^{29}$	${ }^{10}$				
	9034	${ }^{50}$	${ }^{4.36}$	${ }^{13214}$	0.10	${ }^{24}$	${ }^{25}$	${ }^{205}$	${ }_{181}$	${ }^{380}$															${ }^{0.18}$	${ }^{260}$																（inew		
				0.08				${ }^{305}$	${ }^{320}$			${ }^{20}$	10	${ }^{12}$	${ }^{12}$	5.	${ }^{230}$	72	${ }^{165}$	3	0.10	${ }^{20}$		${ }^{480}$			50		${ }^{0.0}$	100	${ }_{50}$	${ }^{20}$	0.0	60	${ }^{20}$	${ }^{13500}$	0.00	${ }^{11}$	${ }^{87}$	${ }^{20}$				
	7804199		${ }^{0.75}$	008	${ }^{\text {0．30 }} 0$	${ }^{25}$	${ }^{17}$	720	${ }^{345}$	670				${ }^{13}$									${ }_{364}$	${ }^{335}$																				
	Some	${ }^{175}$	${ }_{\text {O，78 }}^{0.74}$	${ }_{\text {O，}}^{0.22}$	${ }^{0.10} 0$		14	${ }_{7}^{788}$	${ }^{325}$	${ }^{820}$		${ }^{161}$	11	${ }^{32}$	${ }^{3}$	${ }^{4,1}$	${ }^{188}$		112	${ }^{25}$	0.12	04				\ldots	${ }_{30}$		${ }^{0.00}$					${ }_{10}^{1,0}$	10	${ }^{11765}$	${ }^{001}$	${ }^{063}$	${ }^{74404}$	${ }^{22213}$		（en		
						2	${ }^{19}$			${ }^{780}$					${ }^{34}$	4.	${ }_{188}$	${ }_{68}$	${ }^{102}$	${ }^{25}$	0.12	04	${ }^{2667}$	${ }^{420}$			${ }^{360}$		0.00				${ }_{0} 00$	${ }^{1.10}$								（in		
	${ }^{8}$	${ }^{1560}$	0.7	003	${ }_{0} 000$		，	${ }^{2 \times 9}$	${ }^{231}$	－		190	\bigcirc	$\stackrel{\square}{9}$	41	${ }_{5} 5$	2.0	${ }^{78}$	162	3	0.16	0	3288	394			550		0.0				0.0	3.0	30		0．0	0.58	${ }^{84} 4$	${ }^{2609}$		（in		
	${ }_{\text {dind }}^{81212999}$	${ }_{\text {cose }}^{\substack{150 \\ 180}}$					${ }^{27}$	${ }^{760}$		${ }_{692}$															001	${ }^{334}$																（owen		
		${ }^{927}$	${ }^{368}$	${ }^{6838}$	${ }^{020}$			202	${ }^{145}$			${ }^{9}$	${ }^{19}$	${ }^{197}$	12	${ }^{75}$	${ }^{105}$	${ }^{26}$	${ }^{6}$	12	0.11	${ }^{26}$	${ }^{12210}$	520			${ }^{1600}$		000				0.00	${ }^{1310}$		${ }^{\text {80，16 }}$	000	${ }^{108}$	\％69	${ }^{10,0.4}$				
		${ }^{29}$	${ }^{3,66}$	${ }^{6653}$	${ }^{020}$		22			4.10															${ }^{034}$	${ }^{14,1}$																（owen		
${ }^{\text {cosen }}$			0.89	0.84	020			${ }_{8} .6$	40			${ }^{22}$	38	${ }^{37}$	${ }^{5}$	${ }^{67}$	${ }^{181}$	${ }^{62}$	${ }^{185}$	${ }^{30}$	0.21	${ }^{10}$	479	${ }^{109} 1$			${ }^{1000}$		000			${ }^{20}$	0.00	${ }^{30}$	${ }^{30}$	15000	${ }_{0}^{0.0}$	${ }^{1,52}$	${ }^{2065}$	33473				
	${ }^{22032}$		${ }^{0.89}$	0.84	${ }^{020}$		${ }^{26}$	${ }^{760}$	${ }^{376}$	440				${ }^{2}$											${ }_{0} 004$	${ }^{21.7}$																${ }_{\text {ONPN }}^{\text {OneN }}$		
隹		， 102	${ }_{0}^{0.6}$		${ }_{\text {coso }}^{0.30}$			${ }^{304}$				${ }^{151}$	${ }^{13}$		${ }^{36}$	${ }^{42}$	${ }^{154}$	${ }^{53}$	${ }^{134}$	${ }^{23}$	0.14	0	${ }^{1891}$	${ }^{250}$			${ }^{190}$		0.0				${ }_{0} 00$	0.00		${ }^{11120}$	002	0.85	6022	21856				
边		${ }^{120}$	${ }^{0.76}$	${ }^{0.16}$	${ }^{0.30}$		15	${ }^{7} 8$	${ }^{\frac{29}{85}}$	${ }^{820}$				${ }^{3}$											or	${ }^{45}$																		
Somat	H12000		${ }_{200}^{200}$		${ }^{0.0}$			${ }^{608}$	${ }^{135}$			${ }^{88}$	${ }^{1350}$	${ }^{1320}$	${ }^{15}$	${ }^{63}$	${ }^{16}$	${ }^{20}$	${ }^{65}$	$\stackrel{8}{8}$	0.0	${ }^{28}$	33200	${ }^{640} 0$			som		${ }^{123}$			${ }^{50}$	000	1520		850	000	003	28.9	N0058		cown		
		${ }^{885}$	${ }_{\substack { 200 \\ \begin{subarray}{c}{\text { 200 }{ 2 0 0 \\ \begin{subarray} { c } { \text { 200 } } }\end{subarray}}$	${ }^{269}$			${ }^{19}$	${ }_{\text {\％}}^{6}$	${ }^{128}$	660															0.16	${ }_{326}$																Sown		
			${ }^{1,09}$		（oso							\because	${ }^{20}$	${ }^{35}$	${ }^{13}$	${ }^{43}$	${ }^{93}$	${ }^{27}$	12	\bigcirc	0.0	${ }^{20}$	13000	3200			${ }^{1400}$		${ }^{0.05}$	100	${ }^{50}$	${ }^{40}$	0.0	${ }^{1800}$	700	5900	000	1	${ }^{36}$	${ }^{110}$		（in		
${ }^{\text {cosemen }}$		185	${ }_{\substack{109 \\ 0.4}}^{\substack{10}}$	$0_{\substack{2.5 \\ 0.0}}^{\text {a }}$	${ }_{\text {coion }}^{0.00}$		${ }^{23}$	${ }_{\substack{700 \\ \hline 600}}^{\text {cos }}$	${ }_{1}^{140}$	${ }^{\frac{5}{350}} \mathbf{3}$				${ }_{\substack{365 \\ 120}}$																												（onew		
${ }^{\text {ligenen }}$		${ }^{17175}$	${ }^{0.14}$	0.09	${ }_{\text {－}}^{0.20}$			${ }^{200}$	100			${ }^{9}$	30	$1{ }^{15}$	${ }^{13}$	${ }^{51}$	${ }^{120}$	${ }^{35}$	${ }^{86}$	T	0.10	${ }^{20}$	${ }^{2000}$	1900			80		${ }^{0.17}$	100	50	${ }^{30}$	0.02	${ }^{1400}$	${ }^{20}$	7100	0.00	，	4	${ }^{130}$		（incm		
${ }^{1302032 a t}$		${ }^{17175}$			${ }^{0.20}$		${ }^{20}$			${ }^{330}$				${ }^{120}$											${ }^{0.07}$	${ }^{370}$																Sown		
		${ }_{\substack{130 \\ 120}}^{\substack{\text { a }}}$	0.8	0.0	${ }^{0.30}$			${ }^{7} 9$	220			${ }^{120}$	10		${ }^{18}$	${ }^{63}$	170	${ }^{5.1}$	${ }^{115}$	11	0.10	20	s10．	50.0			50		0.05	${ }^{100}$	50	2	0.02	900	20	9400	000	0.5	${ }^{6}$	10				
		${ }_{\substack{1385 \\ 1855}}^{1 .}$	${ }_{\substack{089 \\ 0.7}}^{0 .}$	$\stackrel{\text { OO2 }}{\substack{\text { O．}}}$	${ }^{\text {0．30 }} 0$	${ }^{29}$	${ }^{18}$	${ }^{7}$	${ }_{\substack{20 \\ 20}}$	830		${ }_{10}$	10	${ }_{6}^{12}$	${ }^{28}$	${ }^{68}$	${ }_{185}$	${ }^{63}$	${ }^{135}$	${ }^{23}$	0.10	${ }^{20}$					${ }_{500}$		${ }_{0}^{0.05}$	${ }^{100}$	50	20	${ }_{0} 0.2$	300	${ }^{20}$	$\xrightarrow{\substack{\text { gato } \\ 1000}}$	000	0.5	12	${ }^{20}$		（in		
																							${ }^{300}$	${ }^{300}$	001	${ }^{100}$		，														（in		
		${ }_{\substack { 1555 \\ \begin{subarray}{c}{135{ 1 5 5 5 \\ \begin{subarray} { c } { 1 3 5 } }\end{subarray}}^{\substack{\text { a }}}$	${ }^{0.7}$	O．04	－		14	${ }^{\frac{7270}{7.76}}$	${ }_{\substack{288 \\ 30}}$	${ }_{730}$		181	${ }^{11}$	${ }^{84}$	${ }^{34}$	${ }^{43}$	${ }^{189}$	${ }^{62}$	${ }^{140}$	${ }^{27}$	0.14	0							0.00	${ }_{30}$			000	${ }_{150}$	${ }^{10}$	${ }^{11570}$	${ }^{001}$	046	${ }^{1265}$	${ }^{20084}$				
		1335	0.6	030	0，30		${ }^{19}$	${ }^{7} 78$	${ }^{31}$	8.10				7									${ }^{3396}$	${ }^{31.1}$												${ }^{11240}$						（onew		
			${ }_{\substack{086 \\ 0.88}}$	${ }_{0}^{0.49}$	020			${ }^{1785}$	${ }_{\substack{193 \\ 198}}$			${ }^{120}$	${ }_{60}$	88	${ }^{24}$	${ }^{49}$	${ }^{110}$	${ }^{28}$	${ }^{85}$	11	0.10	40					${ }^{200}$		${ }^{0.24}$	${ }^{20}$	${ }^{30}$	170	${ }_{0}^{0.3}$	${ }_{1500}$	${ }^{30}$	1000	000	${ }_{0}^{0.1}$	${ }^{9}$	${ }_{100}$				
	边						20			${ }_{4}{ }^{10}$													17000	30.0	0.15	${ }^{3} 90$																$\xrightarrow{\text { OnNe }}$		
	colez	${ }^{\text {dis0 }}$	${ }^{27}$	${ }_{4737}^{47}$	${ }^{\text {O．20 }}$			${ }^{210}$	${ }_{135}^{135}$			${ }^{84}$	1100	${ }^{1560}$	12	${ }^{44}$	${ }^{39}$	${ }^{25}$	${ }^{68}$	5	0.10	30	2100.	8000			3000		${ }_{0}^{0.05}$	100	${ }^{30}$	10	${ }^{0.03}$	${ }^{1000}$	${ }^{40}$	5600	000	${ }^{0.1}$	${ }^{35}$	10		（in		
		${ }^{155}$	${ }^{27}$	${ }^{4737}$	${ }^{0.30}$		${ }^{27}$	${ }^{120}$	${ }^{188}$	${ }^{350}$				${ }^{1170}$											0.05	${ }^{290}$																		
	19022	120	${ }^{3.5}$	${ }^{47733^{4}}$	${ }^{0.00}$			${ }_{\text {\％}}^{1,08}$	${ }^{10} 10$			${ }^{16}$	50	${ }^{8.80}$	11	${ }_{47}$	70	${ }^{21}$	${ }^{6}$	${ }^{5}$	0.10	40					${ }^{200}$		${ }_{0}^{0.05}$	80	30	10	${ }_{0}^{003}$	${ }_{1300}$	${ }^{40}$	4500	0.00	\bigcirc	${ }^{26}$	${ }^{92}$				
	边																						17000	1000	O．11	${ }^{240}$																		
隹	退2022		292	${ }^{2943}$	0，30			${ }^{655}$	${ }^{87}$			${ }^{\circ}$	${ }^{30}$	s00	$\stackrel{8}{8}$	${ }_{4}^{4.1}$	${ }^{53}$	${ }^{17}$	${ }^{45}$	4	0.10	${ }^{20}$	12000	4200			${ }_{150}$		0.05	${ }^{20}$	${ }^{30}$	10	${ }_{0}^{0.3}$	110	${ }^{\circ}$	3700	000	－	${ }^{20}$			cown		
	－		${ }^{202}$	${ }_{\text {20，}}^{2.88}$	${ }^{0.0} 0$		${ }^{26}$	${ }_{7}^{7.05}$	${ }^{\frac{90}{10} 0}$	${ }^{360}$		${ }^{10}$	\because	${ }^{513}$	${ }^{19}$	${ }^{43}$	${ }^{125}$	${ }^{37}$	${ }^{2}$	\bigcirc	0.10	${ }^{20}$					1800		${ }^{0.13}$	100	${ }^{30}$	${ }^{140}$	${ }^{0.03}$	${ }_{1200}$	10	${ }^{7400}$	000	02	${ }^{46}$	${ }^{120}$				
${ }^{\text {Inema }}$	${ }_{\text {a }}^{12032}$																						7000	${ }^{1400}$	00.0	${ }^{330}$																		
		${ }^{1255}$	${ }_{\substack{095 \\ 0.95}}$	${ }_{\substack{166 \\ 1.65}}^{\text {ien }}$	${ }^{\frac{0}{020}} \mathbf{0}$		${ }^{26}$	${ }^{7} 7$	${ }_{\substack{185 \\ 185}}$	${ }^{800}$				${ }^{214}$																														
		145	068	091	0.0			${ }^{273}$	${ }^{268}$			${ }_{12}$	${ }^{35}$	${ }^{114}$	${ }^{36}$	46	${ }_{152}$	${ }^{4.3}$	${ }^{137}$	${ }^{13}$	0.16	1.	${ }^{1418}$	${ }^{122}$			${ }^{100}$		${ }_{0}^{0.0}$	50		${ }^{40}$	0.0	${ }^{930}$		11220	0.0	${ }^{0.4}$	¢6\％	${ }^{21169}$				
		${ }_{\text {coitico }}^{\substack{160}}$	${ }_{0}^{0.75}$	${ }_{0}^{0.12}$	${ }_{0}^{0.10}$	${ }^{26}$	2	${ }_{7}^{7,85}$	${ }^{205}$	300		${ }^{130}$	10	${ }^{113}$	${ }^{28}$	${ }^{41}$	${ }^{145}$	${ }_{4}{ }^{5}$	110	${ }^{21}$	0.10	${ }^{20}$	300				50		${ }^{0.05}$	100	${ }_{30}$	10	${ }_{0}^{0.3}$	${ }_{500}$	10	${ }^{0100}$	0.00	0.	${ }^{55}$	180				
			0.75				11			${ }^{930}$													\％ow	．	0.0	${ }^{110}$																		
（1asersa		${ }_{\substack{745 \\ 745}}$	0.8		0.0			${ }^{200}$	${ }^{245}$			${ }^{130}$	so	${ }_{10}^{10}$	${ }^{28}$	${ }^{53}$	${ }^{145}$	${ }^{39}$	${ }^{10}$	${ }^{17}$	020	20	8300	${ }^{2000}$			${ }^{20}$		007	100	${ }^{30}$	10	${ }_{0}^{0.03}$	200	4	${ }^{8200}$	0.00	02	${ }^{62}$	${ }^{180}$				
${ }^{\text {che }}$		${ }_{\text {lis }}^{185}$	0.74	0.56	${ }^{020}$			780	${ }^{34}$			190	${ }^{20}$	${ }^{20}$	${ }^{63}$	${ }^{64}$	${ }^{140}$	40	${ }^{165}$	${ }^{24}$	020	${ }^{20}$	2200	${ }^{12000}$			${ }_{1600}$		${ }^{005}$	${ }^{200}$	30	110	${ }^{0.3}$	200	10	${ }^{3350}$	0.0	04	${ }^{52}$	${ }^{220}$		$\xrightarrow{\text { ONWN }}$		
		${ }^{1859}$	${ }^{0.84}$	0.56	${ }^{0.20}$	${ }^{33}$	${ }^{25}$	200	${ }^{322}$	220				${ }^{373}$											0.0	${ }^{60}$																		
			0.7					${ }^{200}$				${ }^{120}$	150	${ }^{200}$	${ }^{23}$	${ }^{52}$	${ }^{120}$	${ }^{36}$	${ }^{105}$	，	${ }^{020}$	${ }^{20}$	000	2000			${ }_{1500}$		${ }^{0.05}$	100	${ }^{30}$	10	0.03	${ }^{11100}$	10	8870	0.00	02	${ }_{455}$	${ }^{160}$				
隹		${ }^{100}$	${ }_{0}^{0.78}$		${ }^{0.020}$		${ }^{30}$	${ }^{1720}$	${ }_{20}^{170}$	${ }^{360}$			${ }^{78}$	${ }_{\substack{245 \\ 235}}$	24	42	${ }^{130}$	${ }^{36}$	${ }^{104}$	1						${ }^{0}$			${ }^{0.05}$		10		00			${ }^{\text {B67 }}$	00	${ }^{021}$	（123	， 24				
${ }^{\text {cosezan }}$		${ }^{150}$	${ }_{0} 078$		${ }^{020}$	${ }^{24}$	${ }^{20}$	${ }_{7}^{700}$		480					4			${ }^{6}$					7295	${ }^{1390}$																				
${ }^{\text {ciene }}$			${ }^{0.75}$					${ }^{185}$	${ }^{248}$			14	${ }^{20}$	${ }^{45}$	${ }^{29}$	${ }^{45}$	${ }^{16,5}$	${ }^{48}$	${ }^{122}$	${ }^{18}$	0.12	1.0	${ }^{3116}$	447			${ }^{200}$		${ }^{0.04}$	${ }^{100}$	10	${ }^{\circ}$	${ }^{0.3}$	939	10	${ }_{\text {1017 }}$	001	047	${ }^{\text {sose }}$	1867		SNeN		
		${ }^{12}$	${ }^{0.75}$				14		${ }^{235}$	${ }_{650}$				${ }_{45}^{45}$											．0．	102																		
	coseme	${ }_{\text {cose }}^{12}$	${ }^{0.75}$	0.2	0．0 0.0 0.0 0			${ }^{*}$					10		3	${ }^{3}$	（100	${ }^{3}$	15	2	0.10	20	2000	200	001	80	${ }^{50}$		Ous	20	${ }^{\circ}$	10	ous	100	10		000	0.	\cdots	20				
	$\underbrace{\text { amata }}$	${ }^{185}$	${ }^{0.75}$	0.12	－		19	${ }_{7}^{8,10} 7$	${ }_{\substack{279 \\ 305}}^{\substack{\text { 20，}}}$	${ }^{750}$		160	20	${ }_{\substack{16 \\ 12}}^{12}$	${ }^{34}$	4.	190	6	${ }^{160}$	${ }^{24}$	020	20				\cdots	50		0.05	100	${ }^{30}$	10	0.08	100	10	${ }^{12500}$	0.0	0.3	${ }^{12}$	${ }^{20}$				
		${ }^{810}$	${ }^{0.70}$		－	${ }^{27}$	${ }^{23}$	${ }^{2} .10$	${ }^{313}$	${ }^{3.0}$													3300	${ }^{420}$																				
	隹		${ }^{\text {O23 }}$		（0，00			${ }^{220}$	135			${ }^{8}$	${ }^{1300}$	${ }^{200}$	17	${ }^{6}$	${ }^{100}$	${ }^{20}$	${ }^{18}$	${ }^{\circ}$	020	40	2300	8300			200		${ }^{0.05}$	${ }^{100}$	30	${ }^{20}$	${ }^{0.03}$	${ }^{1400}$	${ }^{\circ}$	${ }^{6400}$	0.00	${ }^{0.1}$	${ }^{33}$	${ }^{120}$				
					－0．10		${ }^{27}$	600	${ }_{1}^{184}$	${ }^{220}$				${ }^{2000}$											023	${ }^{33}$																		
	${ }_{\text {cosem }}$	${ }_{\substack{1255 \\ 185}}^{150}$	${ }_{\text {coid }}^{0.0}$	${ }_{0} .9$	${ }_{0}^{0.10}$			${ }^{200}$	${ }^{136}$			210	10	${ }^{20}$	${ }^{49}$	${ }^{66}$	215	${ }^{67}$	${ }^{185}$	${ }^{30}$	020	20	350	${ }_{410}$			500		${ }^{0.05}$	100	30	${ }^{20}$	${ }^{0.03}$	${ }^{1000}$	10	15000	000	${ }^{0.7}$	8	${ }^{30}$				
	，	${ }_{\text {，}}^{185}$	${ }_{\substack{0,76 \\ 0.76}}^{0 .}$		${ }^{0.10} 0$		${ }^{19}$	${ }_{1} 10$		56															00	${ }^{90}$																		
	（0isam	${ }^{1.5050}$	${ }_{\substack{\text { geges } \\ \text { geso }}}^{\substack{\text { ges }}}$		${ }^{0.020}{ }_{0}^{020}$			${ }^{2} 8$	${ }^{30}$			210	${ }^{20}$	${ }^{13}$	${ }^{46}$	${ }_{50}$	210	${ }^{2}$	${ }^{180}$	${ }^{31}$	020	20	200	${ }^{290}$			500		0.05	100	30	10	${ }_{0} 03$	600	10	17600	000	0.8	${ }^{82}$	${ }^{20}$		$\xrightarrow{\text { Onsen }}$		
	253		${ }_{\text {cose }}^{\substack{\text { ge9 } \\ 0.7}}$		（oid	${ }^{24}$	${ }^{16}$	${ }^{1788}$	${ }_{3}^{388}$	${ }^{720}$		${ }^{180}$	${ }^{19}$	${ }_{\substack{16 \\ 14}}^{1}$	，	${ }^{60}$	190	${ }^{6.5}$	${ }^{157}$	${ }^{28}$	0.10	1.0					50		${ }_{0}^{0.05}$	30	30	10	0.03	200	10	${ }_{\substack{18,500 \\ 18000}}$	000	${ }^{0.7}$	${ }^{14}$	${ }^{268}$				
																							3300	400	0.0	${ }_{4}^{47}$																		
							2	${ }_{718}$	${ }^{36}$	500																																		

come	Somp		coicce				(eict ${ }_{\text {comp }}$	${ }^{\text {pH }}$	$\underbrace{\substack{\text { ccm }}}_{\text {Ecm }}$				$\underset{\substack{\text { mos } \\ \text { mos }}}{\text { rsis }}$		(uxbuly	Some	${ }_{\substack{\text { Patassum } \\ \text { (mat) }}}^{\substack{\text { a }}}$	${ }_{\text {and }}^{\substack{\text { ancum } \\ \text { (mat) }}}$	Menememe				Sump	\pm	(omp		Ammota		chind				(on						$\begin{array}{\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|} \substack{\text { acoso } \\ \text { cmatu }} \\ \hline \end{array}$	(tan	(eat		${ }_{\substack{\text { Sata }}}^{\text {gouce }}$
					Mv	${ }^{\text {na }}$	20.00% \%10	${ }_{\substack{6,5 \\ 80}}^{\substack{\text { c, }}}$	${ }_{30}$		${ }^{\text {n® }}$	${ }^{85,10}$	${ }^{\text {na }}$	10	${ }_{50}$	${ }_{15}$	${ }^{\text {na }}$	1000	${ }^{\text {na }}$	${ }^{\text {na }}$	${ }^{175}$	${ }^{1,2}$	${ }_{400}$	${ }^{500}$	${ }_{\text {co }}^{50}$		${ }^{20}$	${ }^{200}$	5		${ }^{371}$	${ }^{1.4}$	${ }^{20}$			8							
	${ }^{2080}$	(730	${ }_{1,8}$		(0.30																			${ }^{30075}$	${ }^{1887} 1$	0.16	${ }^{4.4}$																Nomen
, 10,		${ }^{1200}$	${ }^{1,188}$		(0.30		${ }^{20}$	${ }^{\frac{720}{720}}$	${ }_{2}^{215}$		330		${ }^{123}$	${ }^{766}$	2000	${ }^{20}$	${ }^{57}$	150	${ }^{36}$	$\stackrel{\square}{9}$	12	0.10	17					3300		0.10	${ }^{40}$	${ }^{30}$	${ }^{\circ}$	0.03	${ }^{1200}$	${ }^{20}$	${ }^{820}$	0.00	$0^{0.2}$	${ }^{53}$	${ }^{161}$		
${ }^{\text {Premen }}$			${ }^{\frac{1}{102}}$			${ }^{33}$	${ }^{26}$	76			400				${ }^{80}$									15964	478												8800						
12002A	cose	${ }_{\text {a }}^{\text {820 }}$	0.9					${ }^{7} 7$	${ }^{36}$				${ }^{227}$	${ }^{0}$	${ }_{5}$	59	${ }^{68}$	${ }^{180}$	${ }^{51}$	${ }^{213}$	${ }^{22}$	020	10	639	157.0			100		0.05	${ }^{80}$	${ }^{30}$	10	${ }_{0}^{0.3}$	${ }^{900}$	10	${ }^{17600}$	000	0.	${ }^{6}$	${ }_{36}$		Onsw
			${ }^{\text {a,70 }}$		(o.00		${ }^{25}$	${ }_{70}{ }_{7}$	${ }_{\substack{36 \\ 204}}$		2.0		${ }^{120}$	310	${ }_{\substack{62 \\ 30}}$	${ }^{26}$	${ }^{43}$	${ }^{93}$	${ }^{30}$	${ }_{92}$	${ }^{15}$	0.10	${ }^{23}$				${ }_{350}$	${ }^{2000}$		${ }_{0}^{0.05}$	${ }_{50}$	${ }_{30}$	10	${ }^{003}$	${ }_{1200}$	${ }^{\circ}$	7600	000	${ }^{02}$	${ }^{36}$	${ }_{134}$		
		${ }_{\substack{1730}}^{1780}$	${ }^{0.90}$		(0,00																			10370	${ }^{1970}$	000	${ }^{400}$																
(10)			${ }^{320}$		0.10		15	${ }^{750}$	${ }^{\text {c }}$		8.10		π	${ }^{1330}$	${ }_{\substack{380 \\ 180}}$	17	${ }_{42}$	${ }_{4}{ }^{3}$	14	${ }_{88}$	6	020	${ }^{15}$					${ }^{330}$		0.05	${ }^{2}$	30	10	0.03	1000	80	${ }^{8800}$	000	-	17	9		(incone
		隹 1700					${ }^{24}$	${ }^{200}$	${ }^{92}$		200				${ }^{29}$									2020	811.0																		(inco
(1302A	,		${ }^{\text {oso }}$		(on			${ }^{7} 78$					${ }^{115}$	${ }^{198}$	${ }^{232}$	${ }^{19}$	${ }^{50}$	${ }^{130}$	${ }^{39}$	97	12	0.10	12	8000	${ }_{1880}$	${ }^{018}$	2	${ }^{1200}$		0.05	${ }^{30}$	30	10	${ }^{0.03}$	${ }^{1200}$	10	8000	0.00	0.1	${ }^{49}$	${ }^{132}$		
					${ }_{0} 0.30$		${ }^{27}$	${ }_{720}$	${ }^{189}$		530		9	${ }^{76}$	${ }^{799}$	14	${ }^{60}$	${ }^{120}$	${ }^{27}$	${ }_{8} 8$	-	0.10	19					${ }^{230}$		${ }_{0}^{0.05}$	${ }_{50}$	${ }_{30}$	${ }_{50}$	${ }^{0.08}$	${ }^{1400}$	8	8800	000	${ }^{0.1}$	${ }^{41}$	${ }^{127}$		
${ }^{\text {Brasera }}$					-	${ }^{3}$	${ }_{30}$		${ }^{126}$		${ }_{640}$													13322	${ }_{4095}$																		
,	7022006	${ }_{\substack{1855 \\ \hline 105}}^{180}$	${ }^{0.00}$		0			${ }^{700}$	${ }^{24}$				${ }^{186}$	4	${ }_{8}$	22	${ }^{69}$	${ }^{170}$	${ }^{4.1}$	${ }^{120}$	10	0.10	10	${ }^{2757}$	${ }^{23,6}$			1000		${ }^{0.05}$	${ }^{0}$	30	140	${ }_{0}^{0.03}$	${ }^{17200}$	10	\%800	000	02	${ }^{8}$	${ }^{180}$		
${ }^{\text {Brasona }}$			0.72				${ }^{29}$	720	${ }^{26}$		200															0.10	${ }^{209}$																
			0.68					${ }^{137}$	\%				${ }^{18}$	${ }^{32}$	${ }^{3}$	${ }^{18}$	${ }^{56}$	${ }^{150}$	${ }^{39}$	110	${ }^{8}$	020	${ }^{10}$	3500	${ }^{1300}$			${ }^{500}$		${ }^{0.05}$	${ }^{30}$	${ }^{30}$	${ }^{6}$	${ }^{0.03}$	${ }^{1200}$	${ }^{20}$	2000	${ }^{0.00}$	0.1	${ }^{54}$	162		
(10aseat					0.10		16	${ }^{730}$	${ }_{182}^{182}$		2.0															${ }_{0}^{0.3}$	4.7																
	${ }^{\frac{20}{20382000}}$	${ }^{205}$	${ }_{\text {O, }}^{0.68}$		${ }_{\text {O20 }}^{0.00}$		15	${ }_{\substack{7,700}}^{\substack{7,0}}$	${ }_{\text {cor }}^{\substack{292 \\ 292}}$				184	,	${ }^{\circ}$	${ }^{33}$	${ }^{67}$	${ }^{180}$	${ }^{62}$	${ }^{134}$	${ }^{25}$	0.10	10					50		${ }^{0.05}$	\cdots	30	10	${ }^{003}$	100	20	11700	000	0.4	${ }^{6}$	${ }^{22}$		
		${ }_{\substack{1800}}^{1800}$			${ }^{0.10} 0$			${ }^{737}$	${ }^{19}$				${ }^{105}$	916	1480	${ }^{17}$	${ }^{56}$	${ }^{130}$	${ }^{28}$	${ }^{85}$	10	${ }^{0.13}$	30	${ }^{2300}$	5190			300		${ }^{0.05}$	70	${ }^{30}$	${ }^{\circ}$	${ }^{0.03}$	${ }^{200}$	${ }^{\circ}$	2000	${ }^{000}$	${ }^{0.1}$	${ }^{4}$	${ }^{139}$		
(1asase			1,2		${ }_{0}^{0.10} 0$	${ }^{\frac{26}{22}}$	${ }^{\frac{25}{26}}$	${ }_{\text {coise }}^{\substack{730}}$	20		${ }_{\text {coiz }}^{\substack{8,20 \\ 750}}$				${ }_{\substack{205 \\ 205}}$																												
-		${ }_{\text {945 }}^{985}$						${ }^{752}$	${ }^{388}$				${ }^{200}$	${ }^{18}$	${ }^{106}$	40	${ }^{63}$	${ }^{230}$	${ }^{62}$	112	${ }^{23}$	020	${ }^{23}$	${ }^{331 .}$	${ }^{10,3}$			${ }^{1300}$		${ }^{0.05}$	40	30	10	${ }^{001}$	${ }^{1200}$	10	1200	00	0.3	${ }^{82}$	${ }^{275}$		$\frac{\text { Onew }}{\text { ONRW }}$
		${ }_{\text {a }}^{295}$	0.72		0.10		${ }^{26}$	${ }^{7} 5$	361																	${ }_{0}^{0.01}$	${ }^{226}$																
	2032307				0.10			${ }^{73}$					${ }^{89}$	70	1000	17	48	${ }_{0} 9$	${ }^{20}$	10	5	0.12	${ }^{32}$	18800	6050			${ }^{1000}$		0.11	110	30	100	00	110	100	\%800	000	0.1	${ }^{32}$	${ }_{14}$		${ }_{\text {onem }}^{\text {Onew }}$
,			0.9		${ }^{0.10} 0$	3	${ }^{26}$	${ }^{730}$	\%		960		${ }_{86}$	${ }^{\text {as8 }}$	${ }_{\text {cos }}^{\substack{109}}$	${ }^{13}$	${ }^{57}$	${ }^{87}$	${ }^{21}$	${ }^{10}$	5	0.12	${ }^{24}$					${ }^{2700}$		${ }_{0}^{0.08}$	50	30	${ }^{0}$	${ }_{0} 0$	11.00	30	8800	0.00	${ }_{0}^{0.1}$	${ }^{33}$	${ }^{111}$		
(insior																								12451	${ }^{36,3}$	${ }_{0}^{0.13}$	${ }^{3.7}$																Solen
(indion		${ }_{\substack{120 \\ 880}}^{\substack{120}}$	0.95	0.00	${ }_{\text {O }}^{0.00}$		${ }^{26}$	${ }_{700}^{700}$	${ }^{127}$		450		${ }^{127}$	${ }^{6}$	¢00	${ }^{17}$	${ }^{6} 7$	${ }_{180}$	${ }^{42}$	${ }^{17}$	7	0.15	14					${ }^{20}$		0.05	${ }_{30}$	30	${ }^{40}$	${ }_{0} 00$	${ }^{1330}$	10	5000	000	0.	${ }^{6}$	${ }^{1 / 3}$		
					0.10			${ }_{746}$	${ }^{195}$				${ }^{120}$	119	${ }^{255}$	${ }^{16}$	${ }^{63}$	${ }^{180}$	${ }^{37}$	${ }^{108}$	${ }^{8}$	0.14	24	${ }_{\text {m7.7 }}$	${ }_{1876}^{1876}$			${ }^{200}$		0.0	${ }^{50}$	30	110	001	${ }^{1300}$	3	${ }^{8900}$	0.00	02	5	16		Onen
(10)							${ }^{20}$	${ }^{63}$	${ }^{18}{ }^{182}$		800		${ }^{121}$	${ }^{131}$	${ }^{275}$	${ }^{21}$	${ }_{4.8}$	130	${ }^{43}$	102	${ }^{15}$	0.12	14					${ }_{100}^{140}$		0.06	30	30	∞	001	${ }_{800}$	${ }^{20}$	${ }^{840}$	\cdots	02	${ }^{64}$	${ }^{164}$		
2024			O2						215		1020				${ }^{20}$									\ldots	\%	000	${ }^{34,7}$																
limeser					\%		2				-												10								40	30	10	001		10		0.00					(inco

 \qquad

$\begin{array}{\|c} \substack{\text { Sample } \\ \text { Colection } \\ \text { Point }} \end{array}$	Sample	Physical										Cations				Anions				Nutrients 2 Biological					Trace Elements										Fiow		${ }_{\text {Data }}^{\substack{\text { Daure } \\ \text { surce }}}$
		Time		$\begin{array}{\|c\|c\|c\|c\|c\|c\|c\|} \substack{\text { water } \\ \text { (eme }} \\ \hline \end{array}$	pH	$\begin{array}{\|c\|} \hline \left.\begin{array}{c} \mathrm{EC} \\ \hline \text { HSm } \\ \hline \end{array} \right\rvert\, \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { Do } \\ \text { (mgLL) } \end{array}$	$\begin{gathered} \substack{\text { ono } \\ \text { sat }} \\ \hline \end{gathered}$	$\begin{array}{\|l\|l\|} \hline \text { TDS } \\ (\mathrm{mgLL}) \\ \hline \end{array}$	$\left.\begin{array}{c} \text { Tss } \\ (\mathrm{mg} L L \end{array}\right)$	$\left.\begin{array}{\|c} \text { Turbidity } \\ \text { (NTU) } \end{array} \right\rvert\,$	$\begin{array}{\|c} \begin{array}{c} \text { sodium } \\ (m g L) \end{array} \\ \hline \end{array}$	Potassium $(\mathrm{mg} / \mathrm{L})$	$\begin{gathered} \text { calcium } \\ \text { (mglL) } \end{gathered}$	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Magnesium } \\ (\mathrm{mg} / \mathrm{L}) \end{array} \\ \hline \end{array}$	$\begin{array}{\|c} \hline \text { Bicarbonate } \\ \text { as HCO3 } \\ (\mathrm{mg} / \mathrm{L}) \end{array}$	$\begin{array}{\|c} \substack{\text { chlorime } \\ \text { (mglL }} \\ \hline \end{array}$	$\begin{array}{\|l\|l\|} \hline \text { Fuoride } \\ (\mathrm{mglL}) \\ \hline \end{array}$	$\begin{array}{\|c} \begin{array}{c} \text { Sulphate } \\ (\mathrm{mg} / L) \end{array} \\ \hline \end{array}$		$\begin{array}{\|c\|} \hline \text { Tp } \\ (\mu g L L) \\ \hline \end{array}$	$\begin{array}{\|c\|c\|c\|c\|c\|c\|l\|l\|l\|} \hline \text { (ganola } \end{array}$		$\left\|\begin{array}{c} \text { chla } \\ (\mu g L L) \end{array}\right\|$	$\begin{array}{\|c\|c\|} \hline \end{array} \begin{gathered} \text { Arsenic } \\ (\mathrm{g} / L / 2) \end{gathered}$	$\begin{array}{\|c} \left.\begin{array}{c} \text { Boron } \\ (\mathrm{geLL} \end{array}\right) \end{array}$	$\begin{gathered} \text { Cadmium } \\ \text { (PglLL) } \end{gathered}$	$\begin{gathered} \text { Chromium } \\ (\mu \mathrm{g} / \mathrm{L}) \end{gathered}$	$\begin{array}{\|l\|l\|} \hline \text { copper } \\ \text { (HgLL) } \end{array}$	$\left\|\begin{array}{l} \text { Iron } \\ (\text { (ugl }) \end{array}\right\|$	$\left.\begin{array}{\|l\|l} \text { Lead } \\ (\mathrm{gaLL} \end{array}\right)$	$\begin{array}{\|c\|c\|} \substack{\text { mercury } \\ (\text { gellL) }} \\ \hline \end{array}$	$\left.\begin{array}{\|c} \text { Nickel } \\ \text { (egLL } \end{array}\right)$		Level	Velocity	
		MTV	${ }^{\text {na }}$	0.80 \%il	6.5.8.	340	na	$85-110$	na	10	50	115	na	1000	na	na	175	1,2	400	500	50	20	700	5	2413	370	0.2	50	1.4	200	${ }^{3.4}$	0.6	11	8	na	${ }^{\text {na }}$	
Utopia	250512005			12	7.2	${ }^{233}$	11.30	${ }^{103}$	${ }^{154}$	9		${ }^{28}$	3	${ }_{1}^{12}$	6	91	${ }_{21}^{22}$	0.15	<10	70 100	-50	<10 <10				$\xrightarrow{<100}$				165					$\xrightarrow{\text { Low-mod }}$ Mod	Mod	${ }_{\text {RH }}^{\text {RH }}$
Utopia	${ }^{541112006}$		29.8	${ }_{1}^{12.3}$	7.9 7.6	223 286	${ }_{8}^{14.20}$	${ }_{89}^{132}$	136 200	10 12	4	29 37	4	11 22	${ }_{7}$	91 150	${ }^{21}$	0.1 0.22	$\stackrel{1}{<1}$	100 680	<10 34	$\begin{array}{r}10 \\ 18 \\ \hline\end{array}$	$\stackrel{44}{ }$	<1	${ }_{<1}^{<1}$	<100	$\stackrel{<0.1}{<1}$	<1	<1	1 460	$\stackrel{<1}{<1}$	<0.1.	<1	<10	Mod	Mod	$\stackrel{\text { RH }}{\text { RH }}$
Utopia	201111964	2359			7.7	310			174			47		19	9	156	40	0.2	2				${ }_{55}$														${ }_{\text {SNRW }}$
Utopia	20211966	2359			7.4	288			161			35		20	7	140	30	0.1																			DNRW
Utopia	61101/1966	2359			8	270			162			39		14	9	136	32	0.15	1																		DNRW
Utopia	111081998	1510			7.6	273			170			40		${ }^{20}$	6	${ }^{137}$	${ }^{28}$		9																		DNRW
Utopia	80681970	1307			7.7	290			173			38		24	5	154	30	0.15																			DNRW
Utopia	24041979	1310		19	8	390			212			32		40	9	195	35	0.1																			DNRW
Utopia	250081971	1445		17	7.8	320			180			32		20	15	159	35	0.1																			DNRW
Utopia	${ }^{25111 / 11971}$	1000 800		${ }_{18}^{24}$	8	360 270			${ }^{102}$			44 40		34 17	${ }_{8}$	178 148	36 30	0.2 0.25																			DNRW
Uutopia	${ }^{10150909197272}$	${ }_{1}^{800}$		18 18	8											146	30																				DNRW
Utopia	1410411973	1730		23	8.2	310			187	13		32	5	27	8	163	70	0.2								20											DNRW
Utopia	11081/1973	1200		17	8.1	200			122			${ }^{21}$	5	15	5	87	20																				DNRW
Utopia	5/121973	1100		27	8.3	270			161	20		24	5	23	7	131	26	0.16																			DNRW
Utopia	27031/1974	1030		27	7.8	355			203			40	5	25	8	164	32	0.13																			DNRW
Utopia	${ }^{268101 / 1974} 1$	${ }_{1}^{1215}$		15	7.7	${ }^{300}$			178	${ }_{5}^{42}$		${ }^{34}$	4	${ }_{2}^{21}$	7	139 149	31 34	0.13																			DNRW
Utopia	${ }_{181809121974}^{18974}$	$\stackrel{1530}{1730}$		$\stackrel{17}{27}$	${ }_{7}^{7.6}$	${ }^{335}$			${ }^{199} 171$	${ }^{54}$		36 35	4	${ }_{20}^{21}$	${ }_{8}$	149 158	34 14	0.27 0.16																			DNRW
Utopia	81041975	1000		21.5																																	DNRW
Utopia	5 5071975	${ }^{1055}$		16	8	262			145	${ }^{33}$		${ }^{27}$	4	16 16	${ }_{7}$	115 140	22 26	0.1 0.2																			DNRW
Utopia		1300 1350 1		26 16	${ }^{7.6}$	311 430			${ }_{2}^{165}$	11		32 42 42	4	16 35	${ }_{9} 9$	140 186 1	26 40	0.2 0.2	5				${ }_{5} 5$														DNRW
Utopia	1410911976	${ }^{1231}$		16	8.3	375			211	5		43	4	28	8	167	37	0.2					55														DNRW
Utopia	1411211976	1632		29	8.2	360			198	11		${ }^{28}$	6	34	8	165	${ }^{26}$	0.4	2				331														DNRW
Utopia	${ }^{2010411977}$	${ }^{1347}$		${ }_{2}^{22}$	8.2 8.2 				212 181	7		39 35	4	28 21 1	${ }_{8} 9$	153 150 1	36 28 28	0.1	5				193 166														DNRW
Utopia	1110411978	${ }^{1305}$		77	8	280			164	15		30	4	19	7	142	26	0.1	2				${ }_{83}$														DNRW
Utopia	241101978	1154		21																																	DNRW
Utopia	${ }^{111 / 111989}$	1505 1200		${ }_{29}^{29}$	7.8	${ }^{330}$			172 170 1			34 31 31	4	18 18	${ }_{9}^{8}$	150 148	${ }_{25}^{24}$	${ }_{0}^{0.1}$	1				${ }_{55}^{138}$														DNRW
Utopia	4021981	1440		18	7.6	${ }^{78}$			77	500		8	4	5	2	24	${ }_{3}$	0.1	,				${ }_{7724}$														DNRW
Utopia	40271981	1440			7.4	90			62	500		8	4	6	2	38	4	0.1	4				1379														DNRW
Utopia	502021981	${ }^{945}$		18	7.5 7.3 7	${ }_{1}^{117}$			75 83 8	500 100		10	5	${ }_{8}^{8}$	2	${ }_{4}^{47}$	6	0.1	4				1931														DNRW
Uutopia	${ }^{\text {24023a } 1981981}$	${ }_{1755}^{1725}$			${ }_{8.1}^{7.3}$	${ }^{1165}$			${ }_{1}^{83}$	${ }_{10}^{100}$	16	${ }_{24}^{9}$	${ }_{5}^{4}$	$\stackrel{8}{21}$	${ }_{7}$	${ }_{133}^{44}$	${ }_{20}^{6}$	${ }_{0}^{0.1}$	${ }_{1}^{13}$				1931														DNRW
Utopia	240311981	1755		27																																	DNRW
Utopia	40681989	1010		16	7.3	${ }^{86}$			${ }^{58}$	200	${ }^{680}$	8	3	5	2	${ }^{26}$	${ }^{6}$	0.1	7				1103														DNRW
Utopia	${ }^{2310711981} 1$	${ }^{1640}$		24	8.2 8.5 8	永300			195 200	10 10	10	${ }_{3}^{37}$	4	${ }^{25}$	${ }_{8}^{8}$	155 150 150	31 27	0.1 0.2	$\stackrel{2}{13}$				${ }^{276}$														DNRW
Utopia	25031/1982	850		22	8	290			160	50	100	24	4	20	6	135	20	0.1					${ }_{276}$														DNRW
Utopia	121081/1982	1130		14	8.1	300			170	9	2	35	3	19	7	140	${ }^{27}$	0.1	3				110														DNRW
Utopia	3/3111982	1545 1730 10		25 28 28	7.8	330			190	10	13	${ }^{37}$	5	21	8	165	30	0.2	1				110														${ }^{\text {DNRW }}$ DNRW
Utopia	1512121983	800		24	8.1	320			190	25	72	31	4	24	7	145	${ }^{28}$	0.1	${ }^{3} .3$				${ }^{138}$														DNRW
Utopia	24031/1984	1045		26	7.3	290			220	5	3	37	4	${ }^{28}$	9	175	${ }^{33}$	0.1	7							30											DNRW
Utopia	${ }^{231061984} 1$	1210 1140 18		${ }_{20}^{12}$	${ }_{8.3}^{7.8}$	330 480			${ }^{200}$	5 5 5		$\stackrel{41}{56}$	${ }_{5}$	25 31	8 10	150 200	36 55	0.1 0.1	2.5 4.5				138			10											${ }^{\text {DNRW }}$
Utopia	130411985	1345		23	7.5	350			200	10	3	41	3	${ }^{23}$	7	165	36	0.1								20											DNRW
Utopia	50771985	1425			8.1	340			180	5	6	37	3	20	7	150	33	0.1																			DNRW
Utopia	${ }^{1811011985}$	1330 1714 18		22 30	${ }_{8}^{7}$	${ }_{20}^{92}$			77 160	330 5 5	100	${ }_{3}^{9}$	5	8 19	${ }_{7}$	$\begin{array}{r}50 \\ 140 \\ \hline\end{array}$	${ }^{8}$	0.1 0.2	2				${ }^{138}$			${ }_{20}^{10}$											DNRW
Utopia	180771986	1440		16	${ }^{8.4}$	${ }_{238}^{238}$			160	${ }^{25}$	$\stackrel{5}{9}$	${ }_{32}$	3	${ }^{19}$	7	130 130	${ }_{26}^{26}$	0.2																			DNRW
Utopia	1711019966	1643		25	8	301			160	10	13	32	3	19	7	140	27	0.1					690														DNRW
Utopia Utoia	97011987	${ }^{1807}$		${ }_{28}^{28}$	${ }^{7} 7$	152 288			95 160	2460 10	100	${ }^{11}$	5	${ }^{13}$	${ }^{3}$	${ }^{72}$	7	0.1	${ }^{2.6}$				${ }^{1324}$														DNRW
Utopia	${ }_{\text {l }}^{\text {317041987 }} 1$	${ }_{\text {¢ }}^{\substack{\text { 930 } \\ \hline 150}}$		23 11 11	${ }_{8.9}^{7.9}$	288 314			160 150 1	10 19	7	32 31 31	${ }_{3}^{4}$	20 17 17	${ }_{6}^{6}$	140 125 125	$\stackrel{26}{22}$	0.1 0.1 0.1								20											DNRW
Utopia	6/1111987	1720		21	7.3	${ }^{273}$			150	44	34	29	5	17	6	120	22	0.2																			DNRW
Utopia	${ }^{1219219988}$	${ }_{1645}^{1452}$		${ }_{28}^{28}$	${ }^{7} 7.3$	${ }^{142}$			${ }_{1}^{97}$	${ }_{7} 780$	$\begin{array}{r}100 \\ \hline 38 \\ \hline\end{array}$	${ }^{12}$	5	11	4	$\begin{array}{r}69 \\ \hline 115\end{array}$	${ }_{2} 9$	0.1					524			10											DNRW
Utopia	${ }^{1770511988}$	1452 1430		18 24	7.5 8.1	250 274			130 150 1	48 12 12	38 6	26 29	${ }_{4}$	16 18	${ }_{7}$	115 125	${ }_{21}^{21}$	0.1 0.1																			DNRW
Utopia	120111989	${ }^{1437}$		${ }^{27}$	7.1	175			89	125	100	10	5	13	3	73	9	0.1																			DNRW
Utopia	705/1989	852			7.8	308			150	81	${ }^{80}$	${ }^{24}$		19	6	105	${ }^{27}$		3.2				2152														DNRW
Utopia	20991989 31121989	1613 140 1		30	${ }_{8.5}^{7.9}$	434 405			${ }^{250}$	10 76	11 59	${ }_{46}^{46}$	$\stackrel{3}{4}$	${ }^{31}$	${ }_{8}^{10}$	180 155 1	${ }_{48}^{54}$	0.1 0.2	${ }_{4}$				${ }^{331}$			50 100			. 02								${ }^{\text {DNRW }}$ DNRW
Utopia	240311990	1115		22	8.	${ }^{320}$			179	47	45	${ }_{3}$	4	${ }_{20}$	7	${ }_{1}^{133}$	32	${ }^{0.16}$	${ }^{2} 8$				166			${ }^{100}$			0.02								DNRW
Utopia	130711990	1145		11	8.2	475			260		32	51	4	31	11	182	46	0.16	7				386			20											DNRW
Utopia	${ }^{1511111990}$	${ }^{1330}$		${ }_{26}^{26}$	${ }^{7.6}$	498 380			${ }^{270}$	$\stackrel{2}{4}$		58 47 47	5	31 24	${ }_{8}^{11}$	200 167	52 44	0.16 0.19	${ }^{3.4}$							40 30			0.03 0.03								DNRW
Uotopia	${ }_{\text {23081/1991 }}$	${ }_{1405}$		${ }_{8}^{22}$	${ }^{7} 8$	${ }_{303}$			176	${ }_{16}$	${ }_{4}$	${ }_{37}$	5	$\stackrel{24}{19}$	${ }_{7}$	141	${ }_{3}^{44}$	0.0	2.8							${ }_{20}$			${ }_{0}^{0.04}$								DNRW
Utopia	2911111991	${ }^{1340}$		${ }^{27}$	7.5	${ }^{294}$			182	4	3	41	4	17	8	143	32	0.16	0.6										0.03								DNRW
Utopia	${ }^{1210411992}$	${ }^{1003}$		17	${ }^{7.6}$	${ }^{302}$			158 151	11	3	33 33	$\stackrel{3}{2}$	19	7	135 124	26 25	0.14 0.13																			
Utopia	${ }^{121081 / 1992}$	${ }_{1420}^{1205}$		12 26	8.3 8.1	240			151 167	$\stackrel{11}{9}$	1 5	33 34	2	16 17	${ }_{8}$	124 136 136	25 25	0.13 0.12	${ }_{0.3}^{0.7}$				${ }^{55}$						0.01								DNRW
Utopia	240311993	1015		21.1	7.7	284			${ }^{153}$	11	7	${ }^{37}$	4	14	7	121	26	0.14					${ }_{55}$						0.02								DNRW
Utopia	210711993	915		14.2	7.9	249			137	23	15	30	3	15		115	20	0.12	0.6				28														DNRW
Utopia	${ }^{244111111993}$	${ }_{1455}^{1455}$		24.6	7.6 7.75	${ }^{190} 163$			110	230	100	15	4	13	4	79	19	0.1	2				${ }^{938}$			100			0.05								${ }_{\text {DNRW }}^{\text {DNRW }}$
Utopia	16/121/1993	1300			7.65	165			99	290	100	15	4	11	4	76	12	0.1	2				1048			100			0.05								DNRW
Utopia	${ }^{1310411994}$	${ }^{940}$		15.7 174 1	$\stackrel{7}{7} 8$	${ }^{294}$			168 147	${ }_{8}^{8}$	${ }_{4}^{4}$	33 33	4	19 19	7	134 126	${ }^{28}$	0.1	${ }^{0.6}$				110						0.01								DNRW
Utopia	${ }^{3310811994}$	1330 1420		17.4 16.2 1	8 8 8	278 294 20			147 155 1	${ }_{4}^{4}$	3	33 34	3	15 16	7	126 134 134	${ }^{23}$	0.11 0.12	0.7		${ }_{20}^{27}$	${ }_{20}^{17}$							0.02								-
Utopia	301111994	920		24.3	7.79	312			170	19	9.8	${ }^{31}$	4	20	9	150	22	0.14	0		${ }^{7}$		149						0								DNRW
Utopia	11/01/1995	1250		27.4	7.25	182			110	400	100	18	5	12	4	76	14	0.2	2		260	150	1434			100			0.05								DNRW
Utopia	100211995	919 159		25.1	7.18 7.58		6.21		65 114	${ }_{124}^{1220}$	200 200	${ }_{18}^{9}$	${ }_{4}^{4}$	$\stackrel{7}{13}$	${ }_{4}$	42 85	17 1	$\frac{0.11}{0.1}$	${ }_{1}^{1.29}$		${ }_{487}^{481}$	${ }^{30}$	${ }_{11131}^{114}$						0								DNRW

Water Quality Data Summary

BOLD MTV-
MTV- - minimum trigaer value
Sample
RHR R Rver Heath Report
DNR

Comet-Brown Catchment Water Quality Data

Appendix C

Table C1
Comet Catchment URS Surface Water Parameters
Table C2
Comet Catchment URS Analytical Results
Table C3 Comet Catchment Surface Water Data Summary
Table C4 Comet Catchment Surface Water Data Results - Brown River
Table C5
Comet Catchment Surface Water Data Results - Carnarvon Creek
Table C6
Comet Catchment Surface Water Data Results - Comet River at Rolleston
Table C7 Comet Catchment Surface Water Data Results - Meteor Creek
Table C8
Comet Catchment Surface Water Data Results - Planet Creek
Table C9
Comet Catchment Surface Water Data Results - Comet River Downstream Rolleston
Table C10 Comet Catchment Surface Water Data Results - Humboldt and Rockland Creeks
Table C11 Comet Catchment Surface Water Data Results - Comet River at Comet Weir

Table C1
Comet Catchment URS Surface Water Parameters
GLNG CSG Surface Water

Site ID		Date/Time		Water Quality Parameters				
Number	Name	Date	$\begin{aligned} & \hline \text { Time } \\ & \text { (EST) } \end{aligned}$	$\begin{gathered} \mathrm{EC} \\ (\mu \mathrm{~S} / \mathrm{cm})^{*} \end{gathered}$	$\begin{gathered} \mathrm{DO} \\ (\mathrm{mg} / \mathrm{L}) \end{gathered}$	pH*	Turbidity (NTU)	Temp (${ }^{\circ} \mathrm{C}$)
			MTV	340		6.5-8.0	50	
C001	Arcadia Ck @ Arcadia Valley Rd \#1	03-Feb-08	11:30	198	4.91	7.4	91	27.5
C001	Arcadia Ck @ Arcadia Valley Rd \#1	06-Mar-08	11:10	210	nt	7.6	nt	nt
C001	Arcadia Ck @ Arcadia Valley Rd \#1	14-May-08	10:30	-	-	-	-	-
C002	Basin Ck @ Arcadia Valley Rd	03-Feb-08	11:42	109.7	1.85	6.51	170	28.4
C002	Basin Ck @ Arcadia Valley Rd	06-Mar-08	10:45	141	nt	7.33	nt	nt
C002	Basin Ck @ Arcadia Valley Rd	14-May-08	10:45	228	7.21	7.11	675	16
C003	Arcadia Ck @ Arcadia Valley Rd \#2	03-Feb-08	12:10	199	7.13	5.85	58	27.3
C003	Arcadia Ck @ Arcadia Valley Rd \#2	06-Mar-08	12:20	184	nt	7.73	nt	nt
C003	Arcadia Ck @ Arcadia Valley Rd \#2	14-May-08	12:45	207	4.87	6.95	44	19.5
C004	Arcadia Ck @ Arcadia Valley Rd \#3	03-Feb-08	12:57	199.1	7.33	5.59	23	29.8
C004	Arcadia Ck @ Arcadia Valley Rd \#3	06-Mar-08	13:00	173	-	7.59	-	-
C004	Arcadia Ck @ Arcadia Valley Rd \#3	14-May-08		-	-	-	-	-
C005	Spring Ck @ Arcadia Rd	03-Feb-08	13:18	-	-	-	-	-
C005	Spring Ck @ Arcadia Rd	06-Mar-08		-	-	-	-	-
C005	Spring Ck @ Arcadia Rd	14-May-08	13:05	-	-	-	-	-
C012	Arcadia Ck @ Castle Hill	06-Mar-08	-	-	-	-	-	-
C012	Arcadia Ck @ Castle Hill	14-May-08	11:40	-	-	-	-	-
C014	Arcadia Ck @ Sunny Holt	06-Mar-08	-	-	-	-	-	-
C014	Arcadia Ck @ Sunny Holt	14-May-08	12:00	185.2	9.35	7.21	8	16.7
C007	Carnarvon Ck @ Carnarvon Hwy	03-Feb-08	14:20	395	6.96	8.1	46	31
C007	Carnarvon Ck @ Carnarvon Hwy	06-Mar-08	14:00	350	-	8.29	-	-
C007	Carnarvon Ck @ Carnarvon Hwy	14-May-08	13:45	490	9.6	8.23	2	20.9
C006	Moolayember Ck @ Carnarvon Hwy	03-Feb-08	15:50	-	-	-	-	-
C006	Moolayember Ck @ Carnarvon Hwy	06-Mar-08	13:50	-	-	-	-	-
C006	Moolayember Ck @ Carnarvon Hwy	14-May-08	13:40	-	-	-	-	-
C008	Carnavon Ck @ Rewan (Plane Crash)	03-Feb-08	14:43	449	7.8	8.08	28	28.9
C008	Carnavon Ck @ Rewan (Plane Crash)	06-Mar-08		-	-	-	-	-
C008	Carnavon Ck @ Rewan (Plane Crash)	14-May-08	14:20	500	11.15	8.42	1	18.9
C009	Comet River @ Rolleston	03-Feb-08	16:10	212.7	4.88	7.39	132	30
C009	Comet River @ Rolleston	06-Mar-08		-	-	-	-	-
C011	Triumph Ck @ Rolleston Rd	04-Feb-08	9:50	128	1.05	6.41	566	27.6
C011	Triumph Ck @ Rolleston Rd	06-Mar-08		-	-	-	-	-
C010	Comet River @ Comet Weir	04-Feb-08	8:55	230	7.01	7.43	28	28.1
C010	Comet River @ Comet Weir	06-Mar-08		-	-	-	-	-
C013	Arcadia Ck @ Towrie	14-May-08	11:50	176	nt	7.69	nt	nt

NOTES

MTV Minimum trigger value
BOLD Greater than minimum trigger value
"-" stream dry
nt - parameters not taken due to instrument failure

* - Samples collected March 08 were analysed by laboratory due to instrument failure

Table C2
URS Surface Water Analytical Results Comet Catchment
GLNG CSG Surface Water

Location		Sample ID	Date Sampled	Analyte Sample Type	Physico-Chemical Parameters				Metals (Total)									Nutrients					
		Biochemical Oxygen Demand			Chemical Oxygen Demand	Total Organic Carbon		Arsenic	Boron	Cadmium	Chromium	Copper	Iron	Lead	Nickel	Zinc	Nitrate and Nitrite (as N)		Total Phosphorus as P	$\left\|\begin{array}{c} \text { Total } \\ \text { Nitrogen as } \\ \mathrm{N} \end{array}\right\|$	Calcium		
		Units		mg/L																			
		LOR		2	5	1	1	0.001	0.1	0.0001	0.001	0.001	0.05	0.001	0.001	0.005	0.01	0.1	0.01	0.1			
		MTV					10	$0.007^{\text {b }}$	0.37	0.0002	0.001	0.0014	0.2	0.0034	0.011	0.008			0.05	0.5	1000		
C001	Arcadia Ck @ Arcadia Valley Rd\#1		C001_06/03/08	6/03/2008	PS	-	85	<1	64	0.005	<0.1	<0.0001	<0.001	0.002	-	0.001	0.005	0.006	0.029	1.1	0.18	1.1	22
C001	Arcadia Ck @ Arcadia Valley Rd\#1		C001_06/03/08CHK	6/03/2008	LD	-	-	-	-	-	-	-	-	-	-	-	-	-	0.023	1.3	0.18	-	
C002	Basin Ck @ Arcadia Valley Rd		C002_06/03/08	6/03/2008	PS	-	82	<1	270	0.002	<0.1	0.0002	0.018	0.022	-	0.028	0.034	0.065	0.09	2.4	1.02	2.5	15
C002	Basin Ck @ Arcadia Valley Rd		C002_14/05/08	14/05/2008	PS	37	5	-	106	<0.001	<0.05	0.0002	<0.001	0.005	0.98	0.004	0.003	<0.005	0.266	1.4	0.38	1.6	30
C002	Basin Ck @ Arcadia Valley Rd	C002_14/05/08CHK	14/05/2008	LD	-	6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
C003	Arcadia Ck @ Arcadia Valley Rd \#2	C003_06/03/08	6/03/2008	PS	-	46	<1	52	0.004	<0.1	0.0001	<0.001	0.002	-	<0.001	0.003	0.006	0.01	1.3	0.04	1.3	18	
C003	Arcadia Ck @ Arcadia Valley Rd \#2	C003_06/03/08CHK	6/03/2008	LD	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	18	
C003	Arcadia Ck@ Arcadia Valley Rd \#2	C003_14/05/08	14/05/2008	PS	58	10	-	27	0.002	0.06	0.0002	<0.001	0.002	0.98	<0.001	0.003	<0.005	<0.01	1	0.15	1	19	
C004	Arcadia Ck @ Arcadia Valley Rd \#3	C004_06/03/08	6/03/2008	PS	-	66	<1	128	0.005	<0.1	<0.0001	0.014	0.011	-	0.005	0.014	0.031	0.018	2.3	0.55	2.4	12	
C004	Arcadia Ck@ Arcadia Valley Rd \#3	C004_06/03/08CHK	6/03/2008	LD	-	-	-	138	0.006	<0.1	<0.0001	0.014	0.012	-	0.005	0.014	0.032	-	-	-	-	-	
C007	Carnarvon Ck @ Carnarvon Hwy	C007_06/03/08	6/03/2008	PS	-	25	<1	25	0.002	<0.1	0.0001	$<0.001^{*}$	0.002	-	<0.001	0.002	<0.005	0.044	0.6	0.08	0.6	36	
C007	Carnarvon Ck@ Carnarvon Hwy	C007_06/03/08CHK	6/03/2008	LD	-	-	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
C007	Carnarvon Ck @ Carnarvon Hwy	C007_14/5/08	14/05/2008	PS	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	42	
C008	Carnavon Ck @ Rewan (Plane Crash)	C008_14/05/08	14/05/2008	PS	17	2	-	2	<0.001	<0.05	0.0002	<0.001	0.001	<0.05	<0.001	<0.001	<0.005	<0.01	<0.1	0.04	<0.1	44	
C008	Carnavon Ck @ Rewan (Plane Crash)	C008_14/05/08CHK	14/05/2008	LD			-							-					0.1	0.04			
C013	Arcadia Ck @ Towrie	C013_06/03/08	6/03/2008	PS	-	46	<1	25	0.004	<0.1	0.0001	<0.001	0.002	-	<0.001	0.003	<0.005	0.013	1.2	0.13	1.2	16	
C013	Arcadia Ck @ Towrie	C013_06/03/08CHK	6/03/2008	LD	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
C014	Arcadia Ck@ Sunny Holt	C014_14/05/08	14/05/2008	PS	41	9	-	10	0.001	<0.05	<0.0001	<0.001	0.002	0.23	<0.001	0.002	<0.005	<0.01	1	0.07	1	19	
C014	Arcadia Ck @ Sunny Holt	QC02_14/05/08	14/05/2008	FD	93	9	-	11	<0.001	<0.05	<0.0001	<0.001	0.002	0.26	<0.001	0.002	<0.005	<0.01	1	0.07	1		
C014	Arcadia Ck @ Sunny Holt	QC02_14/05/08CHK	14/05/2008	LD	-	-	-	-	0.001	-	<0.0001	<0.001	0.002	-	<0.001	0.002	<0.005	-	-	-	-		

Notes
PS - Primary Sample
LD - Lab Duplicate
FD - Field Duplicate Sample
MTV - Minimum Trigger Value
a-Guideline physico-chemical parameter values for protection of aquatic ecosystems (central Coast Region)
b-AsIII/AsIV respectively
BOLD Greater than the MTV

Table C2
URS Surface Water Analytical Results Comet Catchment
GLNG CSG Surface Water

Location		Sample ID	Date Sampled	Analyte	Major Ions									Alkalinity				
		Sample Type		Chloride	Fluoride	Magnesium	Potassium	Sodium	Sulphate	Total Anions	Total Cations	Ionic Balance	Hydroxide Alkalinity as CaCO 3	Carbonate Alkalinity as CaCO3	Bicarbonate as CaCO 3	$\begin{gathered} \text { Total } \\ \text { Alkalinity } \\ \left(\text { as } \mathrm{CaCO}_{3}\right) \end{gathered}$		
		Units		mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	meq/I	meq/	\%	mg/L	mg/L	mg/L	mg/L		
		LOR		1	0.1	1	1	1	1	0.01	0.01	0.01	1	1	1	1		
		MTV		175	,			<115	250									
C001	Arcadia Ck @ Arcadia Valley Rd\#1		C001_06/03/08	6/03/2008	PS	2	0.1	6	12	8	<1	2.19	2.29	-	<1	<1	107	107
C001	Arcadia Ck @ Arcadia Valley Rd\#1		C001_06/03/08CHK	6/03/2008	LD	-	-	-	-	-	-	-	-	-	-	-	-	-
C002	Basin Ck @ Arcadia Valley Rd		C002_06/03/08	6/03/2008	PS	<1	<0.1	4	6	4	1	1.37	1.41	-	<1	<1	67	67
C002	Basin Ck @ Arcadia Valley Rd		C002_14/05/08	14/05/2008	PS	4	0.2	8	8	-	6	2.43	2.61	-	-	-	-	-
C002	Basin Ck @ Arcadia Valley Rd	C002_14/05/08CHK	14/05/2008	LD	4	-	-	-	-	-	-	-	-	-	-	-	-	
C003	Arcadia Ck@ Arcadia Valley Rd \#2	C003_06/03/08	6/03/2008	PS	4	0.2	6	11	14	<1	2.06	2.25	-	<1	<1	98	98	
C003	Arcadia Ck @ Arcadia Valley Rd \#2	C003_06/03/08CHK	6/03/2008	LD	-	-	6	11	13	<1	-	-	-	-	-	-	-	
C003	Arcadia Ck@ Arcadia Valley Rd \#2	C003_14/05/08	14/05/2008	PS	3	0.2	7	8		13	2.11	2.29	-	-	-	-	-	
C004	Arcadia Ck@ Arcadia Valley Rd \#3	C004_06/03/08	6/03/2008	PS	4	0.2	4	8	22	2	1.9	2.08	-	<1	<1	87	87	
C004	Arcadia Ck@ Arcadia Valley Rd \#3	C004_06/03/08CHK	6/03/2008	LD	-	-	-	-	-	-	-	-	-	-	-	-	-	
C007	Carnarvon Ck @ Carnarvon Hwy	C007_06/03/08	6/03/2008	PS	11	0.1	21	5	23	7	4.48	4.64	1.74	<1	<1	202	202	
C007	Carnarvon Ck@ Carnarvon Hwy	C007_06/03/08CHK	6/03/2008	LD	-	-	-	-	-	-	-	-	-	-	-	-	-	
C007	Carnarvon Ck @ Carnarvon Hwy	C007_14/5/08	14/05/2008	PS	19		27	4	-	26	5.49	5.56	0.64	-	-	-	-	
C008	Carnavon Ck @ Rewan (Plane Crash)	C008_14/05/08	14/05/2008	PS	14	0.2	34	2	-	27	6.06	6.21	1.17	-	-	-	-	
C008	Carnavon Ck @ Rewan (Plane Crash)	C008_14/05/08CHK	14/05/2008	LD									-					
C013	Arcadia Ck @ Towrie	C013_06/03/08	6/03/2008	PS	2	0.1	5	12	10	<1	1.81	1.99	-	<1	<1	88	88	
C013	Arcadia Ck @ Towrie	C013_06/03/08CHK	6/03/2008	LD	3	0.1	-	-	-	-	-	-	-	<1	<1	87	87	
C014	Arcadia Ck @ Sunny Holt	C014_14/05/08	14/05/2008	PS	3	0.2	7	10	-	9	2.01	2.16	-	-	-	-	-	
C014	Arcadia Ck @ Sunny Holt	QC02_14/05/08	14/05/2008	FD		0.2	-	-	-	-	-	-	-	-	-	-	-	
C014	Arcadia Ck @ Sunny Holt	QC02_14/05/08CHK	14/05/2008	LD		-	-	-	-	-	-	-	-	-	-	-	-	

Notes
PS - Primary Sample
FD - Field Duplicate Sample
MTV - Minimum Trigger Value
a -Guideline physico-chemical parameter values for protection of aquatic ecosystems (central Coast Reg
b-AsIII/AsIV respectively
BOLD Greater than the MTV

Table C3
GLNG CSG Surface Water

Water Quality Parameter				Brown River (u/s Rolleston)				Carnarvon Creek				Comet River (at Rolleston)				Meteor Ck				Planet Creek				Comet River (d/s Rolleston)				Humboldt + Rockland Creek				Comet River at Comet Weir				
		Min		Med	Max	n	Min	Med	Max	n																										
$\begin{aligned} & \text { Physico- } \\ & \text { Chemical } \\ & \text { Parameters } \end{aligned}$	Conductivity @ 25C		$\mu \mathrm{S} / \mathrm{mm}$	340	66	217.0	545	53	115	343.3	436	38	150	206.5	331	4	160	615.5	810	40	89	698.3	1080	50	101	233.9	1030	81	48	202.9	335	7	72	203.9	510	125
	Conductivity @ 25C F	$\mu \mathrm{s} / \mathrm{cm}$	340	65	176.4	385	23	113	341.9	438	43	147	233.5	418	8	310	421.3	520	4	342	830.9	1120	13	95	164.3	458	69		151.0	151	1	50	187.6	479	85	
	Turbidity	NTU	50	1	77.9	620	37	1	26.9	200	27	1.5	149.5	430	3		27.8	100	12	1	7.6	26	22	2	79.9	3110	62	70	654.0	1238	2	1	690.9	9310	71	
	Turbidity F	NTU	50	5	112.1	330	15	1	4.9	15	18	6	160.7	538	8									1	1305.2	3180	47		1280.0	1280	1	15.6	1053.3	7740	60	
	Transparency (secchi depth) FLD	m																														0.14	0.5	1.02	4	
	Colour True	Hazen Units		5	28.8	95	32	5	9.2	30	24	10	19.3	28	3	5	14.5	50	10	5	24.0	70	20	5	24.8	70	32	14	42.0	70	2	2	34.1	325	67	
	Air Temp FLD			18	21.9	26	4	13	18.1	27	5	14.7	16.0	17.2	2									23.4	23.9	24.3	3					17	22.7	27.7	6	
	Water Temp FLD		20-80\%\%ile	8	22.2	32	33	10.3	20.6	32	48	16.5	20.7	24.9	8	4	24.8	34	30	14	24.1	35	36	10.9	23.0	35	57	19	21.3	28	5	14	24.7	34.2	109	
	pH	pH Units	6.5-8.0	6.6	7.6	8.5	53	7.4	8.3	8.8	38	7	7.5	7.91	4	7.4	${ }^{8.3}$	8.8	40	6.8	8.0	8.8	50	7.05	7.8	8.72	57	6.9	7.3	7.7	7	6.9	7.6	8.6	125	
	pH FLD	pH Units	6.5-8.0	6.92	7.8	8.9	17	7.8	8.5	8.8	29	7.5	7.7	8.1	7					8.3	8.4	8.4	2	6.47	7.8	8.88	28		7.4	7.4	1	6.5	7.4	8.53	74	
	Oxygen (Dissolved) FLD	mgh		4.06	7.6	17.5	15	6.8	9.5	11.9	18	3.8	5.3	6.7	8									5.88	7.9	9.85	18		5.3	5.3	1	3.6	6.4	10.48	46	
	Total Suspended Solids	mgl	10	5	148.6	3910	47	2	27.5	335	37	5	131.7	370	3	1	40.4	300	32	2	28.8	580	41	2	611.6	2350	75	4	119.3	360	6	2	455.9	5772	99	
	Total Diss. Solids	mgl	500	39	126.0	296	52	88	202.0	251	38	89	126.6	170.79	3	99	357.8	485	40	50	405.5	620	50	69.69	167.1	602	57	45	128.6	204	7	52	125.5	271	117	
Nutrients	Nitrate (N03)	mg/L	50	0.17	1.4	3.8	36	0.2	0.8	,	17	0.44	1.5	3.6	4	0.4	0.9	2.9	16	0.2	1.1	5.2	23	0.1	1.5	5.5	34	1	3.5	5.3	3	0	1.8	9.7	73	
	Nitrate + nititie (N total)	mgl																									0									
	Nitrate + nitrite (N soluble)	mg/L						0.0025	0.003	0.0042	3													0.0019	0.1	0.475	22					0	0.2	1.05	48	
	Ammonia (N total)	mgl	0.02																								0									
	Ammonia (N soluble)	mg/	0.02	0.006	0.006	0.006	1	0.005	0.01	0.0215	4													0.0042	0.025	0.0814	23		1.1	1.11	1	0	0.1	0.80	51	
	Kjeldahl Nitrogen	mg/L		0.685	1.1	1.4	5	0.175	0.18	0.175	1	0.543	1.3	2	2									1.581	3.3	11.882	11					715	715.0	715		
	Total Nitrogen (TN)	mg/	0.5	0.5008	1.0	2.1024	8	0.1	0.16	0.2158	2	0.83	0.9	1.0419	3									0.3712	0.6	0.8278	3					0.36	1.5	4.48	36	
	Organic Nitrogen	mgl		0.68	0.7	0.68	1	0.1132	0.19	0.3	4	0.59	0.6	0.59	1									0.41	2.4	17.8609	24					0.3	1.1	3.2	30	
	Total Reactive Phosphorus	mg/																									0									
	Total React Phosphorus (P soluble)	mg/		0.067	0.1	0.067	1	0.0045		0.0223	4														0.1	0.164	22					0.003	0.1	0.27	50	
	Total Phosphorus (P)	mgh	0.05	0.0961	0.3	0.581	14	0.0162		0.052	8	0.0397	0.3	0.74	6									0.0877	0.7	2.4338	37		0.4	0.39	1	0.022	0.7	2.84	66	
Metals	Boron as B	mgl	0.37	0.01	0.037	0.1	21	0.01		0.2	15	0.04	0.1	0.1	2	0.02		0.03	12	0.02	0.1	0.1	22	0.02	0.032	0.05	11					0.01	0.1	0.11	41	
	Aluminium (Al)	mgl	0.055	0.01	0.044	0.1	9	0.01	0.1	0.2	7	0.05	0.1	0.18	3					0.1	0.2	0.22	2	0.01	0.031	0.09	14					0.01	0.1	0.59	40	
	Copper (Cu)	mg/	0.0014	0.01	0.033	0.06	9	0.01	0.04	0.06	8	0.01	0.02	0.05	3					0.02	0.1	0.11	4	0.01	0.035	0.17	19			0.01	1	0.01	0.03	0.08	27	
	Bromide (Br)	mgl										1	1.0	1	1												0									
	Cadmium (Cd total)	$\mu \mathrm{g} / \mathrm{L}$	0.2																								-					2.6	3.1	3.5	2	
	Chromium (Cr total)	нg/	1																								0					3	5.0	7	2	
	Copper (Cu total)	нg/	1.4																								0					4	5.5	7	2	
	Flouride (F)	Mgh	1	0.1	0.2	0.65	50	0.1	0.1	0.2	37	0.11	0.2	0.24	3	0.1	0.2	0.63	40	0.01	0.2	0.3	42	0.04	0.1	0.42	53	0.1	0.3	0.8	6	0.02	0.2	0.83	124	
Major lons	Hydrogen (H)	mg/L						0.1	0.1	0.1	4				3	0.1	0.2	0.5	8	0.1	0.1	0.1	9	0.1	0.1	0.1	5					0.1	0.1	0.1	4	
	Chloride (CI)	mg/	175	2.2	10.2	58	52	3.8	10.6	20	38	4.8	6.1	7.9	4	12	26.1	65	40	13.8	74.9	155	50	4	13.6	140	57	10	37.1	90	7	2	10.3	46.37	124	
	Potassium (K)	mg/L		3.1	7.2	21.1	48	1.3	2.9	6.7	38	3.86	5.7	7	4	2.2	3.6	24	39	1.4	3.0	5.6	48	2.4	4.9	8.2	55	1.8	4.3	5.3	6	2.2	5.2	48	103	
	Sodium (Na)	mgl	115	4	13.3	39.9	53	11.5	17.5	22	38	8.6	11.3	14.5	4	3.4	37.3	80.4	40	11.1	71.4	124	50	4.8	16.8	115	57	5.6	24.1	40	7	4	12.3	36	125	
	Total Dissolved lons	mgl		43.9	173.6	443.7	53	92.2	287.9	366.7	37	113	166.7	273.94	4	127.3	509.9	710.9	39	48.6	537.6	831.3	50	83.68	231.3	781.7	57	46.9	142.0	229.9	7	75	168.8	382.2	125	
	Calcium (Ca)	mg/	1000	2.8	17.1	63	53	6.4	27.4	38	38	8.8	15.8	29.4	4	12	35.6	51	40	1.5	30.9	57	50	6.4	19.1	45	81	1.5	9.5	20	7	5.6	16.9	48	125	
	Sulphate (SO4)	mg/	250	0.5	2.5	9.3	24	0.65	2.9	16	33	0.51	2.2	4.2	4	1	8.0	27.5	26	0.9	3.3	8.2	27	0.7	3.6	25	40	6	11.6	20	4	0.97	4.4	53.33	88	
	Magnesium (Mg)	mgl		1.5	8.2	20	53	4.2	19.5	25.3	38	4.7	9.2	18.7	4	4	41.9	54	40	2	33.1	54.2	50	3.3	11.8	45	81	1.9	5.8	8.8	7	2.6	8.8	27	125	
Alkalinity	Total Alkainity ($\mathrm{CaCO3}$)	mg/L		,	95.6	256	53	47	173.7	223	38	63	108.7	168	3	41	301.7	416	40	10	267.3	470	50	42	115.0	355	57	15	43.9	80	7	26	92.1	222	125	
	Total Akalinity (CaCO3) FLD	mg/		55	77.0	124	4	18.8	139.4	180	5	50	86.4	149.2	3			0						56	119.5	180	,		48.0	48	1	8.6	59.3	124	10	
	Hydroxide (OH)	mg/L		0	0.0	0.02	11	0.02	0.1	0.1	20							0		0.04	0.1	0.1	,	0.09	0.1	0.09	1				5	0.01	0.0	0.1	13	
	Carbonate (CO3)	mgl		0.07	0.5	1.6	39	0.1	3.1	9.1	38	0.1	0.5	0.98	3	0.1	6.1	30	40	0.1	5.3	15	38	0.03	1.4	19	52			0.1	5	0.04	0.7	16.8	83	
	Bicarbonate (HCO3)	mg/L		9.2	115.9	311	53	57	205.3	263	38	70	116.2	202.93	4	28	355.6	500	40	12	317.9	553.3	50	51.12	155.9	426	57	18.3	53.4	97	7	31.5	111.3	267	125	
	Hardness (CaCO3)	mgl		13	76.3	240	53	33	148.7	194	38	41.5	77.2	150.24	4	54	261.1	350	40	12	213.2	360	50	29.54	96.2	298	81	12	47.7	80	7	25	78.3	201	125	

notes
MTV Minimem nigger valu

\equiv| Not deteded |
| :---: |
| Estinate |

Brown-Comet Catchment Water Quality Data

	staton namE	${ }_{\substack{\text { sample. } \\ \text { No. }}}^{\text {a }}$	date	${ }^{\text {TME }}$	Hydrologl																							meats																	
						${ }_{\text {Stama }}^{\substack{\text { sitang } \\ \text { Denase }}}$	ooph			Tubidit		colour	${ }_{\text {a }}^{\substack{\text { fain } \\ \text { feld }}}$		р ${ }^{\text {H }}$	${ }_{\text {PH }}^{\text {Pro }}$		$\substack{\text { Suspal } \\ \text { Supanded } \\ \text { Solise }}$	$\left\lvert\, \begin{gathered}\text { Toibl } \\ \text { dois } \\ \text { sois }\end{gathered}\right.$	(tras)	$\underset{\substack{\text { Nitatat } \\ \text { nitie }}}{\text { N }}$ nitrite soluble	mone		${ }^{\text {TN }}$			tp	${ }_{\text {Baon }}^{\text {gas }}$	aumin			- Hytasem	cosme	Sosasum	(me)		catam	some	cose			${ }^{\text {as }} \mathrm{OH}$	${ }_{\text {cosem }}^{\text {casomas }}$ ascos	$\underbrace{}_{\substack{\text { Bratanoal } \\ \text { astocos }}}$	
				Units	m	Socs	m	${ }_{\text {uscm }}$	${ }^{\text {uscm }}$	NuT	nти	$\underbrace{}_{\substack{\text { Hezen } \\ \text { unis }}}$	${ }^{\circ}$	${ }^{\circ} \mathrm{C}$	${ }_{\text {phen }}^{\substack{\text { mints }}}$	${ }_{\substack{\text { pHe } \\ \text { dims }}}$	mgt	mal	man	men	mga	mal	mgr	mar	mg	mgr	nal	mg2	mar	mg2	mg2	mg2	mg2	mgr	m92	ugh	ugh	ugh	mgr	mgh	mal	mgr	mar	mg	m92
				mv				${ }^{30}$		${ }_{50}$				coick	6.5.0. 6	5.80		10	${ }^{500}$	${ }_{50}$		0.02		0.5			0.05	${ }_{0}^{0.37}$	0.055	0.0014	1		4175		<115		1000	250							
$\underbrace{}_{\substack{1065020 \\ 1035020}}$				$\underset{\substack{1030 \\ \hline 1400}}{ }$	${ }_{1,29}^{\text {Na }}$	${ }^{0.094}$	${ }_{0}^{02}$	${ }_{3}^{335,3}$	${ }_{\substack { 383 \\ \begin{subarray}{c}{36{ 3 8 3 \\ \begin{subarray} { c } { 3 6 } } \\{\text { S60 }}\end{subarray}}$	${ }^{122}$	15	5	${ }^{27}$	${ }^{24.4}$	8.7	${ }^{8.5}$	${ }_{\text {926 }}^{102}$	150	211.62	No	${ }_{\text {colo }}^{\text {coin }}$	${ }_{\text {O.0.05 }}^{0.002}$			-0.432	${ }_{0}^{0.015}$	${ }_{\text {O }}^{0.0041}$		No	0.01	${ }^{0.14}$	${ }^{\text {No }}$	${ }^{8,87}$	${ }^{1,3}$	${ }^{18}$	${ }^{304}$	2,	${ }^{1.02}$	${ }^{226}$	${ }^{1896}$		${ }_{0}^{0.07}$	${ }_{565}^{56}$	${ }_{219,6}^{229}$	
		${ }^{1717899}$	${ }^{\text {H20929965 }}$	$\xrightarrow{1400}$900 00	${ }^{1.27}{ }^{1.3}$	${ }^{\text {O.044 }}$ 0.055	${ }_{0}^{0.2}$	${ }^{\text {3682 }}$	${ }_{\substack{200 \\ 388}}^{29}$	- ${ }_{56}^{56}$	7		${ }^{233}$	${ }_{\text {242 }}^{228}$		${ }_{8} 8$	9.	${ }^{10.0}$	${ }^{20933} 2$	no	${ }_{\substack{0}}^{0.0026}$ (0025	${ }^{0.0071}$			${ }_{\substack{021182}}^{0.152}$	${ }^{\text {O.OOC45 }}$ 0.023	${ }_{\text {a }}^{0.0928}$	${ }^{\text {No }}$ No	No	${ }_{\text {O.06 }}^{\substack{\text { No }}}$	0,16	${ }^{\text {No }}$ No	${ }^{9094}$	2	${ }^{\frac{18,3}{178}}$	${ }^{324}$	${ }^{29,5}$	${ }_{\text {a }}^{0.58}$	${ }^{23,4}$	${ }_{\text {l }}^{1927} 18.8$	${ }_{188}^{180}$		${ }_{\substack{513 \\ 298}}$	${ }_{\substack{23,69 \\ 2363}}^{2}$	
		${ }^{1857788} \times$		(ino	${ }_{\text {+ }}^{128}$		-	${ }^{375}$	($\stackrel{3}{2}$	$\stackrel{14}{2}$	${ }_{\substack{10 \\<1}}$	${ }^{134}$	${ }^{128}{ }^{103}$		${ }^{8.5}$	${ }_{8}^{89}$	$\underset{\substack{13.0 \\ 10.0}}{ }$		${ }_{\text {No }}$			0.175	0.1			${ }^{\text {0.033\% }}$	80,	${ }_{0}^{0.05}$	$\xrightarrow{\text { No }}$			${ }^{8,03}$	${ }_{\substack{1.4 \\ 1.4}}^{\text {, }}$	${ }_{\substack{158 \\ 18.5}}^{1.8}$	${ }^{39}$	${ }^{26,9}$	${ }_{0}^{0.7}$	${ }^{23,5}$	- ${ }_{192}^{198}$	${ }_{178}^{168}$	${ }^{0.03}$	${ }^{2,9} 4.9$	${ }_{\substack{2297 \\ 230}}$	
		$\underbrace{188789}_{\text {207871 }}$		${ }^{1220}$	(028		${ }_{0}^{0.3}$	(312 320		$\stackrel{26}{7}$	$\stackrel{2}{2}$	100		${ }^{23.1}$	${ }^{8.5}$		${ }_{11,9}$	$\stackrel{\text { 2. }}{10.0}$	${ }_{\text {21565 }}^{160}$	0.5			${ }^{0} 0.1$	0216			${ }_{\text {coibe }}^{0.0062}$			$\xrightarrow{\text { N0, }}$	${ }^{0.1}$	No	${ }^{926}$	+1.4	${ }^{182}$	${ }^{200}$		${ }^{\frac{0.71}{2}}$	253 20.5	(1937		${ }^{\text {0.08 }}$	${ }_{\text {en }}^{\text {6, }}$	${ }_{\substack{23,75 \\ 190}}^{\substack{\text { 20, }}}$	${ }^{145}$
			${ }^{138061987}$		$\stackrel{\text { N. }}{\substack{\text { N.1 } \\ \\ \hline}}$	0015	${ }^{02}$	${ }_{40}$	${ }^{307}$					139	7.			${ }^{20.0}$	${ }^{238}$												0.16		12	${ }^{38}$	${ }^{17}$		${ }_{38}$		${ }^{24}$	${ }^{206}$			12	${ }^{249}$	
	come	$\underbrace{\text { ¢18 }}_{\substack{7550 \\ 91588}}$		${ }^{1055}$		${ }_{\substack{0.068 \\ 0.005}}^{\substack{\text { a }}}$		¢		5		5		- ${ }_{18}^{18}$	${ }^{8.8}$				${ }^{235}{ }_{24}^{24}$	${ }_{0}^{0.3}$												${ }^{0.1}$	${ }_{21}^{11}$	${ }_{4}^{26}$	${ }_{19}^{21}$	${ }_{\substack{300 \\ 346}}$	${ }_{\substack{35 \\ 35}}$	${ }_{5}^{25}$	${ }^{22}$	$\underset{\substack{204 \\ 205}}{ }$			${ }^{28}$		
	Camano chatweevy		${ }^{11771758}$	${ }_{8}^{815}$	0.13 0.01	${ }^{0.192} 0$	${ }_{0}^{0.1}$	$\underset{\substack{230 \\ 335}}{ }$		${ }_{10}$		${ }^{20}$			${ }^{8.3}$			¢0.0.	${ }^{140}{ }^{200}$	3											0.1		+ ${ }^{8} 8$		${ }_{18}^{16}$	${ }_{\substack{187 \\ 278}}^{\text {278 }}$	${ }^{13}$		¢	${ }_{164}^{98}$			-	${ }_{\text {c }}^{1105}$	
	Cameno ckatweev			${ }^{1325}$	-0.35	${ }^{0.065}$		${ }_{\substack{355 \\ 355}}^{\text {3, }}$		${ }_{3}^{3}$		5		${ }^{18}$				${ }^{20.0}$	${ }^{190}{ }^{100}$									002			${ }_{0} 0^{1}$							${ }^{2}$		${ }_{\substack{150 \\ 190}}^{\text {100 }}$					
	comer			${ }_{\substack{1345 \\ 150}}^{\text {120 }}$		${ }_{\text {O.0.26 }}^{0.055}$		${ }_{\substack{235 \\ 205}}$	${ }^{195}$	${ }^{100}$		${ }^{10}$		32	${ }^{8.3} 8$					${ }_{0}^{1.5}$								(0.01	0.1	${ }_{0}^{0.05}$		No	${ }^{\text {c }}$	${ }^{4.4}$	${ }_{185}^{135}$		${ }^{1205}$		$\stackrel{10}{15}$						
	cemen		${ }_{\text {cole }}$	${ }_{\text {¢ }}^{1185}$	0.1	${ }^{0.054}$	O,	(300	${ }^{330}$					14	${ }^{8.3}$			${ }_{\text {\% }}^{8}$	${ }^{208}$									0.04	.			-		${ }^{3}$				${ }^{32}$					${ }^{3}$	${ }^{245}$	
	(eamen					${ }_{\substack{1.64 \\ 0.089}}^{\substack{\text { a }}}$	${ }_{0} 0.1$	${ }^{268}$	${ }^{257}$	${ }_{200}$		15		${ }^{16}$	${ }_{80}$			550	$\stackrel{142}{14}$	${ }_{0} 0.7$											${ }_{0}^{0.13}$	No	${ }^{56}$	${ }^{\text {34 }}$	${ }_{13}^{13}$	${ }^{184}$	${ }_{184}^{184}$	${ }^{3,7}$	${ }^{109}$	${ }_{106}$		0.02	${ }_{0}^{0.7}$	${ }_{127.7}^{127}$	
${ }^{1305999}$	Caraneon char iemen	${ }^{\text {Sasbeg }}$	${ }^{\text {40971985 }}$	${ }^{14100}$	${ }_{1}^{1.13}$															0.													${ }^{13}$												
	coman	${ }^{124858}$		${ }_{140}^{140}$	${ }^{1.15}$		${ }_{0}^{0.1}$	¢	(inc	$\stackrel{5}{1}$		¢			${ }_{8}^{8.5}$				220	${ }^{5}$								${ }^{0.021}$			${ }_{0}^{0.2}$	${ }_{0}^{0.1}$		${ }_{20}{ }^{\text {a }}$	${ }^{22}$	${ }^{332}$	${ }_{30}$		21	${ }_{201}^{201}$			${ }_{4}^{47}$	${ }_{\substack{205 \\ 235}}^{\substack{20}}$	
,			${ }^{2}$	${ }^{\frac{14515}{115}}$	${ }_{1,1 / 3}^{1.1}$	${ }^{\text {O.O35 }}$	0.1			${ }_{18}$		${ }_{5}^{5}$		${ }_{14}^{14}$	${ }_{8}^{8.2}$				${ }^{170}$	${ }^{0.5}$								${ }_{0}$.	${ }^{185}$	${ }_{2}^{26}$	${ }_{10}$	${ }^{2200}$	${ }^{18}$	${ }_{3.1}^{2}$	${ }_{20}^{20}$				${ }^{12}$	${ }^{185}$	
			${ }^{\text {a }}$	${ }_{\substack{1045 \\ 1315}}$	${ }_{1}^{1.05}$	${ }^{0.025}$	$\stackrel{0.1}{0.1}$		(300	${ }^{3}$				${ }_{18}^{18}$	${ }_{8,3}^{8.3}$			$\begin{array}{r}\text { 10. } \\ \hline 10 \\ \hline\end{array}$	${ }_{2}^{200}$	0.5								0.01					$\stackrel{11}{10}$	${ }_{2}^{26}$	${ }^{18}$	${ }_{\substack{318 \\ 238}}$	${ }^{\frac{32}{29}}$	$\stackrel{2}{2}$	${ }^{21}$	${ }_{\substack{189 \\ 188}}^{188}$			${ }^{28}$	${ }^{\frac{225}{215}}$	
				${ }^{1300}$	${ }_{1}^{1.15}$		${ }^{02}$	${ }_{\substack{230 \\ 300}}^{\substack{280}}$		${ }_{\substack{100 \\ 11}}^{10}$		$\xrightarrow{70} 10$		${ }^{32}$	${ }^{8.2}$			${ }^{1320}$	${ }^{120}$	${ }^{\text {i, }} 1$								${ }^{0.1}$	${ }^{0.2}$	${ }_{0}^{0.05}$		${ }^{\text {No }}$ N	$\stackrel{6}{9}$	${ }_{24}^{24}$	${ }^{16} 5$	${ }_{\substack{200 \\ 280}}$	${ }_{28,}^{24}$	${ }_{3}^{2}$	${ }^{13,5}$	${ }_{1}^{165}$		${ }_{\text {OTO }}^{0.1}$	${ }^{\frac{3}{1.7}}$	${ }^{165}$	
			${ }^{\text {coser }}$				${ }^{0.1}$	(isk	${ }_{4}^{425}$	${ }_{\substack{51 \\ 13}}$		${ }^{10}$			- ${ }_{\text {8, }}^{8.2}$			(10.	$\xrightarrow{202}$273 173									${ }^{\text {a }}$			${ }_{0}^{0.17}$	No		${ }^{23}$	${ }_{\text {20 }}^{10}$		${ }^{26}{ }^{2.7}$	3.	${ }_{\substack{24 \\ \\ 20}}^{20}$	${ }_{\substack{26 \\ 146}}$		${ }_{0}^{0.03}$	+109		
	Canamo chatreen		${ }^{205059090}$	${ }^{1609}$	1.15 0.05		0.1	${ }_{37}^{29}$		${ }^{27}$		10			${ }_{8.3}$			${ }_{220}^{20.0}$	$2{ }^{20}$									0.01			0.14	No	${ }_{126}$	${ }^{\frac{32}{23}}$	${ }_{1}^{134}$	${ }_{27}^{27}$	${ }^{27}{ }^{26}$	${ }_{56}^{29}$	${ }^{18,7}$	${ }_{1}^{180}$		${ }_{\substack{0.08 \\ 0.008}}^{0.0}$	${ }_{22}^{0 .}$	俍	
边					${ }^{1.01}$	${ }_{\text {a }}^{\substack{\text { O224 }}}$	0.1	330	${ }^{232}$						8.0			4	${ }^{242}$									005	0.03	0.03	0.17	No	95	4	20	${ }^{348}$	${ }^{344}$	${ }^{29}$	${ }^{226}$	210		0.02	${ }^{17}$	${ }^{2529}$	${ }^{178}$
${ }^{\text {a }}$	Camano cor freemn			${ }_{\substack{1250 \\ 1250}}$	${ }_{0} 0.96$	${ }^{0.067}$	0.1	${ }_{\text {cose }}^{39}$	${ }^{30}$	$\stackrel{1}{2}$				${ }^{15}$		${ }_{8.5}^{8.5}$		${ }_{5}^{8}$	${ }^{230}$										0.02	0.06	0.15	No	${ }^{173}$	${ }_{28}^{27}$	${ }^{18,9}$	${ }^{338}$	${ }^{326}$	${ }^{28}$	${ }_{\text {23, }}^{23.4}$	${ }_{\substack{202 \\ \\ 0}}$		${ }^{0.04}$	- ${ }^{36}$	${ }_{\substack{23,8 \\ 238}}^{\substack{2,8 \\ \hline}}$	
	coman	${ }_{\text {coseme }}$	${ }^{\text {30entas2 }}$		${ }_{0}^{1094}$	${ }^{\text {O.ats }}$	${ }_{0}^{0.1}$	${ }_{3}^{379}$	${ }_{607}^{407}$	2		5		${ }^{17}$	${ }_{8}^{8.2}$	${ }^{8.8}$			${ }_{214}^{214}$									0.0			0.15	${ }^{\text {No }}$	${ }_{8}^{8.9}$	${ }_{1}{ }_{14}$	${ }^{20 .}$	${ }_{39} 3$	${ }_{3}^{202}$	12	${ }^{22 .}$	${ }_{\text {l }}^{1105}$		${ }_{0}^{0.09}$	${ }_{28}^{28}$	${ }_{\substack{2325 \\ 2325}}^{20 .}$	
	comater		${ }^{\text {cosema }}$	${ }_{1929}$	${ }_{0}^{0.96}$	${ }^{\text {O.038 }}$	$\stackrel{0.1}{0.1}$		$\underbrace{}_{\substack{388 \\ 347}}$	${ }^{6}$		${ }^{5}$			- ${ }_{8}^{8.4}$	${ }_{8}^{8.6}$		9		02										${ }^{0.04}$	${ }_{\substack{0.14 \\ 0.4}}^{0.1}$	${ }^{\text {No }}$ No		${ }^{\text {24 }}$	${ }^{\frac{18,3}{17,1}}{ }^{172}$	${ }_{\substack{39 \\ 29 \\ 29}}$	(302	${ }^{1.3}$	${ }^{\text {c }}$	(176		cos		(en	
	Comane chat iewn		${ }_{\substack{212049994 \\ 1204995}}$	(1500	${ }^{1.095}$	${ }^{\text {0.054 }}$	0.1		${ }_{\substack{432 \\ 369}}$							${ }^{8.8} 8$															0.13		${ }^{121}$	39	${ }^{22}$		${ }_{366}$		${ }^{24}$	${ }^{23}$			${ }_{4}^{4}$		
				${ }^{\text {T1767 }}$	O. 0.94	${ }^{\text {O.0.7 }}$			(329							${ }_{8,6}^{8.7}$																													
	Comano chat			${ }^{1609}$	${ }^{\text {O.853 }}$	${ }^{0.012}$	02		${ }_{\substack{280 \\ 380}}^{\substack{\text { 30, }}}$		${ }^{22}$			${ }_{\substack{30.5 \\ 259}}$																															
(13099	Coramo crafeemen		${ }_{\substack{\text { 307h7999 } \\ \text { Su4200 }}}$		(0.89	${ }^{0.006}$			(in		${ }^{3}$					${ }^{8}{ }_{7,3}^{8,8}$	${ }^{10.1}$																												
	Coren	Soind		${ }_{\substack{120}}^{1125}$							$\stackrel{2}{3}$																																		
	cemaner chateen			${ }_{\text {litiob }}^{1205}$,	${ }_{\text {a }}^{\substack{0.152}}$	${ }_{0}^{0.1}$							-		\%																													
														${ }^{10,6}$			10.5																												

Table C6

Comet Catchment DNRW Water Quality Results - Comet River Rolleston
GLNG csG Surface Water

$\underset{\text { ID }}{\text { Station }}$	Station name	$\begin{array}{\|c\|c\|} \text { SAMPLLE } \\ \text { No. } \end{array}$	date	time	Hydrological Parameters			Physico-Chemical Parameters												Nutrients					Metals				
					Stream Water Level	Stream Discharge	$\begin{gathered} \text { Dist. } \\ \hline \begin{array}{c} \text { Delow } \\ \text { Beater } \\ \text { wafface } \end{array} \\ \text { suff } \end{gathered}$	Conductivity @ 25C	Conductivity @ 25C (FLD)	Turbidity	Turbidity FLD	$\begin{gathered} \text { Colour } \\ \text { True } \end{gathered}$	$\begin{array}{\|c\|c\|} \hline \text { Air Temp } \\ \hline \end{array}$	$\left\lvert\, \begin{gathered} \text { Water Temp } \\ \text { FLD } \end{gathered}\right.$	pH	$\begin{aligned} & \text { pH } \\ & \text { FLD } \end{aligned}$	$\begin{aligned} & \text { Oxygen } \\ & \text { (Dissolved) } \\ & \text { FLD } \end{aligned}$	$\begin{gathered} \text { Total } \\ \text { Suspended } \\ \text { Solids } \end{gathered}$	$\begin{aligned} & \text { Total } \\ & \text { Diss. } \\ & \text { Solids } \end{aligned}$	Nitrate (NO3)	Kjeldah Nitrogen	$\begin{gathered} \text { Total } \\ \text { Nitrogen } \\ \text { (TN) } \end{gathered}$	Organic Nitrogen	$\begin{gathered} \text { Total } \\ \text { Phosphorus } \\ \text { (P) } \end{gathered}$	$\begin{array}{\|l\|l} \hline \text { Boron } \\ \text { as B } \\ \text { (mg/L) } \end{array}$	$\begin{gathered} \hline \text { Aluminium } \\ \text { as AI } \\ \text { soluble } \\ \text { (mg/L) } \end{gathered}$		$\begin{gathered} \text { Bromide } \\ \text { as Br } \\ \text { (mglL) } \end{gathered}$	$\begin{gathered} \text { Flouride } \\ \text { as } \\ \text { (mgLL) } \end{gathered}$
				Units	m	cumsecs	m	$u S / \mathrm{cm}$	$u S / \mathrm{cm}$	NTU	NTU	$\begin{array}{\|c\|c\|} \hline \text { Hazen } \\ \text { units } \end{array}$	${ }^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{C}$	pH units	$\begin{gathered} \text { pH } \\ \text { units } \end{gathered}$	mg/	mg/L	mg/	mg/	mg/	mg/							
				mTV				340		50				20\%ile80\%ile	5-8.0	6.5-8.0		10	500	50		0.5		0.05	0.37	0.055	0.0014		1
1305002	Comet at Rolleston	192164	5/06/1999	800	NA	ND	0.2	195	199	17	26	20	14.7	16.5	7.7	7.8	6.2	20	120	1			0.59	0.082	<0.1	0.05	<0.05		<0.1
1305002	Comet at Rolleston	194128	1109/1999	740	NA		0.2	150	147	430	538	28		18	7.3	7.5	3.8	370	89	3.6	2			0.74	0.1	0.05	0.05		0.2
1305002	Comet at Rolleston	205211	2910212000	730	NA	2	0.2	150	148		228			24.9	7	7.5	3.9			0.81		1.0419		0.3571	0.04	0.18	0.01	1	0.24
1305002	Comet at Rolleston	205256	29102212000	730																		0.84		0.36					
${ }^{1305002}$	Comet at Rolleston	${ }^{205256}$	710312000	645		0.0001	0.2		168		${ }^{58}$			24.8		7.7	5.3												
1305002	Comet at Rolleston	205285	2810312000	700		ND	0.1		418		108			22.3			5.6					0.83		0.27					
1305023	Panorama Ck at Rolleston	185767	12/06/1997	1700	NA	ND	0.2	331	321	1.5	6	10	17.2	17.5	7.91	8.1	6.7	5.0	170.8	0.4	0.543			0.0397			0.01		0.11

$\frac{\text { Notes }}{\text { mTV }}$
minimum trigger value
xxx Greater than MTV
xxx Historic Water Quality Datal044 Quality pood
Greater than MTV and Historic WQ Data
NA Not avaiable (Gauge Height < Instrument Threshola
ND Not delected
E Estimate

Table C6
Comet Catchment DNRW Water Quality Results - Comet River R
GLNG CSG Surface Water

$\underset{\text { ID }}{\substack{\text { Station } \\ \hline}}$	station name	$\begin{gathered} \text { SAMPLE } \\ \text { No. } \end{gathered}$	date	Major Ions								Alkalinity					
				$\begin{aligned} & \text { Hydrogen } \\ & \text { as H } \end{aligned}$	$\begin{gathered} \text { Chloride } \\ \text { (CI) } \end{gathered}$	$\begin{gathered} \begin{array}{c} \text { Potassium } \\ (\mathrm{K}) \end{array} \\ \hline \end{gathered}$	$\begin{gathered} \text { Sodium } \\ (\mathrm{Na}) \end{gathered}$	$\begin{array}{\|c\|} \hline \text { Total } \\ \text { Dissolved } \\ \text { lons } \\ \hline \end{array}$	$\begin{gathered} \text { Calcium } \\ \text { (Ca) } \end{gathered}$	$\begin{gathered} \text { Sulphate } \\ (\mathrm{SO} 4) \end{gathered}$	$\begin{gathered} \text { Magnesium } \\ (\mathrm{Mg}) \end{gathered}$	$\begin{array}{\|c} \text { Total } \\ \text { Alkalinty } \\ \text { (CaCO3) } \end{array}$		$\begin{gathered} \text { Hydroxide } \\ (\mathrm{OH}) \end{gathered}$	Carbonate (CO3)	Bicarbonate (HCO3)	$\begin{aligned} & \text { Hardness } \\ & \text { (CaCO3) } \end{aligned}$
				mg/L	mg/L	mg/L	mg/	mg/L	mg/	mg/L	mg/L	mg/L	mg/	mg/	mg/L	mg/	mg/L
					<175		<115		1000	250							
1305002	Comet at Rolleston	192164	5/06/1999	0	4.8	6.8	11	160	16	2	8.4	95	60	ND	0.3	115	75
1305002	Comet at Rolleston	194128	1109/1999	0	5.6	5.2	14.5	120	8.8	2	4.8	${ }^{63}$	50	ND	0.1	77	41.5
1305002	Comet at Rolleston	205211	29/02/2000		7.9	7	8.6	113	9	4.2	4.7					70	42
1305002	Comet at Rolleston	205256	29/02/2000														
1305002	Comet at Rolleston	205256	7/03/2000														
1305002	Comet at Rolleston	205285	28/03/2000														
1305023	Panorama Ck at Rolleston	185767	12106/1997	0	5.9	3.86	11.1	273.9	29.4	0.51	18.7	168	149.2	ND	1.0	202.9	150.2

$\frac{\text { Notes }}{\text { MTV }}$
MTV minimum trigger value
xxx Greater than MTV
xxx Historic Water Quality Datal044 Quality poor.
Greater than MTV and Historic WQ Data
ND Not detected
E Estimate

\begin{tabular}{|c|}
\hline \& \& \& \& \& \& ogical Paran \& neters \& \& \& \& hhysico.C. \& Chemical Par \& ameters \& \& \& \& trients \& \& tals \& \& \& \& major \& \& \& \& \& \& \& Alkalinty \& \& \\
\hline Station id \& Station name \& \(\underset{\substack{\text { SaMple } \\ \text { No. }}}{ }\) \& date \& TIME \& \[
\begin{gathered}
\text { Stream } \\
\text { Water } \\
\text { Level }
\end{gathered}
\] \& Stream \& \[
\begin{array}{|l|}
\hline \text { Dist } \\
\text { Below } \\
\text { seler } \\
\text { surface }
\end{array}
\] \& (1) 25c \& Q256 (fLL) \& Tubidity \& Cole \begin{tabular}{c}
Colour \\
True \\
\hline
\end{tabular} \& \({ }_{\text {Water Temp }}^{\text {FLO }}\) \& pH \& \({ }_{\text {cto }}^{\text {PH }}\) \& \[
\begin{gathered}
\text { Total } \\
\text { Suspended } \\
\text { Solids } \\
\hline
\end{gathered}
\] \& \[
\begin{gathered}
\text { Toital } \\
\text { Solid }
\end{gathered}
\] \& (1itas) \& \[
\begin{gathered}
\text { Boron } \\
\text { as B } \\
(\mathrm{mg} / \mathrm{L})
\end{gathered}
\] \& \[
\begin{array}{|c|c|c|c|c|c|c|c|c|c|c|}
\substack{\text { anf } \\
\text { (mgl) }} \\
\hline
\end{array}
\] \& \({ }_{\text {che }}^{\substack{\text { Hydrogen } \\ \text { as }}}\) \& \({ }_{\text {Choride }}^{\substack{\text { Cli }}}\) \& \({ }_{\substack{\text { Polassum } \\ \text { (k) }}}^{\text {a }}\) \& (inct \& \[
\begin{array}{|c|}
\hline \text { Total } \\
\text { Dissolved } \\
\text { lons } \\
\hline
\end{array}
\] \& \(\underset{\substack{\text { Calcium } \\ \text { (a) }}}{\text { cat }}\) \& \& \& \& \(\underset{\substack{\text { Hydroxde } \\ \text { (OH) }}}{ }\) \& Catonate \& \({ }_{\text {B }}^{\substack{\text { Bicatonate } \\ \text { (HCO3) }}}\) \& \\
\hline \& \& \& \& Units \& m \& cumsocs \& m \& \(u s / \mathrm{cm}\) \& \(u s / \mathrm{cm}\) \& NTU \& \({ }_{\substack{\text { Hazen } \\ \text { units }}}^{\text {cos }}\) \& \({ }^{\circ} \mathrm{C}\) \& OH Hunts \& \({ }_{\text {p }}^{\substack{\text { on } \\ \text { unis }}}\) \& mgh \& mg \& mg \& mg \& mgh \& mgl \& ngh \& mgh \& mgl \& mgh \& mgh \& mg/ \& mg/ \& mg/ \& mgh \& mgh \& mgl \& mgl \\
\hline \& \& \& \& miv \& \& \& \& 340 \& \& 50 \& \& \& 6.5.8.0 \& 6.5.8.0 \& 10 \& 500 \& \({ }^{50}\) \& \({ }_{0.37}\) \& 1 \& \& \(<175\) \& \& 115 \& \& 1000 \& 250 \& \& \& \& \& \& \\
\hline \& \& \({ }_{\substack{57735}}^{57844}\) \& \({ }_{\substack{\text { 90331973 } \\ 5061973}}\) \& \({ }_{1}^{1200}\) \& \({ }_{0}^{0.8}\) \& \({ }^{0.11}\) \& 0.1
0.1 \& \({ }^{490}\) \& \& \& \& 29 \& \({ }^{8.7}\) \& \& \& \({ }^{285}\) \& \& 002 \& \({ }_{0}^{0.2}\) \& \& \({ }_{4}^{20}\) \& \& \({ }^{33}\) \& \({ }_{4}^{421.2}\) \& \({ }_{\text {cke }}^{38.4}\) \& 1 \& \({ }^{31.6}\) \& \({ }_{2}^{268}\) \& \& \({ }_{3}^{29}\) \& \({ }_{\text {268 }}^{268}\) \& \({ }^{226}\) \\
\hline \({ }^{13050588}\) \& Meteor ckat springwood \& 59132 \& 270991973 \& \({ }_{930}\) \& \({ }_{0}^{0.64}\) \& 0.004 \& 0.1 \& \({ }_{720}\) \& \& \& \& \& \({ }_{8.6}^{8.4}\) \& \& \(\stackrel{4}{2}\) \& \({ }_{417}\) \& \& 0.02 \& 0.22 \& \({ }^{0.5}\) \& \({ }_{55}^{65}\) \& \({ }_{4}^{4.6}\) \& \({ }_{61}\) \& \({ }_{608,3}\) \& \({ }_{34}\) \& \& \({ }_{48}^{58}\) \& \({ }_{340}\) \& No \& 9 \& \({ }_{396}\) \& \({ }_{282}^{288}\) \\
\hline 130508A
130508
1 \& Meter C Cat St Siniguod \& \& \({ }_{20}^{200419974}\) \& \begin{tabular}{l}
1540 \\
1115 \\
\hline 115
\end{tabular} \& -0.22 \({ }_{0}^{0.28}\) \& 0.22
0.05
0 \& 0.1
0.1
0.1 \& ¢640 68 \& \& \& \& 29
16 \& \({ }_{8.1}^{8.3}\) \& \& 1
80 \& \& \& \& \({ }_{0}^{0.17}\) \& \& \begin{tabular}{|c}
30 \\
20 \\
20
\end{tabular} \& \begin{tabular}{|}
3.2 \\
\({ }_{2}{ }^{2}\) \\
\hline
\end{tabular} \& \({ }_{32}^{32}\) \& \& 50
40 \& \& \begin{tabular}{|c}
40 \\
51
\end{tabular} \& 年300 \& \(\stackrel{\text { No }}{\text { No }}\) \& \({ }_{3.8}^{4.8}\) \& \begin{tabular}{|c}
356 \\
410
\end{tabular} \& \begin{tabular}{|c}
290 \\
310 \\
\hline 10
\end{tabular} \\
\hline \({ }^{1305088}\) \& Meter C C at springwood \& \({ }^{63102}\) \& 300991974 \& \({ }^{1640}\) \& 0.63 \& 0.051 \& 0.1 \& \({ }_{690}\) \& \& \& \& \({ }^{24}\) \& \({ }^{8.2}\) \& \& \({ }^{21}\) \& 394 \& \& \& 0.19 \& No \& \({ }^{25}\) \& \({ }_{3.2}^{2.2}\) \& \({ }_{40}\) \& \({ }^{604.9}\) \& \({ }_{48}^{48}\) \& \& \({ }_{48}^{48}\) \& \({ }_{365} 3\) \& \& 4.5 \& \({ }_{436}\) \& \({ }_{3} 317\) \\
\hline 130508A
13058A \& Meteor c cat Sopingood \& \({ }^{64480}\) 64899 \& \({ }^{111 / 2121974}\) \& \begin{tabular}{l}
1630 \\
1030 \\
\hline 100
\end{tabular} \& \({ }_{0}^{0.62} 0\) \& 0.06
0.28 \& 0.1
0.1
0.1 \& \({ }_{6}^{610} 6\) \& \& \& \& \({ }_{27}\) \& \({ }_{8}^{8.3}\) \& \& \({ }_{74}^{76}\) \& \& \& \& \({ }_{0}^{0.17} 0\) \& ND \& \({ }^{25}\) \& \({ }^{4.1}\) \& 38
30
30 \& ¢ \begin{tabular}{c}
530.7 \\
568.4 \\
\hline
\end{tabular} \& \({ }_{47}^{47}\) \& \({ }^{6.4}\) \& \({ }_{44}^{41}\) \& \({ }_{\substack{315 \\ 347}}\) \& \& \({ }_{4}^{4}\) \& 376
414 \& 259
299 \\
\hline \({ }_{\text {1305058A }}\) \& \& \({ }^{648425}\) \& \({ }^{\text {280441975 }}\) \& 1700 \& \({ }_{0}^{0.69}\) \& \(\stackrel{\text { 0.276 }}{0 .}\) \& \({ }_{0}^{0.1}\) \& \({ }_{630}^{60}\) \& \& \& \& \& \({ }_{8.5}^{8.3}\) \& \& \({ }_{80}^{80}\) \& \({ }^{395}\) \& \& \& \({ }_{0.18}^{0.18}\) \& ND \& \({ }_{20}^{25}\) \& \& \({ }_{30}\) \& \& 57 \& \& \({ }_{44}^{44}\) \& \({ }^{3} 350\) \& \& \({ }_{7}{ }_{7} .8\) \& \(\stackrel{411}{411}\) \& \({ }_{306} 309\) \\
\hline \({ }^{1305088}\) \& Meter C Kat Sopingwood \& 65709 \& 220719975 \& 1715 \& 0.62 \& 0.079 \& 0.1 \& \({ }^{710}\) \& \& \& \& \& 8.2 \& \& 2 \& \({ }^{414}\) \& \& \& 0.3 \& No \& \({ }^{22}\) \& 2.5 \& \({ }^{40}\) \& 621.8 \& \({ }^{44}\) \& 5 \& \({ }^{50}\) \& \({ }_{380}\) \& \& 5 \& 453 \& \({ }^{316}\) \\
\hline \begin{tabular}{l}
130508A \\
1305088 \\
\hline
\end{tabular} \& Meteor C Cat Sopirigwod \& \({ }^{66498}\) \& \({ }^{7110191975}\) \& (1740 \& (0.58 \& \({ }^{0.0043}\) \& \({ }^{0.2}\) \& \({ }_{\substack{715 \\ 665}}\) \& \& \& \& \& \& \& \begin{tabular}{|}
26 \\
47
\end{tabular} \& (\({ }_{\text {388 }}^{387}\) \& \& \& 0.63 \& No \& \({ }_{26}^{24}\) \& \(\stackrel{4}{24}\) \& \({ }_{4}^{40}\) \& \({ }_{5454}\) \& 17 \& \& \& \({ }_{\substack{356 \\ 330}}\) \& ND \& \begin{tabular}{l}
3.4 \\
5 \\
5 \\
\hline
\end{tabular} \& \({ }_{3}^{429}\) \& \({ }^{299}\) \\
\hline \({ }^{130505088}\) \& Meteor ckat springwood \& \({ }^{68128}\) \& \(311 / 319796\) \& \({ }^{1025}\) \& \({ }_{0} 0.6\) \& \({ }^{1.3}\) \& 0.1 \& \({ }_{590}\) \& \& \& \& \({ }_{23}\) \& \({ }_{8.2}^{8.3}\) \& \& 16 \& \({ }_{354}\) \& \& \& 0.4 \& \& \({ }_{16}\) \& \({ }_{2.4}^{2.4}\) \& \({ }_{26}\) \& \({ }^{517.3}\) \& 49 \& \& \({ }_{40}\) \& \({ }_{317}\) \& \& \({ }_{3.5}^{5.4}\) \& \({ }_{380}\) \& \({ }_{287}^{289}\) \\
\hline 130508A
\(130508 A\)

18 \& Meteor ckat Sopinguod \& \begin{tabular}{l}
69374

7034

\hline 7

 \& ${ }_{\text {230710976 }}^{25101976}$ \&

1420

\hline 1520

\hline
\end{tabular} \& ${ }_{0}^{0.46}$ \& 0.273

0.092 \& 0.1
0.1

0.1 \& \begin{tabular}{c}
738

680

\hline 80

 \& \& \& \& ${ }^{28}$ \& ${ }_{8.4}^{8 .}$ \& \& ${ }^{23}$ \& ${ }_{\text {3 }}^{396}$ \& ${ }^{1.8}$ \& \&

0.2

0.3

\hline

 \& ${ }_{0} 0.1$ \& ${ }_{20}^{20}$ \&

24

${ }_{28}^{24}$

\hline 28
\end{tabular} \& 36

41
41 \& ${ }_{\text {S }}^{567.5}$ \& ${ }^{45}$ \& \& ${ }_{49}^{46}$ \& \& $\stackrel{\text { No }}{\text { No }}$ \& 2.9

6.1 \& | 435 |
| :---: |
| 400 | \& 302

287
28

\hline 1305088 A \& Meteor Ckat Spingwood \& ${ }^{73316}$ \& 290331977 \& ${ }^{1353}$ \& 0.63 \& ${ }_{1.48}^{1.48}$ \& 0.1 \& 500 \& \& \& \& ${ }^{26}$ \& ${ }^{8.4}$ \& \& \& ${ }_{327}$ \& 0.8 \& \& 01 \& \& ${ }^{20}$ \& ${ }_{2}^{2.2}$ \& 4 \& ${ }_{4}^{445.8}$ \& 5 \& \& ${ }_{32}$ \& ${ }_{208}^{268}$ \& \& 4.7 \& ${ }_{317}$ \&

\hline | 130508 A |
| :--- |
| 10508 A | \& Meter c cat spiniguod \& | 73168 |
| :--- |
| 74102 | \& ${ }_{\text {S }}^{5107197977}$ \& | 1445 |
| :--- |
| 1235 |
| 1235 | \& ${ }_{0}^{0.45}$ \& $\stackrel{0.443}{0.095}$ \& ${ }_{0}^{0.1}$ \& ${ }_{6900}^{600}$ \& \& \& \& ${ }^{30}$ \& ${ }_{8}^{8.1}$ \& \& 10 \& ${ }_{389}^{381}$ \& 0.5 \& \& | 0.2 |
| :--- |
| 0.2 | \& \& ${ }^{18}{ }^{18}$ \& | 28 |
| :---: |
| 3 |
| 3 | \& ${ }^{40}$ \& 501.9

573.1 \& ${ }^{34}{ }^{38}$ \& ${ }^{10}$ \& ${ }_{5}$ \& \& \& $\stackrel{2.9}{5.4}$ \& ${ }_{\substack{360 \\ 410}}$ \& 年264

\hline | 130508 A |
| :--- |
| 105088 | \& Meteor crat spiniguod \& ${ }_{7}^{75696}$ \& ${ }^{401191978}$ \& ${ }^{11040}$ \& ${ }^{0.26}$ \& ${ }^{0.022}$ \& ${ }_{0}^{0.1}$ \& ${ }_{6}^{675}$ \& \& \& \& ${ }_{31}^{31}$ \& ${ }^{8.4}$ \& \& \& ${ }_{405}^{405}$ \& ${ }^{1.5}$ \& \& ${ }_{0}^{0.2}$ \& \& ${ }^{31}$ \& ${ }^{3.3}$ \& ${ }_{50}^{50}$ \& ${ }_{\text {cher }}^{580.6}$ \& ${ }_{19}^{22}$ \& ${ }^{8}$ \& ${ }_{51}^{51}$ \& | 344 |
| :---: |
| 3 |
| 20 | \& \& -5.6 \& | 408 |
| :---: |
| 323 | \& ${ }^{265}$

\hline ${ }^{13050508}$ \& Meteor ckat springuood \& ${ }_{7}^{77583}$ \& ${ }^{13}{ }^{\text {13066197988 }}$ \& ${ }_{1450}$ \& ${ }_{0}^{0.34}$ \& $\stackrel{\text { O.084 }}{ }$ \& ${ }_{0}^{0.1}$ \& ${ }_{610}^{600}$ \& \& \& \& ${ }^{3}$ \& ${ }_{8.4}^{8.2}$ \& \& \& ¢ ${ }_{378}$ \& 0.7 \& \& ${ }_{0}^{0.2}$ \& \& ${ }_{25}^{24}$ \& ${ }_{2.5}$ \& ${ }_{40}{ }_{40}$ \& ${ }^{\text {454.7.7 }}$ \& ${ }^{2}$ \& 5 \& ${ }_{50}^{46}$ \& ${ }_{325}^{235}$ \& \& ${ }_{5.3}^{2.3}$ \& ${ }_{3} 23$ \& ${ }_{286}^{228}$

\hline (130508 \& Meteor crat Sopingood \& ${ }_{\text {790181 }}$ \& ${ }_{4}^{26009197978}$ \& | 1200 |
| :---: |
| 1000 |
| 100 | \& - 0.44 \& ${ }_{0}^{0.482}$ \& 0.1

0.1
0.1 \& 600
415 \& \& \& \& 2 \& \& \& 9 \& (${ }_{\text {367 }}{ }_{268}$ \& 0.4 \& \& 0.1
0.1

0.1 \& ${ }^{0.1}$ \& \begin{tabular}{|c}
18

20

 \&

23

\hline 38

3.8

 \&

30

20

20
\end{tabular} \& 529.9

3498 \& ${ }^{47}$ \& \begin{tabular}{l}

\hline

\hline 3.6

11

 \& ${ }_{\text {39 }}{ }_{23}$ \& (1985

325

198

\hline
\end{tabular} \& \& 6.4

0.9

0 \& (| 383 |
| :---: |
| 240 |
| 20 | \& (172

\hline ${ }^{13050589}$ \& Meteor Ckat spingwood \& 91763 \& 122081981 \& ${ }^{1325}$ \& 0.26 \& 0.04 \& 0.1 \& ${ }^{738}$ \& \& 5 \& 5 \& 19 \& ${ }^{8.2}$ \& \& 10 \& 428 \& 1 \& \& 0.1 \& \& ${ }^{30}$ \& 2.5 \& ${ }^{42}$ \& 644.5 \& ${ }^{45}$ \& ${ }^{11}$ \& ${ }^{51}$ \& ${ }^{383}$ \& \& 4.9 \& ${ }_{457}^{20}$ \& ${ }^{322}$

\hline | 1305088 |
| :--- |
| 10508 A | \& \& ${ }_{\text {925099 }}^{\text {92999 }}$ \& ${ }^{1217111981} 17061982$ \& 1310

1230 \& ${ }_{0}^{0.24} 0$ \& -0.022 \& | 0.1 |
| :--- |
| 0.1 | \& ${ }_{7}^{510}$ \& \& 5 \& \& ${ }_{4}^{34}$ \& \& \& 300

9 \& 300

430 \& ${ }_{0}^{0.4}$ \& \& \begin{tabular}{l}
0.2

0.2

\hline

 \& ${ }^{0.1}$ \& ${ }_{35}^{20}$ \& ${ }^{3.3}$ \& ${ }_{\substack{31 \\ 56}}$ \& ${ }_{6425}^{167}$ \& ${ }_{\substack{34 \\ 37}}$ \& ${ }^{16}$ \&

32

50

\hline

 \& ${ }_{31}^{439}$ \& \& ${ }_{4}^{11}$ \&

28

440
\end{tabular} \& ${ }_{2}^{217}$

\hline ${ }_{1350588}$ \& Meter C C a S Spingwood \& ${ }^{98161}$ \& 288991982 \& 1450 \& 0.08 \& 0 \& ${ }_{0} 0.1$ \& ${ }_{780}$ \& \& 6 \& \& \& ${ }_{8.3}^{8.8}$ \& \& 9 \& 440 \& 0.9 \& \& 0.2 \& \& 44 \& ${ }^{3.5}$ \& ${ }_{63}$ \& ${ }_{6}^{644,8}$ \& ${ }^{33}$ \& ${ }_{13}$ \& ${ }_{52}$ \& ${ }_{353} 3$ \& \& ${ }_{5.2}$ \& ${ }_{420}$ \& ${ }_{296}^{296}$

\hline ${ }^{1305088}$ \& Meteor C Cat Sopiriguod \& ${ }_{9994}$ \& ${ }^{200819893}$ \& ${ }^{935}$ \& ${ }^{0.16}$ \& 0.207 \& ${ }^{0.1}$ \& ${ }_{6}^{660}$ \& \& \& \& ${ }^{17}$ \& | 8.5 |
| :--- |
| ${ }_{78}$ |
| 8 | \& \& 10

10
10 \& 390 \& \& ${ }^{0.02}$ \& 0.2 \& \& ${ }_{20}^{20}$ \& 2.5
38
38 \& ${ }_{43}^{33}$ \& ${ }_{\text {568.7 }}^{5617}$ \& ${ }_{47}^{49}$ \& ${ }^{3.7}{ }^{3.3}$ \& ${ }_{48}^{46}$ \& ${ }_{\substack{343 \\ 3 \\ 3}}$ \& \& 4.2 \& 410 \& 312
315

\hline ${ }^{11305058}{ }^{1305}$ \& Meter crat sporinguood \& ${ }^{99320}$ \& ${ }^{261412191983}$ \& ${ }_{1}^{1655}$ \& ${ }_{0}^{0.08}$ \& ${ }_{0}^{0.044}$ \& 0.1

0.1 \& ${ }_{620} 6$ \& \& 4 \& \& ${ }_{29}^{29}$ \& ${ }_{8.3}$ \& \& ${ }_{5}$ \& ${ }_{3}^{460}$ \& \& ${ }_{0} 0.03$ \& | 0.2 |
| :--- |
| 0.2 | \& \& ${ }^{26}$ \& ${ }^{3.6}$ \& ${ }^{44}$ \& ${ }_{5}^{629.1}$ \& ${ }_{39}^{49}$ \& ${ }^{6.3}$ \& ${ }_{40}^{48}$ \& ${ }^{3} 50$ \& \& 4.9 \& ${ }_{3}{ }^{435}$ \& ${ }_{262}$

\hline 136508A

1305588 \& Meteor Ckat Soringwood \& 103458 \& ${ }^{190221984}$ \& ${ }^{1435}$ \& 0.81 \& ${ }_{5.64}$ \& 0.1 \& ${ }^{460}$ \& \& 17 \& ${ }^{30}$ \& ${ }^{27}$ \& ${ }^{8.6}$ \& \& ${ }^{20}$ \& ${ }^{270}$ \& \& \& ${ }^{0.1}$ \& ${ }^{0.1}$ \& ${ }^{16}$ \& ${ }^{24}$ \& ${ }^{3.4}$ \& 372.2 \& ${ }^{22}$ \& \& ${ }_{35}$ \& ${ }^{228}$ \& \& ${ }^{6.6}$ \& ${ }^{265}$ \& 199

\hline ${ }^{\text {H00506A }}$ \& \& ${ }^{1043585}$ \& ${ }^{250511099894}$ \& | 1750 |
| :--- |
| 1735 | \& ${ }_{0}^{0.14}$ \& ${ }_{0}^{0.032}$ \& | 0.1 |
| :--- |
| 0.1 | \& ${ }_{680}^{810}$ \& \& 5 \& \& ${ }_{22}$ \& ${ }_{8,2}$ \& \& 5 \& ${ }_{360}^{480}$ \& \& 0.02 \& ${ }_{0}^{0.2}$ \& \& ${ }^{32}$ \& ${ }_{2}^{2.4}$ \& ${ }^{50}{ }_{33}$ \& ${ }_{5}^{703.9}$ \& ${ }_{40}^{51}$ \& 4.1 \& ${ }_{45}^{54}$ \& ${ }_{310}^{410}$ \& \& ${ }_{4}^{3.8}$ \& (500 \& ${ }_{\text {cki }}^{\substack{350 \\ 285}}$

\hline ${ }^{1305058}$ \& Meteor C Kat Soringwood \& ${ }^{106797}$ \& ${ }^{14142121984}$ \& ${ }^{1500}$ \& 0.15 \& 0.113 \& ${ }^{0.1}$ \& ${ }_{530}$ \& \& \& ${ }^{10}$ \& ${ }^{23}$ \& ${ }_{7} 7.8$ \& \& 5 \& 320 \& \& 0.02 \& 0.2 \& \& ${ }^{23}$ \& ${ }^{3.3}$ \& ${ }^{29}$ \& ${ }_{465}$ \& ${ }_{32}$ \& \& ${ }^{36}$ \& ${ }_{281} 28$ \& \& ${ }^{4.5}$ \& ${ }_{340}$ \& ${ }_{228}^{228}$

\hline ${ }_{\substack{1305089 \\ 130508 A}}$ \& Meteor c a a s spingood \& ${ }^{109499}$ \& ${ }^{1817551985} 17121985$ \& | 1230 |
| :--- |
| 1045 | \& ${ }_{0}^{0.03}$ \& ${ }_{0}^{0.0006}$ \& 0.1

0.1 \& \begin{tabular}{l}
cise

495

\hline

 \& ${ }^{425}$ \& ${ }_{5}^{2}$ \&

5

\hline 10

\hline

 \&

20

33
\end{tabular} \& ${ }_{8}^{8.4}$ \& \& 10

10 \& ${ }_{280}^{480}$ \& ${ }^{0.5}$ \& ${ }^{0.02}$ \& 0.2 \& ${ }_{0} 0.1$ \& ${ }_{20}^{40}$ \& | 28 |
| :--- |
| 3.6 | \& ${ }^{54}$ \& ${ }^{609.8}$ \& ${ }^{28}$ \& ${ }_{5.7}^{11}$ \& ${ }_{31}^{51}$ \& ${ }_{\substack{321 \\ 227}}$ \& \& ${ }_{5.6}^{6.3}$ \& ${ }_{265}^{415}$ \& ${ }_{193}^{280}$

\hline | 130508A |
| :--- |
| 13058 | \& Meteor C Cat Soringwood \& ${ }^{118017}$ \& ${ }^{10121219896}$ \& ${ }^{1030}$ \& ${ }^{0.03}$ \& 0.002 \& 0.1 \& ${ }_{455}^{455}$ \& ${ }_{5}^{430}$ \& 19 \& ${ }^{50}$ \& 26 \& ${ }^{8.7}$ \& \& ${ }^{25}$ \& ${ }^{260}$ \& ${ }^{0.7}$ \& 0.03 \& 0.2 \& ${ }_{0}^{0.1}$ \& ${ }^{22.5}$ \& ${ }^{3.4}$ \& ${ }^{28}$ \& ${ }^{364}$ \& ${ }^{31}$ \& ${ }^{4.5}$ \& ${ }^{25.5}$ \& $\begin{array}{r}210 \\ 234 \\ \hline\end{array}$ \& \& 7.9 \& ${ }_{220}^{240}$ \& ${ }_{182}^{182}$

\hline \& Meteror ckat stpringuood \& ${ }_{1}^{122163}$ \& ${ }^{2002091987}$ \& ${ }_{1230}$ \& ${ }_{0}^{0.02}$ \& ${ }_{0}^{0.007}$ \& 0.1
0.1 \& ${ }_{160}$ \& \& 100 \& \& \& ${ }_{7}{ }_{7} .4$ \& \& 180 \& 290 \& \& 0.02 \& ${ }_{0}^{0.2}$ \& \& ${ }^{28}$ \& ${ }^{2.5}$ \& ${ }^{46}$ \& ${ }^{4127.3}$ \& ${ }_{15}^{12}$ \& ${ }_{6.3}$ \& ${ }_{3}{ }^{36}$ \& $\stackrel{\substack{234 \\ 59 \\ \hline}}{ }$ \& \& ${ }^{10} 0$ \& ${ }_{72}$ \& ${ }_{54}^{174}$

\hline 130508 A \& Meteor C kat Springwood \& ${ }^{122336}$ \& 1011211987 \& 1217 \& 0.07 \& 0.002 \& 0.1 \& 335 \& 310 \& 100 \& \& 29 \& 8.2 \& \& ${ }^{220}$ \& 190 \& 0.8 \& 0.02 \& 0.3 \& \& 16 \& ${ }^{3.1}$ \& ${ }^{24}$ \& 260.9 \& 22 \& 3 \& 15 \& 146 \& \& 1.7 \& 175 \& 117

\hline
\end{tabular}

```
\frac{NOtes}{MTV}
<cuc
```



```
    ME NO Nsimatected
```


Net Catchment DNRW Water Ondity Result- Planet Creek

\begin{tabular}{|c|}
\hline \multirow[t]{4}{*}{} \& \multirow{4}{*}{station name} \& \multirow{4}{*}{} \& \multirow{4}{*}{date} \& \multirow[b]{2}{*}{tIME} \& \multicolumn{3}{|l|}{Hydrological Parameters} \& \multicolumn{10}{|c|}{Physico-Chemical Parameters} \& \multicolumn{5}{|l|}{Nutrient \({ }^{\text {a }}\) Metals} \& \multicolumn{8}{|c|}{Major Ions} \& \multicolumn{5}{|c|}{Alkalainity} \\
\hline \& \& \& \& \& \[
\begin{gathered}
\text { Stream } \\
\text { Water Level }
\end{gathered}
\] \& \[
\begin{aligned}
\& \begin{array}{c}
\text { Stream } \\
\text { Discharge }
\end{array}
\end{aligned}
\] \& \[
\begin{array}{|l|l|}
\hline \text { Dist. } \\
\text { Below } \\
\text { Betar } \\
\text { sufface }
\end{array}
\] \& \[
\begin{array}{|c}
\text { Conductivity } \\
\text { @ 25C }
\end{array}
\] \& Conductivity
@ 25C (FLD) \& Turbidity \& \[
\begin{gathered}
\text { Colour } \\
\text { Tue }
\end{gathered}
\] \& \[
\begin{gathered}
\substack{\text { water } \\
\text { Temp } \\
\text { FLD }} \\
\text { cLe }
\end{gathered}
\] \& pH \& \(\underset{\text { pH }}{\text { pro }}\) \& \[
\left.\begin{array}{|c|}
\hline \text { Oxygen } \\
\text { (Dissolved) } \\
\text { FLD }
\end{array} \right\rvert\,
\] \& \[
\begin{gathered}
\substack{\text { Total } \\
\text { Suspanded } \\
\text { Solids }}
\end{gathered}
\] \& \[
\begin{aligned}
\& \text { Total } \\
\& \text { Siss } \\
\& \text { Solids }
\end{aligned}
\] \& (\(\begin{gathered}\text { Nitate } \\ \text { (No3) }\end{gathered}\) \& \[
\left(\begin{array}{l}
\text { Bron } \\
\text { ang } \\
\text { (mgLL }
\end{array}\right)
\] \& \& \& \[
\left.\begin{array}{c}
\text { Flouride } \\
\text { asf } \\
\text { (mgL) }
\end{array}\right)
\] \& \[
\begin{array}{|c}
\text { Hydrogen } \\
\text { as } H
\end{array}
\] \& \[
\begin{gathered}
\text { Chloide } \\
(C \text { (} 1)
\end{gathered}
\] \& \[
\begin{aligned}
\& \text { Potassium } \\
\& (\mathrm{K})
\end{aligned}
\] \& \[
\begin{gathered}
\text { Sodium } \\
(\text { Na) }
\end{gathered}
\] \& \[
\begin{gathered}
\text { Ditalal } \\
\text { Disolved } \\
\text { lons }
\end{gathered}
\] \& \[
\begin{aligned}
\& \text { Calcium } \\
\& (\mathrm{Ca})
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { Sulphate } \\
\& \text { (SO4) }
\end{aligned}
\] \& \[
\begin{gathered}
\text { Magnesium } \\
(\mathrm{Mg})
\end{gathered}
\] \& \& \[
\left\{\begin{array}{|l|l}
\text { Hyydroxide } \\
(0 H H)
\end{array}\right.
\] \& \[
\begin{gathered}
\text { Carbonate } \\
(\mathrm{CO} 3) \\
\hline
\end{gathered}
\] \& Bicarbonate (HCO3) \& \begin{tabular}{l}
Hardness \\
(CaCO3)
\end{tabular} \\
\hline \& \& \& \& Units \& m \& secs \& m \& us/cm \& \(s / \mathrm{cm}\) \& лт \& \({ }_{\substack{\text { Hazen } \\ \text { Units }}}\) \& \({ }^{\circ} \mathrm{C}\) \& OH units \& \({ }_{\text {p }}^{\text {pHits }}\) \& mg/ \& mg/ \& mg \& mg/ \& mg/ \& mgh \& mg \(/\) \& mgh \& mgl \& mgl \& mgh \& mg \& mgl \& mg/ \& mg/ \& mg/ \& mgl \& mg/ \& mg/ \& mgh \& mg/ \\
\hline \& \& \& \& miv \& \& \& \& 340 \& \& 50 \& \& \& 6.5-8 \& 6.5-8.0 \& \& 10 \& 500 \& 50 \& 0.37 \& 0.055 \& . 0014 \& 1 \& \& \({ }^{175}\) \& \& 115 \& \& 000 \& 250 \& \& \& \& \& \& \\
\hline 130507 A \& Planet Ck. Planet D Ds \& 56714 \& 200011973 \& 1120 \& 0.09 \& 0.002 \& 0.1 \& \({ }^{490}\) \& \& \& \& \& 7.7 \& \& \& \& \({ }^{267}\) \& \& \& \& \& 0.15 \& ND \& 64 \& \& \({ }^{60}\) \& 373.1 \& \({ }^{24}\) \& 0.9 \& 5 \& 170 \& ND \& ND \& \({ }^{207}\) \& \({ }^{130}\) \\
\hline \({ }^{130507 A}{ }^{13507 A}\) \& \({ }_{\text {Plane Ck Pranet }}\) Prs \& \({ }_{57843}^{56736}\) \& \({ }^{710368197973}\) \& 810
1600 \& \begin{tabular}{l}
0.07 \\
0.3 \\
\hline
\end{tabular} \& \({ }^{0} 0.006\) \& 0.1
0.1 \& 842
910 \& \& \& \& \& \begin{tabular}{l}
7.9 \\
8.1 \\
\hline
\end{tabular} \& \& \& 17 \& \begin{tabular}{|c}
343 \\
59
\end{tabular} \& \& 0.05 \& \& \& \begin{tabular}{l}
0.22 \\
0.16 \\
\hline
\end{tabular} \& ND \& 70
120 \& 4.6 \& 16
109
109 \& \({ }^{505.1}\) \& 告76.5 \& \& \({ }_{40}^{45}\) \& \({ }_{345}^{260}\) \& ND \& ND \& \({ }_{421}^{317}\) \& \begin{tabular}{l}
325 \\
283 \\
\hline
\end{tabular} \\
\hline 130507 A \& Planet Ck.planet Dns \& 60951 \& 131/21973 \& 1300 \& 0.11 \& 0 \& 0.1 \& \({ }^{750}\) \& \& \& \& \& 8.4 \& \& \& \& \({ }_{463}\) \& \& \& \& \& 0.16 \& ND \& 90 \& 5 \& 79 \& 615.8 \& 42.5 \& \& \({ }^{37}\) \& 300 \& ND \& \({ }^{6.1}\) \& \({ }^{353}\) \& \({ }^{258}\) \\
\hline 130507A \& Planet Ck. Planet Dns \& 61616 \& 251061974 \& 1730 \& 0.12 \& 0.004 \& 0.1 \& 1000 \& \& \& \& 16 \& \({ }^{8.1}\) \& \& \& 10 \& 549 \& \& \& \& \& 0.17 \& ND \& \({ }^{98}\) \& \({ }^{3.3}\) \& \({ }^{88}\) \& \({ }_{732.3}^{732}\) \& 49 \& \& 47 \& 370 \& ND \& \({ }^{3.8}\) \& \({ }^{443}\) \& \({ }^{316}\) \\
\hline 130507 A \& Planet Ck. Planet Dns \& 63105 \& 301091974 \& 1410 \& 0.12 \& \({ }^{0.0003}\) \& 0.1 \& \({ }_{1205}^{925}\) \& \& \& \& \({ }^{28}\) \& 8.1
7.9 \& \& \& \& [522 \& \& \& \& \& 0.21
0.26 \& ND \& \begin{tabular}{l}
100 \\
\hline 155
\end{tabular} \& \begin{tabular}{l}
3.2 \\
5.6 \\
\hline
\end{tabular} \& 96
124
12 \& \begin{tabular}{l}
736.2 \\
746.1 \\
\hline
\end{tabular} \& \({ }^{40}{ }^{28}\) \& \& \(\stackrel{44}{41.2}\) \& 375
321 \& \(\stackrel{\text { No }}{\text { No }}\) \& 3.8
N0 \& \({ }_{392}^{499}\) \& 281
239 \\
\hline \({ }^{1305074} 1\) \& \({ }_{\text {Plane Ck. Planet }{ }^{\text {Prs }}}\) \& \({ }_{64854}^{636}\) \& \({ }^{1112121974}{ }^{1 / 21975}\) \& 1400
1510 \& - \(\begin{aligned} \& 0.13 \\ \& 0.25\end{aligned}\) \& \({ }_{0}^{0.001}\) \& \({ }_{0}^{0.1}\) \& 1000
165 \& \& \& \& \({ }^{35}\) \& \begin{tabular}{l}
7.9 \\
7.5 \\
\hline 8.
\end{tabular} \& \& \& \(\stackrel{2}{17}\) \& \({ }_{93}^{579}\) \& \& \& \& \& 0.26 \& ND \& 155
21 \& \(\begin{array}{r}5.6 \\ \\ 2.5 \\ \hline\end{array}\) \& \({ }_{124}^{124}\) \& 746.1
1093 \& \({ }_{5}^{28}\) \& \& \({ }_{\text {ckin }}^{41.2}\) \& \({ }^{321} 48\) \& \(\stackrel{\text { No }}{\text { ND }}\) \& ND \& \({ }_{\text {c }}^{392}\) \& \({ }^{239}\) \\
\hline \({ }^{1305057}{ }^{13050}\) \& \& 648412 \& 310419975 \& \({ }^{15145}\) \& 0.25
0.29 \& 0.012 \& 0.1 \& \({ }_{1}^{165}\) \& \& \& \& \({ }^{35}\) \& \({ }_{7}^{7.7}\) \& \& \& 5 \& \({ }_{86}\) \& \& \& \& \& \& ND \& \({ }_{25} 25\) \& \({ }_{2.6}^{2.6}\) \& 17.5 \& 101.5 \& \({ }_{3.7}\) \& \& \({ }_{4}^{4.7}\) \& \({ }_{39}\) \& ND \& ND \& \({ }_{48}^{58}\) \& \({ }_{29}{ }^{39}\) \\
\hline 130507 A \& Planet Ck._Planet D Ss \& 64827 \& 281041975 \& 1400 \& 0.15 \& 0.003 \& 0.1 \& 890 \& \& \& \& \& \({ }^{8.3}\) \& \& \& 72 \& \({ }_{531}\) \& \& \& \& \& 0.15 \& ND \& 100 \& 4 \& 92 \& 702.9 \& 44 \& \& 41.6 \& \({ }^{350}\) \& ND \& \({ }_{5} 5\) \& 416 \& 281 \\
\hline \({ }^{1305077}{ }^{\text {a }}\) \& Planet Ck.planet Dns \& 65712 \& 220711975 \& \({ }^{1350}\) \& 0.14 \& 0.004 \& 0.1 \& \({ }^{980}\) \& \& \& \& \& 8.1 \& \& \& 11 \& 571 \& \& \& \& \& 0.2 \& ND \& 97 \& \({ }^{3.3}\) \& 100 \& 769 \& 50 \& \& 47 \& 390 \& ND \& \({ }^{3.5}\) \& 468 \& \({ }^{318}\) \\
\hline \({ }^{1305077}\) \& Planet Ck._Planet Dns \& 64499 \& 101/0191975 \& 1030 \& 0.12 \& 0.003 \& 0.1 \& 1080 \& \& \& \& \({ }^{28}\) \& 7.9 \& \& \& \& 600 \& \& \& \& \& 0.3 \& ND \& 110 \& 4.5 \& 105 \& 807.6 \& \({ }^{45}\) \& \& \({ }^{50}\) \& 406 \& ND \& 2.8 \& 490 \& \({ }^{318}\) \\
\hline 130507A
13507A \& \& \({ }_{69896}^{693}\) \& \({ }^{80841976}\) \& 830
1113 \& 0.43
0.19 \& \begin{tabular}{l}
0.485 \\
0.005 \\
\hline
\end{tabular} \& 0.1
0.1 \& 115
990 \& \& \& \& \({ }_{1}^{15}\) \& \({ }_{7.9}^{6.8}\) \& \& \& 6 \& \& \& \& \& \& 0.1 \& \& 18
88
88 \& \begin{tabular}{l}
1.8 \\
\({ }_{2} .4\) \\
\hline
\end{tabular} \& 13
94 \& \({ }_{7}^{67.9}{ }_{7}^{69.6}\) \& 2.8
56 \& \& 3.3
40 \& 24
370 \& \(\stackrel{\text { ND }}{\text { ND }}\) \& 2.1 \& \({ }_{447}^{29}\) \& \({ }_{305}^{21}\) \\
\hline \({ }^{1305057}{ }^{13050}\) \& \& \({ }_{70385}\) \& 2310191976 \& \({ }^{1725}\) \& 0.17 \& \({ }_{0}^{0.0005}\) \& \({ }_{0}^{0.1}\) \& \({ }_{840} 9\) \& \& \& \& \({ }^{28}\) \& \({ }_{8}^{8.6}\) \& \& \& \({ }_{25}\) \& \({ }_{492}^{596}\) \& 1.8 \& \& \& \& \({ }_{0}^{0.1}\) \& 0.1 \& \({ }_{95}^{88}\) \& \({ }_{3}{ }^{2.2}\) \& \({ }^{9} 101\) \& \({ }_{623}\) \& \({ }_{20}^{50}\) \& \& \({ }_{40}^{40}\) \& \({ }_{305}\) \& \({ }_{\text {ND }}\) \& \({ }_{9.6}^{2.1}\) \& \({ }_{352}^{451}\) \& \({ }^{215}\) \\
\hline 130507A \& Planet CK__ Planet Dis \& 70386 \& 271101976 \& 810 \& 0.2 \& 0.023 \& 0.1 \& 820 \& \& \& \& 21 \& 8.7 \& \& \& 30 \& 472 \& 1.8 \& \& \& \& 0.3 \& 0.1 \& 100 \& \({ }_{3} 3\) \& 91 \& 600.7 \& 39 \& \& 32 \& 281 \& ND \& 9.9 \& \({ }^{323}\) \& 229 \\
\hline 130507 A \& Planet Ck._Planet D ns \& \({ }^{72325}\) \& 31031977 \& 1130 \& 0.54 \& 1.28 \& 0.1 \& 97 \& \& \& \& 30 \& 7.9 \& \& \& 6 \& 54 \& 0.5 \& \& \& \& \& \& 18 \& 1.6 \& \({ }^{13}\) \& 48.6 \& 1.5 \& \& 2 \& 10 \& \& \& 12 \& 12 \\
\hline 130507 A \& Planet Ck. Planet Dns \& \({ }^{72406}\) \& 27041977 \& 1645 \& 0.31 \& \({ }^{0.152}\) \& 0.1 \& 130 \& \& \& \& \({ }^{24}\) \& 7.8 \& \& \& \& \({ }^{73}\) \& 0.6 \& \& \& \& \& \& \({ }^{21}\) \& 2.4 \& 16 \& 82.4 \& \({ }^{3.1}\) \& \& \({ }^{3.2}\) \& 30 \& No \& 0.1 \& 36 \& \({ }^{21}\) \\
\hline \({ }^{1305077}{ }^{\text {a }}\) \& Planet Ck.planet Dns \& 75698 \& 61011979 \& 840 \& 0.27 \& 0.067 \& 0.1 \& 170 \& \& \& \& \({ }^{25}\) \& 7 \& \& \& 580 \& 98 \& 5.2 \& \& \& \& 0.2 \& \& \({ }^{20}\) \& 4.2 \& 16 \& 119.6 \& 5 \& 6 \& 5 \& \({ }^{48}\) \& \& \& \({ }^{58}\) \& \({ }^{33}\) \\
\hline \({ }^{130507 \mathrm{~A}}{ }^{13507 A}\) \& \({ }_{\text {Plane Ck. Planet } \text { ns }}\) \& \({ }_{76019}^{7754}\) \& \({ }^{1615031978} 1\) \& \({ }_{1}^{1500} 1140\) \& 0.16 \& \({ }_{0}^{0.0006}\) \& \begin{tabular}{l}
0.1 \\
0.1 \\
\hline
\end{tabular} \& 605
860 \& \& \& \& 32
17 \& \begin{tabular}{l}
7.7 \\
8.1 \\
\hline
\end{tabular} \& \& \& 7 \& 349 \& \({ }^{2.7}\) \& \& \& \& 0.1
0.2 \& \& \begin{tabular}{l}
55 \\
94 \\
\hline
\end{tabular} \& \({ }_{3}^{4}\) \& \begin{tabular}{l}
53 \\
92 \\
\hline
\end{tabular} \& 460.6
720.7 \& \begin{tabular}{l}
31 \\
48 \\
\hline
\end{tabular} \& 3.5 \& \({ }_{44}^{26}\) \& \({ }_{3}^{237}\) \& ND \& 0.8
3.5 \& 288
432 \& 184 \\
\hline 130507 A \& Planet Ck._Planet Dns \& 79183 \& 281091978 \& 1517 \& 0.27 \& 0.073 \& 0.1 \& 180 \& \& \& \& \({ }^{26}\) \& 7.5 \& \& \& \({ }^{13}\) \& 104 \& 0.3 \& \& \& \& \& \& \({ }^{22}\) \& 2 \& 20 \& \({ }_{131.3}\) \& \({ }_{6.6}\) \& \({ }^{\text {J. }}\) \& \({ }_{6.3}\) \& 60 \& \& \({ }_{0}^{0.1}\) \& \({ }_{73}\) \& \({ }_{42}\) \\
\hline 130507 A \& Planet Ck_P Planet Dns \& 87363 \& 1919919880 \& 1215 \& 0.18 \& 0.001 \& 0.1 \& 910 \& \& \& \& \({ }^{28}\) \& 7.8 \& \& \& 15 \& 567 \& \& \& \& \& 0.2 \& \& 62 \& 1.5 \& 82 \& 767.9 \& 57 \& 5 \& \({ }^{47}\) \& 423 \& \& 2.2 \& 511 \& \({ }^{336}\) \\
\hline 130507 A \& Planet Ck_Planet Dns \& 89190 \& 1212121980 \& 900 \& 0.19 \& 0.005 \& 0.1 \& 910 \& \& \& \& 25 \& 8.2 \& \& \& \& 561 \& 1 \& \& \& \& 0.2 \& \& 57 \& 1.8 \& 73 \& 757.2 \& 54 \& 5 \& 49 \& 428 \& \& 5.2 \& 511 \& 337 \\
\hline \({ }^{1305074}{ }^{135074}\) \& \& \({ }_{91769}^{9513}\) \& \({ }^{1010881981} 1\) \& \({ }_{17305}^{1730}\) \& - 0.12 \& \({ }_{0}^{0.004}\) \& 0.2
0.1
0 \& 838
920 \& \& \({ }_{5}\) \& 5 \& \begin{tabular}{|l}
19 \\
18 \\
18
\end{tabular} \& \begin{tabular}{|c}
8.75 \\
8.7 \\
\hline 8
\end{tabular} \& \& \& \({ }_{9}^{10}\) \& \({ }_{410}^{489}\) \& ND \& \& \& \& 0.2 \& N0 \& \({ }_{1} 99\) \& \({ }_{1}^{1.8}\) \& \({ }_{9}^{98}\) \& \({ }_{623}^{623}\) \& \({ }_{16}^{14}\) \& \({ }_{4}\) \& \({ }_{45}^{45}\) \& \begin{tabular}{l}
304 \\
303 \\
\hline
\end{tabular} \& \({ }^{0.1}\) \& \(\stackrel{13}{12}\) \& 344
345
345 \& \(\begin{array}{r}220 \\ 229 \\ \hline\end{array}\) \\
\hline \({ }^{1305057}{ }^{130507}\) \& \& \({ }_{98120}\) \& 270091982 \& \({ }_{1540}^{1450}\) \& \({ }_{0}^{0.09}\) \& \({ }_{0}^{0.002}\) \& 0.1
0.1 \& 920
990 \& \& \(\frac{1}{6}\) \& \& \({ }^{18}\) \& \begin{tabular}{l}
8.7 \\
8 \\
8 \\
\hline 8
\end{tabular} \& \& \& \({ }_{10}^{9}\) \& 510
580 \& \({ }_{0}^{0.4}\) \& \& \& \& 0.1
0.2 \& \& \({ }_{59}^{110}\) \& \(\stackrel{23}{3}\) \& \begin{tabular}{l}
105 \\
85 \\
\hline
\end{tabular} \& 640.9
783.5 \& \begin{tabular}{|c}
16 \\
\hline 57
\end{tabular} \& \({ }_{3.3}^{4}\) \& \begin{tabular}{|c}
46 \\
52 \\
\hline
\end{tabular} \& 303
432
4 \& \& 12

3.6 \& 345

520 \& | 229 |
| :---: |
| 356 |

\hline 130507 A \& Planet Ck_Planet Dns \& 99418 \& 610711983 \& 900 \& 0.46 \& 0.555 \& 0.1 \& 115 \& \& \& 15 \& 14 \& ${ }^{7.5}$ \& \& \& 10 \& 69 \& \& 0.02 \& \& \& 0.1 \& \& 20 \& 1.6 \& 17 \& ${ }_{7} 72.8$ \& 2.5 \& ${ }_{2} 2.6$ \& ${ }_{3.3}$ \& ${ }_{21}$ \& \& \& ${ }_{25.5}$ \& ${ }_{20}$

\hline 130507 A \& Planet Ck._Planet Dns \& 9947 \& 241101983 \& 1610 \& 0.41 \& ${ }^{0.333}$ \& 0.1 \& 105 \& \& 20 \& 70 \& ${ }^{28}$ \& ${ }^{8.5}$ \& \& \& ${ }^{23}$ \& 61 \& 0.5 \& 0.04 \& \& \& 0.1 \& 0.1 \& 16 \& 2.2 \& 13 \& 64.2 \& 2.6 \& 2.2 \& 2.5 \& ${ }^{21}$ \& \& 0.4 \& 24.5 \& 17

\hline 130507 A \& Planet Ck._Planet Dns \& 10328 \& 131/21983 \& 1345 \& 0.17 \& 0.015 \& 0.1 \& 800 \& \& ${ }^{3}$ \& 10 \& 31 \& ${ }^{8.8}$ \& \& \& 5 \& 470 \& 1.2 \& 0.08 \& \& \& 0.2 \& 0.1 \& 86 \& 2.8 \& 94 \& 601.4 \& 14 \& 4 \& 4 \& 304 \& \& 15 \& ${ }^{340}$ \&

\hline 130507A

13507A \& \& ${ }^{103730}$ \& ${ }^{1770219884}$ \& \& \begin{tabular}{l}
0.2

0.21

\hline

 \&

0.002

0.002

\hline
\end{tabular} \& 0.1

0.1 \& \begin{tabular}{c}
940

1050

\hline 1050

 \& \& 5 \&

10

10

 \&

31

22

22
\end{tabular} \& 7.9

79

7 \& \& \& 5 \& | 560 |
| :---: |
| 570 | \& \& ${ }^{0.088}$ \& \& \& 0.2 \& \& 105

110 \& ${ }_{3}^{3.3}$ \& 105 \& ${ }_{7529}^{751}$ \& ${ }^{37}$ \& \begin{tabular}{l}
8.2

8.5

\hline

 \&

46

49
\end{tabular} \& 369

369 \& \& $\stackrel{25}{27}$ \& ${ }_{4}^{445}$ \& ${ }^{282}$

\hline ${ }^{1305057}{ }^{13050}$ \& \& ${ }^{2055887}$ \& ${ }^{22409919894}$ \& ${ }_{1}^{1640}$ \& O. 0.21 \& ${ }_{0}^{0.0002}$ \& 0.1

0.1 \& \begin{tabular}{l}
1050

950

\hline 100

 \& \& 5 \& \& ${ }_{23}^{22}$ \&

7.9

7.8

\hline

 \& \& \& 5 \& ${ }_{540}^{540}$ \& \& ${ }_{0}^{0.07}$ \& \& \&

0.2

0.2

\hline

 \& \&

110

130

\hline 1

 \& ${ }^{3.6}$ \& ${ }_{105}^{105}$ \& ${ }^{7599.1}$ \&

40

37

\hline
\end{tabular} \& ${ }_{3.3}^{3.5}$ \& $\begin{array}{r}49 \\ 45 \\ \hline\end{array}$ \& 369

311 \& \& | 2.7 |
| :--- |
| 1.8 | \& ${ }_{375}^{475}$ \&

\hline ${ }^{1305057 A}$ \& Planet Ck.planet Dns \& 109516 \& ${ }^{200551985}$ \& 940 \& 0.27 \& 0.001 \& 0.1 \& 1000 \& \& 1 \& 5 \& \& 8 \& \& \& 5 \& 580 \& \& 0.08 \& \& \& 0.2 \& \& 110 \& 2.5 \& 105 \& 790.5 \& 40 \& \& 49.5 \& 399 \& \& \& 480 \& 304

\hline ${ }^{1305074} 1$ \& \& ${ }^{112298}$ \& ${ }^{1919121985}$ \& (1725 \& 0.24
0.26
0.0 \& 0.001
0.001
0 \& 0.1
0.1
0.1 \& 900
700 \& 850

700 \& $\frac{1}{8}$ \& \& ${ }^{33}$ \& 8.8.8 \& \& \& \begin{tabular}{l}
10

50

\hline

 \& ${ }^{530}$ \& 0.5 \& ${ }^{0.099}$ \& \& \& 0.2 \& 0.1 \&

65

54

\hline
\end{tabular} \& 2.5

14 \& \begin{tabular}{|c}
83

75

\hline 8

 \& $\stackrel{7154}{5757}$ \&

46

19
\end{tabular} \& $\stackrel{2}{26}$ \& $\stackrel{44}{44}$ \& 393

319 \& \& ${ }^{7}$ \& ${ }_{3}^{465}$ \& $\begin{array}{r}296 \\ 229 \\ \hline\end{array}$

\hline ${ }^{1305057 A}{ }^{13057 A}$ \& \& ${ }^{114885}$ \& 180611986 \& ${ }_{1030}$ \& | 0.26 |
| :--- |
| 0.32 | \& ${ }_{0}^{0.0001}$ \& 0.1 \& ${ }_{880} 8$ \& 1000

1000 \& ${ }_{2} 8$ \& ${ }^{5}$ \& 18 \& ${ }_{8.5}^{8.6}$ \& \& \& ${ }_{50}$ \& ${ }_{520}^{450}$ \& 0.5 \& ${ }_{0}^{0.08}$ \& \& \& 0.2
0.2 \& \& 54

115 \& | 1.4 |
| :--- |
| 3.2 | \& 100 \& ${ }^{5751.2}$ \& ${ }^{27}$ \& ${ }_{2.5}^{2.6}$ \& ${ }_{44}^{44}$ \& ${ }_{3}^{326}$ \& \& ${ }_{8.6}^{9.6}$ \& \& ${ }_{229}^{229}$

\hline ${ }^{1305057 A}$ \& Planet Ck_Panet Dns \& 116718 \& 3/1019986 \& 1613 \& 0.29 \& 0.002 \& 0.1 \& 960 \& 900 \& 26 \& 30 \& 26 \& ${ }^{8.6}$ \& \& \& ${ }^{35}$ \& 540 \& 0.5 \& 0.08 \& \& \& 0.2 \& 0.1 \& ${ }^{125}$ \& ${ }^{4.1}$ \& 110 \& 709.5 \& 36.5 \& 2 \& 40 \& ${ }^{330}$ \& \& \& 380 \& ${ }_{256}$

\hline 130507 A \& Planet Ck_Panet Dns \& 117465 \& 1012121986 \& 1310 \& 0.39 \& 0.001 \& 0.1 \& 670 \& 625 \& 9 \& 40 \& 34 \& 8.2 \& \& \& 10 \& 380 \& 1.2 \& 0.06 \& \& \& 0.1 \& \& ${ }^{53}$ \& 2.6 \& ${ }^{58}$ \& 528.8 \& ${ }^{37.5}$ \& 2 \& 30.5 \& ${ }^{285}$ \& \& ${ }^{3.8}$ \& 340 \& 219

\hline ${ }^{1305074} 1$ \& \& ${ }_{1221259}^{1259}$ \& ${ }^{8 / 9091987} 1061988$ \& 1220
1420 \& ${ }_{0}^{0.41}$ \& 0.002
0.002 \& 0.1
0.1 \& 990
1050

100 \& | 810 |
| :--- |
| 940 | \& $\frac{1}{2}$ \& 15

10

10 \& \begin{tabular}{|}
19

19

19

 \& ${ }_{8.2}^{8.3}$ \& \& \& 5 \& ${ }_{6}^{590}$ \& 16 \& ${ }^{0.07}$ \& \& \& 0.2 \& \& ${ }^{125}$ \& ${ }_{3}^{23}$ \&

115

115

115

 \&

7923

\hline 827

\hline

 \&

33

45

\hline
\end{tabular} \& ${ }_{6} 9$ \& 50

50

50 \& | 388 |
| :--- |
| 395 |
| 3 | \& \& ${ }_{5}^{6.7}$ \& 460

470 \& | 288 |
| :--- |
| 318 |

\hline 1305007A \& Planet CK_Planet Dis \& ${ }_{12887}$ \& 12011989 \& 1750 \& ${ }^{0.58}$ \& ${ }_{0}^{0.0005}$ \& ${ }^{0.1}$ \& ${ }_{7} 70$ \& ${ }_{720}$ \& ${ }_{4}$ \& 40 \& 31 \& | ¢ |
| :--- | \& \& \& ${ }_{20}$ \& ${ }_{430} 20$ \& \& ${ }_{0}^{0.06}$ \& \& \& | 0.1 |
| :--- |
| 0.1 | \& \& ${ }^{183}$ \& ${ }_{3.7}^{3.2}$ \& ${ }_{69} 6$ \& ${ }_{\text {¢ }}^{876.4}$ \& ${ }_{43}^{43}$ \& \& ${ }_{30}$ \& \& \& ${ }^{5} 1.9$ \& ${ }_{345}^{430}$ \& ${ }_{232}{ }^{338}$

\hline 130507A

13507A \& ${ }_{\text {Plane Ck. Planet }{ }^{\text {P }} \text { Ns }}$ \& ${ }_{\substack{130205 \\ 131255 \\ \hline}}$ \& 77051989 \& | 835 |
| :---: |
| 1235 |
| 1 | \& 0.66

0.5
0.5 \& - \& 0.2

0.1 \& ${ }_{820}^{240}$ \& 840 \& 12 \& ${ }^{60}$ \& 17 \& ${ }_{8}^{8.3}$ \& \& \& | 22 |
| :--- |
| 5 | \& ${ }^{140}$ \& 0.5 \& ${ }_{0}^{00.01}$ \& ${ }^{0.1}$ \& 0.09 \& ${ }^{<0.1}$ \& ND \& 29

89
8 \& -3.6 \& 24
80
80 \& 190
688
688 \& ${ }_{48}^{13}$ \& 2 \& 9.4

40 \& | 94 |
| :--- |
| 366 | \& 0.1 \& $\stackrel{2}{47}$ \& ${ }_{4}^{110}$ \& ${ }_{21}^{785}$

\hline ${ }^{1305057 A}$ \& Planet CK_Planet Dis \& 132782 \& 211111989 \& 1042 \& 0.59 \& ${ }_{0} 0.009$ \& 0.1 \& ${ }_{2} 295$ \& ${ }_{342}$ \& 2 \& \& \& ${ }_{8.1}^{8.1}$ \& \& \& \& 180 \& 0.9 \& 0.02 \& \& \& 0.1 \& \& ${ }^{26}$ \& ${ }_{2} 2.9$ \& ${ }^{27}$ \& ${ }^{234}$ \& 18.5 \& ${ }^{3.5}$ \& 14 \& ${ }_{116}$ \& \& 1 \& 140 \& ${ }_{104}$

\hline ${ }^{1305074}{ }^{\text {13507A }}$ \& \& ${ }_{1}^{134535}$ \& ${ }^{2940519990}$ \& | 1215 |
| :---: |
| 1655 | \& 0.81

0.78 \& ${ }_{0}^{0.647} 0$ \& 0.1
0.1 \& 89
94 \& \& ${ }_{2}^{22}$ \& 70

40 \& \& | 7.1 |
| :--- |
| 6.8 | \& \& \& 9 \& 50

54
54 \& 0.4 \& ${ }^{0.03}{ }_{0}^{0.08}$ \& 0.22 \& . 02 \& 0.01 \& ND \& $\begin{array}{r}13.8 \\ 15.5 \\ \hline 1.5\end{array}$ \& ${ }^{1.6}$ \& ${ }_{1}^{11.1}$ \& 49.9

57 \& ${ }_{2.3}^{2.7}$ \& \& | 2.5 |
| :--- |
| 2.6 | \& ${ }_{14}^{14}$ \& ND \& $\stackrel{\text { ND }}{\text { No }}$ \& 17.7

21.8 \&

\hline ${ }^{1305077}$ \& Planet Ck.planet Dns \& 143345 \& 200071991 \& 1527 \& 0.54 \& 0.002 \& 0.1 \& 942 \& 970 \& 1 \& 5 \& ${ }^{21}$ \& ${ }^{8.4}$ \& \& \& 15 \& 563 \& \& 0.07 \& \& 0.11 \& ${ }^{0.18}$ \& No \& 10.9 \& ${ }^{2.9}$ \& ${ }^{1201.2}$ \& 759.2 \& 46.6 \& 3 \& $\stackrel{24.7}{4.7}$ \& 381 \& 0.05 \& ${ }^{7} \mathbf{7}$ \& 449.8 \& 300

\hline ${ }^{1305077}{ }^{13507 A}$ \& ${ }_{\text {Plane Ck. Planet D Ds }}$ \& ${ }^{145499}$ \& ${ }^{410819992}$ \& ${ }_{825}^{1754}$ \& $\stackrel{0.6}{0.58}$ \& ${ }^{0.002}$ \& 0.1

0.1 \& \begin{tabular}{c}
1080

\hline 98

 \& ${ }_{\substack{120 \\ 985}}$ \& 6 \&

10

10
\end{tabular} \& 19

26 \& 8.3
8.4 \& ${ }_{8}^{8.3}$ \& \& 5
16 \& 605
609 \& 0.2
1.4 \& 0.1 \& \& 0.02 \& 0 \& No \& 111.4
63.9 \& 1.9 \& $\xrightarrow{103.4}$ \& ${ }_{882.6}^{820.6}$ \& 50.4

551 \& 1.5 \& | 53.8 |
| :--- |
| 54. |
| 5 | \& 414

470 \& 0.04

0.05 \& | 7.7 |
| :--- |
| 10 | \& 489.9

553 \& ${ }_{3}^{346}$

\hline
\end{tabular}

Notes
MTV
BoLD

Tall C C 10

stationio	station name	${ }_{\substack{\text { Sanple } \\ \text { No. }}}$	date	TME	$\underbrace{\substack{\text { a }}}_{\substack{\text { Hydrolotical } \\ \text { Prameters }}}$			Chemic								Nutriens			Meats				Major ons								kalinty					
					Stream Water Level	Siscan	$\begin{aligned} & \text { Dist. Below } \\ & \text { water } \\ & \text { surface } \end{aligned}$	${ }^{\substack{\text { ajuchenty }}}$	Tubidity	$\xrightarrow{\text { Tubidily }}$	Cotur	$\begin{gathered} \text { Water } \\ \text { Temp } \\ \text { FLD } \end{gathered}$	р ${ }^{\text {+ }}$	$\begin{gathered} \text { Susparald } \\ \text { Suspor } \\ \text { solss } \end{gathered}$	$\begin{aligned} & \text { Total } \\ & \text { Sols } \end{aligned}$	(103)	Solbe	$\begin{gathered} \text { Total } \\ \text { Phosphorus } \\ (\mathrm{P}) \\ \hline \end{gathered}$	coick	Aumin		Flumbe	(t)	cicic	(k)	coide)	$\begin{aligned} & \text { Tisoal } \\ & \hline \text { s.on } \end{aligned} \text { (}$	$\substack{\text { Calcum } \\ \text { (a) } \\ \text { cat }}$	${ }_{\text {Suphate }}^{\substack{\text { Suphe } \\ \text { (504) }}}$	(M)			(Hydioxde			(Hathess
				Unis	m	cumsecs	m	uscm	ntu	ntu	${ }_{\substack{\text { Hazen } \\ \text { unis }}}^{\substack{\text { den }}}$	${ }^{\circ} \mathrm{C}$	${ }_{\text {dits }}^{\text {pHis }}$	mgh	mgr	mg	mal	mal	mg	mal	mg	mg	mg	mgL	mg	mg	ma	mg	mgh	mgl	mgh	mg	mgL	mgl	mgh	mg
				miv				${ }^{34}$	50	50		coiche	8.0	10	500	50	0.02	${ }_{0} 0.05$	${ }_{0} .37$	0.055	0.004	1		175		115		1000	400							
- 1305058	Recknad Humbult Rd	${ }_{\text {185787 }}^{18071}$	${ }_{\text {230671997 }}$	${ }^{1640}$	${ }_{\text {NA }}^{\text {OS }}$	$\stackrel{0}{0}$	0.2 0 0	${ }_{\substack{167 \\ 150}}^{\text {150 }}$	${ }^{1238}$	1280	14	18.7		${ }^{229}$	${ }^{10501}$	4.12	${ }^{1.11}$	0.39	No	No	0.01	$0_{0}^{0.17}$	${ }_{\text {ND }} \mathrm{ND}$	${ }^{20.59}$	${ }^{4.8}$	$\frac{20.1}{16}$	${ }_{\text {12103 }}^{1145}$	$\frac{6.7}{8}$	${ }^{\text {8,55 }}$	$\frac{42}{63}$	${ }^{2427}$	${ }^{48}$	\bigcirc	${ }^{0.02}$	${ }_{51,77}^{68}$	${ }^{3399}$
${ }^{\text {13065S }}$	Humbolt C Ssminght	${ }^{61406}$	${ }^{3103197974}$	${ }^{1100}$	0.27	0.00	0.1	${ }^{335}$					${ }^{7} 7$		${ }^{204}$							0.12	No	${ }_{6}^{65}$	5	${ }^{38}$	${ }^{229.9}$	${ }^{16}$		${ }_{8}^{8.8}$	${ }_{8}^{80}$			0		${ }^{76}$
	Humbodit K Sumilight	${ }^{63599}$	${ }_{\text {cosilich }}$	${ }^{12245}$	${ }^{\text {NA }}$	${ }^{0.006}$	${ }_{0}^{0.1}$	${ }^{360}$				${ }_{21}^{20}$	${ }_{7}^{7}$	${ }_{17}^{17}$	${ }^{192}$							0.2		${ }^{96}$	${ }^{4.3}$	${ }^{40}$	${ }^{176{ }^{129}}$	${ }^{20}$	12	7.3 6.7	${ }_{72}^{15}$		-	0.1		㐌50
${ }_{\substack{\text { a }}}^{\text {13065 }}$		$\xrightarrow{\text { 7033 }}$ O0509	${ }_{\text {271701976 }}^{1061981}$	${ }_{1}^{1045}$	0.33 0.62	${ }^{0.005}$	0.1 0.1	${ }_{48}^{130}$	70		70	${ }_{19}^{28}$	${ }_{7}^{7.7}$	($\begin{gathered}360 \\ 10\end{gathered}$	${ }_{4}^{114}$	${ }_{1}^{5.3}$						0.8 0.1		20 10	${ }_{\text {c.3 }}^{\substack{\text { 1.8 }}}$	${ }_{\text {19 }}^{\substack{19}}$	${ }_{46.9}^{113.3}$	${ }^{3.5}$	${ }_{6}^{20}$	${ }_{1.9}^{5.9}$	${ }_{16}^{28}$				${ }_{19}^{34}$	${ }^{31}$

[^21]

10	stato name	samper	date		Lomed		worn			Q230	2380 frul			\％		－0		10	10	ss Tos	No：	Nom	ambe	Noame	sombel		（TN）		（tamp	（peobec）	（1）	888	（w）	（c）	（8）	Catasal	crome	（aam）	（4）	ash	（c）	（k）	（me）		（ca）	（809）	（m）		（tab	（ain）	cois	
					028	aumoss	m	m		${ }_{\text {uscm }}^{225}$	ustm	Nu	Nu	m		${ }^{\circ}$	${ }^{\text {PH }}$	comb	号	50x mat	not	nol	man	mar	man	mar	mal	mar	mar	mar	mar	man	mal	mar	man	un	wor	ust	${ }_{\text {max }}$	mma	${ }^{\text {mas }}$	man	${ }_{\text {man }} 19$	${ }_{\text {mag }}^{\text {mas }}$	${ }^{\text {mar }}$	mal	${ }_{\text {mar }} 10$	${ }_{\text {mar }}^{10}$	mar	mal	${ }_{\text {mar }}^{\text {No }}$	
						$\stackrel{\circ}{\substack{\text { ang }}}$				$\frac{225}{128}$										$\underbrace{\substack{\text { g }}}_{\substack{120 \\ \hline 85}}$																				$\xrightarrow{\substack{\text { No } \\ \text { No } \\ \text { No }}}$	－		$\stackrel{19}{16}$		${ }^{\frac{20}{8}}$	${ }_{1}^{4}$	－				$\xrightarrow{\substack{\mathrm{No} \\ \mathrm{No} \\ \mathrm{No}}}$	
																																								－						${ }^{10}$						
				${ }^{195}$																${ }_{\text {cos }}^{\substack{\text { gi }}}$																					${ }^{10}$		－ 12		\％		${ }_{3}^{4}$	${ }_{\substack{40 \\ 60}}^{\substack{40}}$		No	${ }_{\substack{\text { No }}}^{\substack{\text { No } \\ \text { No }}}$	
（13060	Comer facome wer				${ }_{4}^{49} 4$					${ }_{10}$																														No	$\stackrel{8}{8}$		${ }_{12}^{11}$	－	10		$\stackrel{4}{4}$	¢				${ }_{68}^{68}$
	Comer frocome wer				${ }^{\frac{388}{28}}$					－																																					${ }_{4}^{4}$					
	（emen				，	$\underbrace{\text { liga }}$			${ }^{0.1}$	$\underbrace{\substack{24 \\ 28 \\ 24}}$										${ }_{28}{ }^{\frac{12}{12}}$												${ }^{0.05}$							${ }_{0.4}^{0.6}$	${ }_{\substack{\text { No } \\ \text { No }}}$	${ }_{\text {¢ }}^{10}$		${ }^{10}$		${ }^{18}$						$\underset{\substack{\text { No } \\ \text { No }}}{\text { Not }}$	${ }_{\substack{149 \\ 104}}^{\substack{19}}$
成				${ }^{1100}$	，	${ }^{\text {a }}$			0.1	${ }_{\substack{\text { cis }}}^{\substack{\text { 24 }}}$							${ }_{78}$			${ }^{10} 10$																			0.15	－	${ }_{10}$	${ }_{39}{ }^{39}$	${ }_{12}$		${ }^{\frac{2}{17.5}}$		${ }^{106}$	${ }_{9}$		No	${ }_{\text {N4 }}^{0.0}$	${ }_{14}^{14}$
${ }_{\text {cosem }}$	Comer frocen wer				${ }_{\substack{086 \\ 248}}^{0.0}$	\bigcirc			${ }_{0}^{01}$	${ }_{20}^{48}$	${ }^{258}$	2			${ }^{20}$	${ }_{21}^{28}$	${ }_{8}^{19}$	$8{ }^{8}$			0		${ }^{\text {ouns }}$		${ }^{0032}$			${ }^{06}$											${ }_{0}^{0.3}$	No	${ }^{15}$	${ }^{56}$	${ }^{27}$	${ }^{\frac{3858}{3085}}$	${ }^{\frac{36}{26}}$		${ }^{23}$	${ }_{\frac{217}{12}}$		No．	${ }_{\substack{\text { No } \\ 1,1}}$	
${ }_{\text {cosem }}$	Comer facomen wer					。			${ }^{02}$	${ }^{\frac{278}{20}}$	$\frac{27}{\frac{27}{27}}$	$\stackrel{1}{3}$		${ }^{0.19}$	${ }_{\substack{20 \\ 30}}$		${ }^{178}$	${ }^{89}$			0.		cois		${ }_{\text {cos }}^{\substack{\text { O20 }}}$			${ }^{0.8}$		（0， 0 O3	${ }^{\text {O，}}$	$8{ }^{2}$	005									${ }^{\frac{72}{74}}$	${ }^{128}$	${ }^{225}$		${ }_{2}^{24}$	${ }^{175}$				${ }^{0.5}$	
${ }^{\text {a }}$		${ }^{182604}$	${ }^{11272998}$		${ }^{\text {Na }}$					${ }_{\substack{265}}^{\substack{285}}$	${ }^{\frac{304}{30}}$	${ }^{2}$		0.52	${ }^{30}$	$\frac{2}{28} 8$		${ }^{84}$		${ }^{10}$	${ }^{13}$		${ }_{\text {cose }}$		${ }_{0} 0.05$			0.9 0.8 0.		Ones	${ }^{\text {O }}$	$\frac{2011}{0.011}$	${ }^{005}$								${ }^{83}$	${ }^{8,}$	${ }^{145}$	${ }^{200}$								
	Comet focome wer	${ }^{\text {rand }}$		${ }^{1284}$		${ }^{273}$			02 02 0	${ }_{\text {cose }}^{\substack{\text { is }}}$	${ }^{146}$	${ }^{100}$			－	${ }_{29}$	－${ }^{78}$	${ }^{2}$	${ }^{65}$	为	d		通					${ }^{14}$		Oi， 0.1 0.1		$\frac{8.0 .1}{80.1}$	${ }_{\text {a }}^{0.05}$	${ }_{\text {cos }}^{\substack{\text { a } \\ 0.05}}$						${ }_{\text {No }}$	${ }^{\frac{7}{47}}$		${ }^{185}$	${ }^{120}$		${ }_{4}^{44}$	${ }_{4}^{48}$	${ }_{5}^{5}$				
				${ }^{\frac{10}{166}}$	168	\bigcirc			－${ }^{\circ .2}$	${ }_{\text {coic }}^{10}$	${ }_{\substack{17 \\ 20}}^{\substack{20}}$	${ }_{\text {cki }}^{100}$	${ }_{\text {ctic }}^{178}$				${ }^{27}{ }^{17}$	$\begin{aligned} & 1.51 \\ & \hline 18 . \end{aligned}$		（10	${ }^{28}$		${ }^{0.008}$		，			${ }_{0} 0$			¢																		178			
		${ }^{\text {che }}$	${ }^{20}$	${ }_{150}$	${ }^{288}$	－				${ }^{\text {12，}}$						$\frac{225}{25}$	$\frac{21}{29}$	${ }_{7}^{78}$	${ }^{18}$	${ }_{\text {ckib }}^{20}$	$2{ }^{29}$																							${ }^{11832}$		${ }^{268}$						
				${ }^{\frac{1}{1265}}$					${ }^{02}$	${ }^{20^{25}}$		${ }^{10}$	${ }^{273}$		${ }^{20} 13$				${ }^{88}$	${ }^{10}$	${ }^{10}$		${ }^{\text {oras }}$					${ }_{\text {\％}}^{1064}$			${ }^{\text {oun }}$	${ }_{8}^{81}$	${ }^{0.06}$	${ }^{\text {cos }}$					${ }^{02}$	${ }_{\text {No }}^{\text {No }}$	${ }^{43}$	${ }^{4 .}$	${ }^{\frac{83}{81}}$	${ }_{10}^{100}$	${ }^{10}$	${ }^{25}$	${ }_{8}^{8 .}$	${ }_{100}^{100}$		No	${ }^{\circ}$	${ }^{\frac{1185}{125}}$
	Comer frecome wer								${ }^{0.1}$				${ }^{\frac{2000}{1100}}$						${ }_{\text {ctic }}^{4}$																														${ }^{464}$			
	${ }_{\text {Comen }}^{\text {cos comen weir }}$	${ }^{\text {ITRasi }}$		${ }^{1800}$							${ }_{\substack{104 \\ 208}}^{\substack{\text { 20 }}}$		$\underset{\substack{230 \\ 350}}{\substack{20}}$			${ }^{30}$			5																																	
		${ }^{\text {che }}$			03	2			（	${ }^{128}$		220			＂	${ }^{23}$		${ }^{\text {it }}$		132818	${ }_{5} 5$.		0^{998}		007			${ }^{1838}$		$0_{0} 0.86$	O8809	No	wo	0.0					0.14	No	104	${ }^{28}$	${ }^{139}$	${ }_{68}{ }^{8}$	${ }^{77}$	${ }^{21}$	${ }_{31}$	42		No	${ }_{0} 00$	${ }_{5152}$
	comer focomew	${ }^{\text {che }}$		${ }^{\text {and }}$							${ }^{\frac{18}{188}}$		¢80．																																				${ }^{752}$			
	Comer Racome wer		${ }^{\text {TVa32000 }}$	${ }^{\frac{1220}{1200}}$	${ }^{0} 8$	${ }^{45}$			${ }^{02}$																																											
	Comen Racome wer	${ }^{207532^{2}}$			${ }^{198}$			10	${ }_{\substack{0.4 \\ 0.4}}$						${ }_{4}^{46}$		，	${ }^{\frac{70}{70}}$		cose	${ }_{1}^{158}$		${ }^{0,168}$		${ }^{\text {OOS344 }}$					${ }_{0}^{0.1624}$		${ }_{\substack{000 \\ 0.5}}$	${ }_{\text {No }}^{\text {Noo }}$	${ }_{0}^{0.00}$						$\stackrel{\text { No }}{\substack{\text { No }}}$		${ }_{\text {398 }}^{402}$	${ }_{\substack{89 \\ 796}}$	${ }_{\text {atas }}^{\text {gat }}$	${ }_{\substack{988 \\ 988}}$	${ }_{\text {5，5 }}^{\substack{39}}$		${ }_{48}^{48}$				
	Comen Racome wer			${ }^{1245}$	${ }^{02}$				${ }^{02}$	${ }^{185}$			${ }^{\frac{227}{255}}$						${ }^{68}$	${ }^{20}$			0008		0.078					0.8			0.5	${ }_{0} 03$																		
，	Comere facone wer	Ste		${ }^{\frac{124}{124}}$	${ }^{0.108}$	$\stackrel{0}{0}$			－${ }^{02}$		${ }_{\text {c }}^{\substack{168 \\ 188}}$							$\frac{.85}{14}$																																		
	Comer facome wer		$\xrightarrow{\text { Hotiow }}$	${ }^{122}$	${ }_{4}^{4.68}$	${ }^{185999}$			${ }^{02}$		${ }_{\substack{108 \\ 108}}^{\substack{18}}$							${ }_{20}^{10}$																																		
，	comer focmewer wer	${ }^{20}$			${ }_{\text {ckic }}^{46}$			－	${ }^{\frac{0}{0.3}}$	${ }^{15}$	${ }^{114}$	200	188		7		${ }^{212}$	6	42	${ }^{1300} 8$	，		0.12		009					0.18	（1888	0.1	008	coss					0.	No	2	${ }^{36}$	\bigcirc	${ }^{2}$	86	2	42	${ }_{5}$		No		${ }^{6}$
								\bigcirc	${ }^{\text {¢ }}$	${ }^{120}$	${ }^{127}$	${ }^{2000}$	1982				${ }^{96}$	${ }^{6}$		1008			${ }^{0.15}$		${ }^{1088}$					${ }^{0.24}$	${ }_{\text {l }}^{1.1084}$	0.	0.05	${ }^{2008}$						No	${ }^{3}$	${ }_{4}^{4}$	59	\％	94	$\stackrel{2}{2}$	42	${ }_{5}^{5}$		No		
$\frac{1}{1205088}$	Comer Racome weir	${ }^{\text {202ase }}$ 2085		${ }_{\text {cose }}^{10}$	${ }_{8}^{8,78}$					${ }^{125}$	${ }^{128}$	${ }_{\text {2000 }}^{2180}$	1780		$\stackrel{10}{2}$		${ }^{31.14}$	6		coile			${ }^{0.14}$		0082		${ }^{1.6}$			${ }^{026}$	${ }^{095}$		${ }_{0}^{0.065}$	${ }_{\text {dens }}^{\text {dis }}$						${ }_{\text {No }}^{\text {No }}$	$\stackrel{3}{4}$	${ }_{4}^{4 .}$	${ }^{67}$	${ }_{\substack{100 \\ 100}}^{10}$	10	$\stackrel{2}{2}$	${ }_{4}^{42}$	${ }_{5}^{57}$		${ }_{\text {No }}^{\substack{\text { No }}}$		${ }^{\text {in }}$
Sose		${ }^{202385}$	${ }^{20120204}$	${ }_{\text {a }}^{10.68}$	${ }^{6.1}$					${ }^{125}$		$\underbrace{1850}_{\substack{1880 \\ 1800}}$			¢																		${ }^{0065}$	cios						－	$\stackrel{4}{4}$				${ }^{\frac{10}{90}}$		${ }^{4.4}$	${ }_{\text {c }}^{5}$				
	（e）				${ }^{\frac{8.73}{6.13}}$					${ }^{\frac{125}{125}}$	${ }^{120}$	${ }^{\frac{18}{1380}} \mathbf{1 0 0}$	${ }^{1384}$		${ }^{10} 10$		${ }^{87}{ }^{173}$	${ }^{2}$		边			${ }_{0} 0006$		0.064		${ }_{\text {L }}^{1.776}$			${ }_{0} 027$	O8859	$\frac{0.1}{0.1}$	${ }^{0.05}$	${ }_{\text {cos }}^{\substack{\text { cos } \\ \text { cos }}}$					${ }_{0}$	No	4	${ }_{4}^{46}$	${ }_{75}$	${ }_{100}^{100}$	10	$\stackrel{2}{2}$	${ }_{4}^{4}$	${ }_{5}^{6}$		No		${ }_{69}$
	comer focomew wer	${ }^{\text {andeat }}$		${ }_{\text {and }}^{200}$	${ }^{\text {ens }}$			－	0.	${ }^{30}$	${ }^{133}$	1150	${ }^{1204}$		\bigcirc		${ }^{89}{ }^{73}$	6		${ }^{60}{ }^{\circ} 8$	${ }^{13}$		0.065		007					025	${ }_{\text {cose }}$	0.1	005	coss					0.1	No	$\stackrel{4}{4}$	5	${ }^{23}$	${ }^{10}$	10	2	${ }^{43}$	50		No	0.1	\cdots
	为	${ }^{202034}$								${ }^{184}$	${ }^{184}$	${ }^{48}$	${ }_{\substack{53 \\ 60}}$		2		${ }^{42}$	$\frac{74}{75}$	$7{ }^{75}$	132	${ }^{23}$		0038		0.168		${ }_{10,58}^{1.068}$			${ }^{0097}$	0483	0．11	005	${ }^{203}$					02	No		${ }^{48}$	10	${ }^{18}$			${ }^{43}$	6		No		

Your Friend in the Field

Equipment Report - TPS 90FLT Water Quality Meter

This Water Quality Meter has been performance checked / calibrated* as follows

* Calibration solution traceability information is available upon request

Date: \qquad Checked by: \qquad Signed: \qquad
Please check that the following items are received and that all items are cleaned and decontaminated before return. A minimum $\$ 20$ cleaning / service / repair charge may be applied to any unclean or damaged items. Items not returned will be billed for at the full replacement cost.

Sent	Received	Returned	Item
	\square	\square	$90 F L T$ Unit.

Processors Signature/ Initials

EE Quote Reference	5351 ,	Condition on return
Customer Ref		
Equipment ID	90 FLTA	
Equipment serial no.		
Return Date	1	1
Return Time		

| Melbourne | Sydney | Brisbane | Perth |
| :---: | :---: | :---: | :---: | Auckland \quad Koala Lumper

ENVIROEQUIP RENTALS

Your Friend in the Field

Equipment Report - TPS WP88 Turbidity Meter
This Water Quality Meter has been performance checked / calibrated* as follows:

* Calibration solution traceability information is available upon request.

Date: \qquad Checked by: \qquad
Signed \qquad Hones

Please check that the following items are received and that all items are cleaned and decontaminated before return. A minimum $\$ 30$ cleaning / service / repair charge may be applied to any unclean or damaged items. Items not returned will be billed for at the full replacement cost.

Sent	Received	Returned	Item

2995
 ENVIROEQUIP RENTALS

Your Friend in the Field

Equipment Report - TPS 90FLT Water Quality Meter

This Water Quality Meter has been performance checked / calibrated* as follows: pH
Conductivity
IDS
Turbidity
Dissolved Oxygen

- Electrodes cleaned/checked
Def 6.88
$0.0 \mathrm{mS} / \mathrm{cm}$
60.0 ppk
cor NTU
$\square \mathrm{pH} 7.00$
$\square 2.76 \mathrm{mS} / \mathrm{cm}$
[-36 pp
\square 90NTU
[G.0 0ppm in Sodium Sulphite
Q Charged $7.7 \mathrm{~V}(\min 7.2 \mathrm{~V})$
a pH 4.00
$\square 12.88 \mathrm{~ms} / \mathrm{cm}$
\square
pp
$\square \mathrm{pH} 10.00$
$\square \mathrm{pH}$

Redo \qquad $\mathrm{mS} / \mathrm{cm}$
$\mathrm{a} \quad \mathrm{mV}$
\qquad

- 100% Saturation in Air cT temperature
* Calibration solution traceability information is available upon request

Date:

HAN

Signed:
\square
Please check that the following items are receive and tall return. A minimum $\$ 20$ cleaning / service / repair chargat all items are cleaned and decontaminated before Items not returned will be billed for at the full replacement cost.

EE Quote Reference	$6 Q R 1$	Condition on return
Customer Ref		
Equipment ID	90 FLT	
Equipment serial no.		
Return Date	1	1
Return Time		

[^22]
ENVIROEQUIP RENTALS

Your Friend in the Field

Equipment Report - TPS 90FLMV Water Quality Meter

This Water Quality Meter has been performance checked / calibrated* as follows: pH
Conductivity TBS
Dissolved Oxygen
Redox (ORP)**
E Electrodes cleaned/checked
(pH 6.88 $0.0 \mathrm{mS} / \mathrm{cm}$ © 0.0 ppk

D pH 7.00
$\square 2.76 \mathrm{~ms} / \mathrm{cm}$

- -36 ppk

0 p 44.00
$\square 12.88 \mathrm{mS} / \mathrm{cm}$
$\square \mathrm{pH} 10.00$ E pH
$58.6 \mathrm{~ms} / \mathrm{cm}$ or $\mathrm{ms} / \mathrm{cm}$
0.00 ppm in Sodium Sulphate EElectrode operability test $240 \mathrm{mV}+1-10 \%$. Actual: $2+5100 \%$ Sa

> GCharged

* Calibration solution traceability information is available upon request.
*this meter uses an Ag/AgCl ORP electrode. To convertreadinge to
further infombition, teller to www.enviroequip. com/quilinotes/ORP.htm. SHE (Standard Hydrogen Electrode), add 199 mV to the mV reading. For

Date: \qquad Checked by: \qquad Signed: \qquad $-$ Please check that the following items are received and that all items are cleaned and decontaminated before return. A minimum $\$ 20$ cleaning / service / repair charge may be applied to any unclean or damaged items. teems not returned will be billed for at the full replacement cost. applied to any unclean or damaged items.

Processors Signature/ Initials

EE Quote Reference	7705	Condition on return
Customer Ref		
Equipment ID	90 FLMV 7	
Equipment serial no.		
Return Date	1	1
Return Time		

suwiert Santos Stream Assess.
Project/Task No:
File Structure/Doc No: By: H. Frock

Date:
$30-6-08$
Date:
Verified By:

ENVIROEQUIP RENTALS

Your Friend in the Field

Equipment Report - TPS 90FLT Water Quality Meter

This Water Quality Meter has been performance checked / calibrated* as follows:

* Calibration solution traceability information is available upon request.
${ }^{* *}$ This meter uses an Ag/AgCl ORP electrode. To convert readings to SHE (Standard Hydrogen Electrode), add 199 mV to the mV reading. For further information, refer to www.enviroequip.com/quipnotes/ORP.htm.

Date: \qquad Checked by: \qquad
Signed \qquad
Please check that the following items are received and that all items are cleaned and decontaminated before return. A minimum $\$ 30$ cleaning / service / repair charge may be applied to any unclean or damaged items. Items not returned will be billed for at the full replacement cost.

Sent	Received
Returned	Item
pH sensor 5 m	
Conductivity / TDS / Temperature $\mathrm{k}=10$ sensor 5 m	

Processors Signature/ Initials

EE Quote Reference	8602	Condition on return
Customer Ref	$73 C$	
Equipment ID	$90 F L T W A 1$	
Equipment serial no.	U4348	1
Return Date	1	1
Return Time		

| Melbourne | Sydney | Brisbane | Perth |
| :---: | :---: | :---: | :---: | Auckland \quad Koala Lumper

ENVIROEQUIP RENTALS

Your Friend in the Field

Equipment Report - TPS 90FLT Water Quality Meter

This Water Quality Meter has been performance checked / calibrated* as follows:

* Calibration solution traceability information is available upon request

Date
 -
Signed: \qquad *
Checked by: \qquad

Please check that the following items are received and that all items are cleaned and decontaminated before return. A minimum $\$ 20$ cleaning / service / repair charge may be applied to any unclean or damaged items. Items not returned will be billed for at the full replacement cost.

Received Returned | Item |
| :--- |
| Conductivity / TDS / Temperature $\mathrm{k}=10$ sensor 5 m |
| Dissolved Oxygen YSI5739 sensor 5 m |

Melbourne	Sydney	Brisbane	Perth	Auckland
Sydney - Unit 1, 28 Marco St, Chatswood NSW 2067 Australia				
Tel: $+61-2-9417-1513$	Fax: $+61-2-9417-7669$			
	Email: rentals.syd@enviroequip.com	Internet: www rentals.enviroequip.com		

Your Friend in the Field

Equipment Report - TPS 90FLT Water Quality Meter

This Water Quality Meter has been performance checked / calibrated* as follows:
pH
Conductivity
TD
Turbidity
Dissolved Oxygen
[-Électrodes cleaned/checked
w- 6.6 .88
$0.0 \mathrm{mS} / \mathrm{cm}$
0.0 ppk
$\square 0.0 \mathrm{NTU}$
0.00 ppm in Sodium Sulphate
cenarged $8.16 v(\min 7.2 \mathrm{~V})$
[pH 10.00
« $58.6 \mathrm{~ms} / \mathrm{cm} \quad \mathrm{mS} / \mathrm{cm}$
Redo
$0.25 / \mathrm{mv}$
\square \qquad
(1) 00% Saturation in Air日隹emperature

* Calibration solution traceability information is available upon request.

Date: \qquad Checked by: \qquad PETER

Signed:

Please check that the following items are received and that all items are cleaned and decontaminated before return. A minimum $\$ 20$ cleaning / service / repair charge may be applied to any unclean or damaged items. Items not returned will be billed for at the full replacement cost.

Sent	Received	Returned	Item

Full Statistics of Associated Water Quality Fairview and Roma Fields

Fairview Field Associated Water Quality Statistics (all unit mg/L unless specified)

Variable
Conductivity
Total Dissolved Salt
Total Dissolved Solids
Total Dissolved Solids:
Total Dissolved Solids:
Dissolved O2
Turbidity
Redox Potential
Chemical Oxygen Demand
Specific Gravity
Suspended Solids
Total Residue
Aggressive CO2
Free CO2
Tot Alkalinity
Bicarbonate Alkalinity
Carbonate Alkalinity
Hydroxide Alkalinity
Residual Alkali
Alkalinity-Phenolp
Total Hardness
Carbonate Hardness
Non-Carbonate Hardness
Ammonia N
Nitrate
Nitrate N by FIA (Calc)
Nitrite
Nitrite N by FIA
Nitrite N for NO3 only (Nitrite+Nitrate as N
Total Organic Carbon as
Dissolved Organic Carbon
Aluminium
Antimony
Arsenic
Barium
Beryllium
Boron as B
Bromide
Cadmium
Calcium
Chloride
Chromium
Cobalt
Copper
Cyanide
Fluoride by ISE
Iron
Iron (Soluble)
Lead
Lithium
Magnesium
Manganese
Manganese (Soluble)
Mercury
Molybdenum
Nickel
Phosphorous
Ortho Phosphorus
Potassium
Selenium
Silica
Silver
Sodium
Sodium Adsorption Ratio
Strontium
Sulphate
Sulphide
Sulphur as SO4
Tellurium
Variable

N	Mean	SE Mean	StDev	Minimum	Q1	Median	Q3	Maximum
1702	8.5165	0.00952	0.3928	5.0000	8.3000	8.6000	8.7600	10.0000
2	0.880	0.120	0.170	0.760	*	0.880	*	1.000
3929	2422	52.5	3290	0.0	1419	1840	2458	121800
309	6.089	0.197	3.464	0.008	4.760	6.020	7.190	41.700
122	2425	437	4824	87	905	1168	1774	29248
57	2862	427	3227	114	1420	2000	2985	16350
1201	1218.8	22.5	779.6	0.0	843.2	975.1	1285.6	9241.2
309	1299.7	46.7	821.7	146.0	895.0	1070.0	1350.0	7000.0
127	4.244	0.129	1.456	1.000	3.400	4.100	5.000	11.950
4	1.025	0.494	0.988	0.100	0.225	0.800	2.050	2.400
127	93.62	5.01	56.48	3.30	47.70	89.50	139.90	247.00
54	484	152	1115	5	23	72	546	7300
6	1.000	0.365	0.894	0.000	0.000	1.000	2.000	2.000
192	2403	740	10257	5	5	10	209	87307
1	0.90000	*	*	0.90000	*	0.90000	*	0.90000
193	1.363	0.123	1.712	1.000	1.000	1.000	1.000	16.000
193	5.326	0.606	8.413	1.000	2.000	3.000	5.000	72.000
566	958.7	21.6	513.2	18.3	750.8	861.5	1040.0	6430.2
608	862.5	14.9	367.5	18.0	691.0	788.0	958.8	4554.0
605	76.84	7.84	192.73	1.00	36.00	60.00	88.00	4039.00
558	3.96	2.21	52.30	1.00	1.00	1.00	1.00	1130.00
2	20.50	9.40	13.29	11.10	*	20.50	*	29.90
48	40.04	9.97	69.10	1.00	20.40	30.35	38.63	501.18
310	5.396	0.336	5.919	1.000	2.000	4.000	7.000	73.000
5	1.60	1.60	3.58	0.00	0.00	0.00	4.00	8.00
4	0.1500	0.0289	0.0577	0.1000	0.1000	0.1500	0.2000	0.2000
426	0.5399	0.0308	0.6356	0.0040	0.3200	0.4125	0.5845	7.8500
171	0.171	0.133	1.744	0.010	0.010	0.010	0.030	22.800
236	0.01995	0.00221	0.03402	0.01000	0.01000	0.01000	0.01000	0.33300
49	0.002204	0.000167	0.001172	0.002000	0.002000	0.002000	0.002000	0.010000
140	0.03834	0.00543	0.06421	0.00200	0.02000	0.02000	0.02000	0.46000
48	0.002000	0.000000	0.000000	0.002000	0.002000	0.002000	0.002000	0.002000
196	0.03962	0.00552	0.07727	0.00200	0.00525	0.02000	0.02000	0.47000
48	0.01688	0.00336	0.02329	0.00200	0.00425	0.00900	0.01875	0.13900
64	95.0	30.8	246.6	0.5	7.6	21.0	61.0	1785.0
64	31.9	16.8	134.8	0.5	1.1	3.4	7.0	980.0
411	6.01	2.05	41.53	0.01	0.02	0.09	0.22	580.00
11	0.001818	0.000818	0.002714	0.001000	0.001000	0.001000	0.001000	0.010000
410	0.01778	0.00247	0.05008	0.00100	0.00500	0.01000	0.01000	0.62900
68	2.321	0.975	8.037	0.041	0.281	0.604	1.887	65.165
391	0.006870	0.000519	0.010254	0.001000	0.005000	0.005000	0.010000	0.150000
430	0.8595	0.0374	0.7758	0.0200	0.5160	0.7105	1.0193	11.5370
57	2.190	0.489	3.691	0.100	0.300	0.900	2.200	20.000
427	0.002659	0.000340	0.007029	0.000100	0.001000	0.001000	0.005000	0.131000
608	10.16	2.67	65.93	0.14	1.00	1.20	2.46	1137.24
359	171.2	19.0	360.4	1.0	20.0	55.0	125.0	2640.0
405	0.02601	0.00631	0.12693	0.00100	0.00100	0.00100	0.01000	1.19600
384	0.01177	0.00250	0.04890	0.00100	0.00200	0.00200	0.01000	0.61700
434	0.235	0.103	2.139	0.001	0.002	0.005	0.020	30.806
10	0.010000	0.000000	0.000000	0.010000	0.010000	0.010000	0.010000	0.010000
602	2.2193	0.0586	1.4379	0.0500	1.4000	1.9000	2.7125	16.6400
605	20.88	5.66	139.28	0.01	0.10	0.27	0.81	2300.00
57	0.914	0.419	3.165	0.005	0.091	0.226	0.647	23.810
323	0.0652	0.0102	0.1827	0.0010	0.0050	0.0090	0.0400	2.1800
1	0.030000	*	*	0.030000	*	0.030000	*	0.030000
564	3.028	0.770	18.292	0.100	0.897	1.000	1.000	296.114
432	0.724	0.225	4.670	0.001	0.004	0.010	0.022	57.000
56	0.289	0.263	1.969	0.001	0.006	0.016	0.031	14.760
408	0.05195	0.00687	0.13869	0.00010	0.00010	0.00060	0.10000	1.40103
413	0.01053	0.00116	0.02357	0.00100	0.00500	0.00500	0.01000	0.35800
414	0.02055	0.00475	0.09655	0.00100	0.00200	0.00300	0.01000	1.23500
180	0.05683	0.00834	0.11184	0.01000	0.02000	0.04000	0.06000	1.41000
243	0.05565	0.00458	0.07137	0.00200	0.02000	0.02800	0.06400	0.64400
608	121.7	64.8	1596.8	0.5	2.0	2.4	4.6	33915.5
394	0.009553	0.000579	0.011489	0.003000	0.005000	0.010000	0.010000	0.125000
62	66.68	9.88	77.81	6.24	23.64	37.67	80.73	467.80
10	0.001000	0.000000	0.000000	0.001000	0.001000	0.001000	0.001000	0.001000
560	619.8	25.7	608.0	2.1	366.3	466.2	657.0	9402.8
358	149.6	14.9	281.8	2.9	84.6	106.0	122.0	2160.5
70	2.499	0.714	5.971	0.029	0.359	0.902	2.225	45.600
3	1.500	0.500	0.866	1.000	1.000	1.000	2.500	2.500
9	0.10000	0.000000	0.000000	0.10000	0.10000	0.10000	0.10000	0.10000
559	4.371	0.913	21.580	1.000	1.000	2.000	2.000	393.436
1	0.000500	*	*	0.000500	*	0.000500	*	0.000500
N	Mean	SE Mean	StDev	Minimum	Q1	Median	Q3	Maximum
10	0.001000	0.000000	0.000000	0.001000	0.001000	0.001000	0.001000	0.001000

Full Statistics of Associated Water Quality Fairview and Roma Fields

Appendix E

Total Cyanide Uranium
Vanadium
Zinc
Colif. (MF)
Colif. Faecal
Colif. Pres Coliforms Faecal (MF) Escherichia coli
1,2,4 Trimethylbenzene 1,3,5 Trimethylbenzene 2,3,4,6 Tetrachloropheno 2,4 Dichlorophenol
2,4 Dimethylphenol
2,4,5 Trichlorophenol
2,4,6 Trichlorophenol
2,6 Dichlorophenol
2-Chlorophenol
2-Methylphenol
2-Nitrophenol
3 \& 4 Methylphenol 4-Chloro-3-Methylphenol
Acenaphthalene
Acenaphthene
Anthracene
Benz (a) anthracene Benzene
Benzo (a) pyrene Benzo(b) \& (k) fluoranthene Benzo(g,h,i) perylene
C10-C14 Fraction C15-C28 Fraction C29-C36 Fraction
C6-C9 Fraction
Chlorobenzene
Chrysene
Dibenz (a,h) anthracene
Ethyl Benzene
HPC
Ideno (1,2,3-cd) pyrene
meta \& para-Xylene
Fluoranthene
Fluorene
Naphthalene
Ortho-Xylene
PCB
PCB by Aroclor
Pentachlorophenol
Phenol
Phenanthrene
Polyaromatic Hydroca
Pyrene
Speciated Phenols
Toluene

10
141
382
41
17
6
10
11
16
49
49
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
49
10
10
10
49
49
49
49
49
10
10
10
10
10
10
49
10
10
10
40
49
10
10
0.010000 0.001000 0.02487
1.235
1.0000
1.000
1.0000
1.0000
0.001020 0.001020 0.002000 0.001000 0.001000
0.001000 0.001000 0.001000 0.001000 0.001000 0.001000 0.002000 0.001000 0.001000 0.001000 0.001000 0.001000 1.0000 0.001000 0.002000 0.001000
0.0643
0.1420
0.0616 0.010204 0.002041 0.001000 0.001000 0.001020 0.001000 0.002041 0.001000 0.001000 0.001000 0.001020 0.001000 0.001000 0.002000 0.001000 0.001000 0.002000 0.001000 0.002000 0.002041
0.000000
0.000000 0.000000
0.00859 $\begin{array}{ll}0.000000 & 0.010000 \\ 0.000000 & 0.001000\end{array}$ 0.01
0.0
0.

0.010000	0.010000
0.001000	0.001000
0.00500	0.00500

0.001000 .001000 .01000
0.0600
0.010000 $\begin{array}{r}0.01000 \\ \hline \quad 2.30100\end{array}$ 8.3580
$1.000 \quad 5.000$
$1.0000 \quad 1.0000$
$1.0000 \quad 8.000$
$1.0000 \quad 1.0000$
$0.001000 \quad 0.002000$
0.002000
0.002000 0.001000 0.001000 0.001000 0.001000 0.001000 0.001000 0.001000 0.001000 0.002000 0.001000 0.001000
0.001000 0.001000
0.001000 2.0000 0.001000 0.002000 0.7000 4.0000 0.5700
0.020000
0.004000
0.001000 0.001000
0.002000 2800
1000 0.001000 0.001000 0.001000 0.001000 0.001000 0.001000 0.002000 0.001000 0.001000 0.002000 0.001000 0.002000
0.004000

Note - Nutrient (NOx) results removed due to uncertainties in analytical methods and reporting standards (see below):

Variable	N	Mean	SE Mean	StDev	Minimum	Q1	Median	Maximum	
Nitrate		171	0.171	0.133	1.744	0.010	0.010	0.010	0.030
Nitrate N by FIA (Calc)	236	0.01995	0.00221	0.03402	0.01000	0.01000	0.01000	0.01000	0.33300
Nitrite		49	0.002204	0.000167	0.001172	0.002000	0.002000	0.002000	0.002000
Nitrite N by FIA		140	0.03834	0.00543	0.06421	0.00200	0.02000	0.02000	0.02000
Nitrite N for NO3 only	0.0000								
Nitrite Nitrate as N	48	0.002000	0.000000	0.000000	0.002000	0.002000	0.002000	0.002000	0.002000
NOX for NO3 only (Calc)	48	0.01688	0.00336	0.02329	0.00200	0.00425	0.00900	0.01875	0.13900

Full Statistics of Associated Water Quality Fairview and Roma Fields

Roma Field Associated Water Quality Statistics (all units mg/L unless specified)

Variable	N	Mean	SE Mean	StDev	Minimum	Q1	Median	Q3	Maximum
Top Depth (m RT)	66	305.9	22.3	180.8	99.0	142.0	293.0	305.0	782.3
Bottom Depth (m RT)	92	545.0	15.8	151.3	150.0	409.0	575.0	665.2	857.0
Na	103	855.6	35.5	359.9	233.0	630.0	792.0	950.0	1980.0
K	103	710	178	1807	2	4	47	769	14800
Ca	103	112.6	21.7	220.7	0.5	3.0	10.1	73.4	870.0
Mg	101	26.39	5.20	52.23	0.10	0.90	4.00	24.00	290.00
Fe	80	121.6	27.9	249.9	0.0	0.1	3.0	117.5	1200.0
Sr	57	9.47	1.95	14.68	0.33	1.01	2.45	9.94	66.00
Ba	7	0.2804	0.0479	0.1266	0.1350	0.2230	0.2460	0.3090	0.5410
Cl	103	1614	399	4046	78	555	701	1130	39200
HCO 3	103	842.6	33.7	341.9	10.0	651.0	821.0	991.0	1864.0
CO 3	103	75.60	7.32	74.26	0.90	28.00	58.00	95.00	436.00
SO4	103	16.76	3.48	35.31	0.90	1.66	4.00	18.00	244.00
F	100	2.650	0.765	7.654	0.000	1.162	2.000	2.797	77.869
NO3 (Nitrite+Nitrate)	34	0.0479	0.0187	0.1091	0.0020	0.0090	0.0190	0.0200	0.6000
OH	103	1.2087	0.0943	0.9567	0.9000	0.9000	1.0000	1.0000	7.0000
Conductivity uS/cm @25 C	103	7065	1472	14943	1200	3200	3610	6200	115000
Resistivity ohm.m@25 C	54	2.625	0.134	0.986	0.110	2.428	2.799	3.125	4.630
Reaction - pH	102	8.6361	0.0582	0.5875	5.1000	8.4425	8.7000	8.9000	9.7000
TDS (EC)	97	3964	704	6935	740	1918	2300	4040	66000
TDS ($\mathrm{HCO} 3=\mathrm{CO} 3)$	31	5819	2254	12547	1390	1840	2180	4810	71300

REPORT

Fairview Field - Case Study of
Associated Water Discharges

Prepared for
Santos Pty Ltd

60 Edward St
Brisbane QLD
21 January 2009

Project Manager:

Project Director:

Full

David Fuller
Senior Principal

Date:	21 January 2009
Reference:	Fairview Field - Case Study of Associated Water Status:
	Discharges
FINAL	

Table of Contents

ES Executive Summary 1
1 Introduction and Catchment Context 1
1.1 Introduction 1
1.2 Catchment Context 2
2 Environmental Values 3
3 Water Quality Guidelines and Objectives 5
3.1 Water Quality Guidelines 5
3.1.1 Water Quality Trigger Values Based on Guidelines 5
3.1.2 Minimum Trigger Values Based on Local Data 6
3.2 Application of Water Quality Guidelines 9
4 Existing Environment - Flow Regimes 10
4.1 Upper Dawson River and Tributaries 10
4.2 Dawson River Spring Flows 13
5 Existing Environment - Water Quality 17
5.1 Overview of General Water Quality 17
5.1.1 Waters upstream of associated water discharges 17
5.2 Longitudinal Changes in Dawson River Water Quality 18
5.3 Water Quality circa the Dawson River Springs 22
5.4 Existing impacts on water quality from discharge to grade 24
5.4.1 Minor Streamlines 25
5.4.2 Baffle Creek 25
5.4.3 Hutton Creek 26
5.4.4 Dawson River at Utopia 28
5.4.5 Continuous Salinity Data 28
5.4.6 Continuous Water Temperature Data 30
5.4.7 Continuous Water Quality Data at Fairview. 31
5.4.8 Water Quality Profiles 34
6 Existing Environment - River Health 39
6.1 River Health of Major Streams 39
6.2 River Health of Minor Streamlines Receiving Discharge 41
6.3 River Health of Other Minor Streamlines 42
FAIRVIEW FIELD - CASE STUDY OF ASSOCIATED WATERDISCHARGES
Table of Contents
7 Planned Permeate Discharges 2008/2009 45
7.1 Pony Hills Water Treatment Plant 45
7.1.1 Hutton Tributary 45
7.1.2 Permeate Discharge 45
7.1.3 Potential Impacts on Typical flows 47
7.1.4 Potential Impacts on Channel Erosion 49
7.1.5 Potential Impacts on Downstream Flooding 49
7.1.6 Potential Salinity Impacts from Permeate Discharge 49
7.1.7 Potential Impacts from Permeate Discharge on Salt Loads 51
7.1.8 Other Potential Water Quality Impacts 52
7.1.9 Potential River Health Impacts from Permeate Discharge 54
7.2 Central Desalination Plant 55
8 Limitations 56
9 References 57

Tables, Figures and Appendices

Tables

Table 2-1 Environmental Values for Major Streams - Upper Dawson River 4
Table 3-1 Spot water quality sampling sites with significant data 6
Table 3-2 Relevant MTV for major streams in the Upper Dawson River catchment 7
Table 4-1 Low flow gauging and water quality Upper Dawson River, October 2007 13
Table 5-1 Longitudinal water quality in the Dawson River 20
Table 5-2 Differences in median water quality along the Dawson River. 21
Table 5-3 Dawson River water quality circa spring flows 23
Table 5-4 Differences in median water quality Dawson Bend and Yebna Crossing 24
Table 5-5 Comparison of upstream and downstream water quality Baffle Creek 26
Table 5-6 Comparison of upstream and downstream water quality Hutton Creek 27
Table 5-7 Significant differences in median water quality - Dawson R at Utopia 28
Table 5-8 Data Logger Site Locations 32
Table 6-1 AusRivas river health bands 40
Table 6-2 AusRivas model bands for spring and autumn samples Sep 03-Apr 07 40
Table 6-3 Significant O/E Ratio Shifts Between Sites 41
Table 7-1 Predicted permeate discharge quality PHWTP 46
Table 7-2 Predicted permeate quality versus existing stream water quality 53

Figures

Figure 1-1 Upper Dawson River Catchment 1
Figure 4-1 DNRW Data Collection in the Upper Dawson Catchment 10
Figure 4-2 Observed Average Monthly flows in Upper Dawson Catchment 11
Figure 4-3 Duration Curves for Recorded Flows Upper Dawson River Catchment 12
Figure 4-4 Dawson River springs area, flows and salinities, October 2007 13
Figure 4-5 Springs in the vicinity of Dawson Bend and Hutton Creek 14
Figure 4-6 Dawson River spring locations 16
Figure 5-1 Distribution of Hourly Electrical Conductivity, Dawson R at Utopia 29
Figure 5-2 EC Time Series Record Dawson River at Utopia Downs, 2003-2007 29
Figure 5-3 Dawson River at Utopia Downs EC and Flow Relationships 30
Figure 5-4 Water Temperature and Flow at Dawson River at Utopia Downs 31
Figure 5-5 Water Temperature and Flow at Dawson River at Utopia Downs 32

Appendices

A Water Quality Data Tables

Executive Summary

The Fairview Field provides a unique opportunity to investigate the impacts of discharge of untreated associated water that has occurred since at least 1993. The field is part of the larger Gladstone Liquid Natural Gas (GLNG) development but any surface water impacts are effectively isolated from other well fields by surface catchment boundaries. The Fairview Field (Petroleum Leases 90, 91, 92, 99, 100 and 232) lies entirely within the Upper Dawson River catchment.

The document is effectively an update of an earlier piece of work submitted to the Queensland EPA as an attachment in support of the Fairview Environmental Management Plan (Santos \& URS, 2008).

Key additions are:

- A report on spring flows in and around Dawsons Bend which are believed to maintain flow in the river downstream of this point;
- The capture, interpretation and reporting of continuous water quality information;
- Updates to spot water quality data; and
- The investigation of stratification in pools.
- The report identified the environmental values for all the major streams in the vicinity of the Fairview Field (Dawson River, Hutton Creek and Baffle Creek) as:
- Protection of slightly to moderately disturbed aquatic ecosystems.
- Primary Industries: irrigation, water for farm use, stock watering, and human consumption of wild or stocked fish or crustaceans.
- Recreation \& aesthetics: primary recreation with direct contact, and visual appreciation with no contact.
- Industrial uses.

Based on the protection of these values and taking into account local water quality records, a set of minimum guideline trigger levels are recommended in Section 3.

In Section 4, the existing flowing water environment is described in detail. Hutton Creek is largely ephemeral compared with the Dawson River which is found to be a permanently flowing stream maintained by spring flows in the vicinity of Dawsons Bend.

Water quality data is examined in Section 5 to understand the impacts of current associated water discharges to small intermittent streamlines on Baffle Creek, Hutton Creek and Dawson River. Significant differences in salinity concentrations were found between Dawson River waters upstream of associated discharge and downstream of the Hutton Creek outflow. By Yebna Crossing however, dilution is sufficient under existing associated water discharges to reduce salinity to background levels.

Sites receiving associated water discharge on Hutton Creek, Baffle Creek and the Dawson River generally exhibit similar characteristics, with the exception of increased concentrations of one or more of fluoride, sodium, boron, EC and occasional pH.

The river health of major streams is examined in Section 6 and it is concluded that there is some evidence that Hutton Creek at FV66 and Baffle Creek fauna may be affected by associated water discharges. The changes

	FAIRVIEW FIELD - CASE STU DISCHARGES
	Executive Summary

are subtle and are not reflected in AusRivas bands. In general, the data set is minimal and differences may simply arise from sampling variability.

In Section 7, consideration is given to the environmental impacts of permeate discharge from the planned Pony Hills Water Treatment Plant (PHWTP) and the possible Central Treatment Plant (CTP). It is concluded that permeate release from PHWTP should be no higher than $500 \mu \mathrm{~S} / \mathrm{cm}$ in order to maintain the salinity at Utopia below Central Queensland Guideline value of $340 \mu \mathrm{~S} / \mathrm{cm}$. Moderate improvements in water quality in Hutton Creek are expected from the permeate discharge and little loss of habitat is likely to occur due to increased flows.

For the CTP, the increased volume of permeate means that releases should be no greater than the guideline value if Utopia salinity is to be maintained at this level. Additional investigations are required to understand the environmental impact of releases from this plant.

1.1 Introduction

The Fairview Project Area lies within the Upper Dawson River catchment that extends upstream and westwards from Taroom encompassing the townships of Injune and Wandoan (Figure 1-1). The catchment contains extensive but largely ephemeral or intermittent stream networks. Major streams in the area are the Dawson River, Hutton Creek, Baffle Creek, Juandah Creek, Eurombah Creek, Commissioner Creek and Broken Creek.

Coal Seam Gas (CSG) production at Fairview has occurred since at least 1993 initially under the control of the Tri-Star Petroleum Company (1993 - 2002), then Tipperary Oil and Gas (Australia) Pty Ltd. (TOGA, 2002 2005). In September (June) 2005 TOGA was purchased by Santos Ltd.

Associated water discharge to grade has occurred throughout this period into small, often intermittent, streamlines or gullies that, in turn, discharge to Baffle Creek, the Dawson River or Hutton Creek. Santos captures associated water with salinity greater than $3,500 \mu \mathrm{~S} / \mathrm{cm}$ for plant works or for injection into the basement Timbury Hills Formation.

Figure 1-1 Upper Dawson River Catchment

Section 1

Introduction and Catchment Context

1.2 Catchment Context

Since the initial settlement of Taroom circa 1850, the primary land use in the Dawson River catchment has traditionally been sheep and cattle grazing. This remains the predominant land use in the Upper Dawson River circa the Fairview and Springwater homesteads.

Downstream of Hutton Creek, grazing, forestry and cropping are widespread. A number of water storages and weirs are located on the Dawson River from Taroom downstream and are used for irrigation and recreational purposes supporting regional industry and urban communities.

The State of River report (Telfer, 1995) provides indicators of the physical condition of the Dawson River and its tributaries upstream of Utopia Downs station. In general the condition of land immediately adjacent to the State of River study reaches (i.e. the reach environs index) is rated very good for the Upper Dawson River, moderate for the Hutton Creek, poor for Christmas Creek, and good for Baffle Creek. Only 9\% of land was considered in poor condition.

Bed and bar stability has been rated as moderate to very stable along 90% of the catchment stream lengths. However, evidence of both aggradation and erosion is widespread. Large-scale land clearing of native vegetation across the catchment has resulted in land degradation with evidence of sheet, rill and gully erosion on over 80% of the cultivated areas of the catchment (Telfer, 1995).

Although stream bank stabilities in the upper Dawson River catchment area stream banks were ranked as moderate to very stable across approximately 95% of the stream lengths, widespread streambed erosion is common. This has been largely attributed to overgrazing of the streambed and banks, and runoff from cattle pads leading to watercourse or adjacent to streams causing bank scouring (Simmons and Bristow, 2007). Much of the soil displaced as a result of the widespread erosion of cultivated and grazed areas has been deposited in tributaries and alluvial plains in the downstream area.

Riparian vegetation along Dawson River at Yebna crossing has been rated exceptionally high. Baffle Creek and Hutton Creek also have areas of dense riparian vegetation in inaccessible areas. However, in the more accessible areas of these creeks and in agricultural areas of the Dawson River upstream of the confluence with Baffle Creek animal access and clearing has lead to significant degradation of riparian condition. Over 70\% of stream lengths in the area are ranked as having moderate to poor aquatic vegetation.

Aquatic vegetation along the entire upper Dawson River catchment is rated as poor to very poor. This is likely due to extreme dry conditions experienced at the time of survey. Aquatic habitats within the region are considered moderate to very good in over 80% of the stream length due to the relatively good riparian vegetation. However instream passage for aquatic organisms over reach lengths is restricted by logs or low to non-existent flows. Numerous road crossings, bridges and fords are also evident throughout the area, which in a number of locations, provide significant barriers to upstream fish movement under low flow conditions (e.g. Yebna crossing).

Scenic and recreational value ratings within the upper Dawson River catchment are predominantly good to very good. This is substantiated by the range of activities recorded as currently being undertaken in the Upper Dawson such as BBQs and picnics, day bushwalking, car camping, shore fishing and swimming. Areas of inherent natural beauty and scenic natural settings were identified in the State of River Report as major factors contributing to the overall scenic value.

Environmental Values

Environmental values are broadly defined in the EPP(Water) as maintaining water quality suitable for the biological integrity of an aquatic ecosystem (modified or pristine); recreational use; minimal treatment before supply as drinking water; agricultural use; and industrial use. Queensland EPA (2005) provides further clarity on the definition of environmental values based on the EPP (Water) and National Water Quality Management Strategy (NWQMS):

- Protection of aquatic ecosystems: ranging from high conservation/ecological value systems, slightly to moderately disturbed ecosystems, and highly disturbed systems.
- Primary Industries: irrigation, water for farm use (such as in fruit packing or milking sheds), stock watering, and human consumption of wild or stocked fish or crustaceans.
- Recreation \& aesthetics: primary recreation with direct contact, and visual appreciation with no contact.
- Drinking Water: raw drinking water for human consumption.
- Industrial uses: includes power generation, manufacturing plants.

Dawson River and Hutton Creek and its tributaries do not have prescribed environmental values listed under EPP (Water) Schedule 1. Since similar land uses exist across the entire Upper Dawson River catchment it is expected that the same environmental values will apply to all streams. The relevance of each of the above environmental values to these streams is therefore considered at the catchment scale in the following discussion.

Protection of aquatic ecosystems is applicable to all stream lengths within the proposed development area. The waterways of the upper Dawson River catchment are considered predominantly to consist of "slightly to moderately disturbed ecosystems" based on the State of the River Report for the region (Telfer, 2005). These are "systems that have undergone some changes, with aquatic biological diversity affected to some degree but the natural communities are still largely intact and functioning".

Water allocations under the Dawson Valley Water Supply Scheme are primarily for the purposes of 'agriculture' or 'any' (DNRM, 2006). Significant allocations are made along the Dawson River from approximately 20 km downstream of Taroom to the Fitzroy River junction. Some allocations are also made upstream of Taroom approximately 90 km downstream from Fairview. Allocations are for stock watering, irrigation and industrial water use. Between the Hutton Creek Junction and Fairview it is evident from river health surveys (EnviroTest various, Simmonds and Bristow, 2007 \& 2008) that stock access waterways in this area from time to time. However, stock access to the Dawson River is generally limited due to steep banks.

Fishing is a widespread recreational activity along the Dawson River including upstream of Yebna Crossing only 12 km downstream of Fairview (Mr Radel pers. comm.). Other recreational activities such as swimming are possible but realistically only along the Dawson River downstream of Yebna Station. Access along the Dawson River is restricted due to steep banks and limited road crossings. Swimming is probably occasional and intermittent. At Taroom, treated groundwater supplies are used to maintain the local swimming pool. Without specific evidence of swimming, primary contact recreation has not been identified as an environmental value.

Along the Dawson River downstream of Taroom, the Glebe Weir is utilised for primary recreation (such as swimming) and secondary recreation purposes (such as canoeing and fishing) (Taroom Shire Council pers. comm.). It is possible that other waterholes upstream and downstream along the Dawson River are also used for local recreational purposes. The aesthetics of the waterways are of relevance with parts of the region considered to be of "inherent natural beauty" (Telfer, 1995).

Section 2
 Environmental Values

The towns of Taroom and Injune draw drinking water from an artesian groundwater supply. Water from the Dawson River is used in the urban setting for irrigation of schools and sports fields only. It is understood that residential properties within the catchment but outside of the townships utilise rainwater or borewater for drinking purposes (Taroom Shire Council pers. comm.). On this basis the environmental value of drinking water is not considered to apply to the upper Dawson catchment. Whilst the possibility exists that local properties not connected to water supply will draw water from the river for personal use under riparian rights this is considered unlikely.

The following environmental values have therefore been identified as relevant to the Hutton Tributary, Hutton Creek and Dawson Rivers (Table 2-1).

Table 2-1 Environmental Values for Major Streams - Upper Dawson River

- Protection of slightly to moderately disturbed aquatic ecosystems.
- Primary Industries: irrigation, water for farm use, stock watering, and human consumption of wild or stocked fish or crustaceans.
- Recreation \& aesthetics: primary recreation with direct contact, and visual appreciation with no contact.
- Industrial uses.

Water Quality Guidelines and Objectives

3.1 Water Quality Guidelines

The National Water Quality Management Strategy (ARMCANZ \& ANZECC, 1994) has been adopted in Queensland through the EPP (Water).

The relevant water quality guidelines for Queensland in order of preferred use are:

- Locally derived guideline values;
- Queensland Water Quality Guidelines (QWQG) which provide guideline values tailored to Queensland regions and water types and were published in 2006 (there have been various updates since that time); , or
- Where the QWQG or local guidelines are not available, the default guidelines are the Australian Water Quality Guidelines (AWQG) published by ANZECC \& ARMCANZ (2000).

The EPP(Water) specifies WQOs for some water bodies throughout Queensland (Schedule 1). The water bodies within the Fairview field area are not listed, therefore WQOs become are the minimum set of water quality parameter values that will ensure each of the identified environmental values is maintained. However, the derivation of WQOs must also take into account social, economic and current condition factors. In many instances the technical guideline value may prove to be technically and economically unacceptable. Queensland EPA provides guidance on establishing draft WQOs for a waterway (QLD, 2005).

There have been no officially endorsed WQOs developed for the catchments influenced by the GLNG field development. For the purposes of evaluating and comparing the existing surface water quality and the predicted quality of associated water the appropriate guideline trigger values have been used as a point of comparison. Where several trigger values are available to protect different environmental values the most conservative, or minimum trigger value (MTV), has been adopted.

The QWQG defines fresh waterways as either:

- Upland stream: small (first, second and third order) upland streams (surrogate $=$ altitude $>250 \mathrm{~m}$): moderate-to-fast flowing due to steep gradients, substrate usually cobbles and bedrock, sometimes gravel, rarely sand or mud; or
- Lowland stream: larger (third, fourth and fifth order), slow-flowing and meandering streams and rivers, gradient very slight, substrates sometimes cobble and gravel but more often sand, silt or mud.

The predominant characteristics of the discharge streamlines, Hutton Creek, Baffle Creek and the Dawson Rivers are in keeping with the definition of lowland freshwater waterways.

3.1.1 Water Quality Trigger Values Based on Guidelines

Based on an examination of the Queensland and national water quality guidelines a set of MTVs has been identified for the Dawson River, Baffle Creek and Hutton Creek (Table 3-2). Since aquatic ecosystem protection generally provides the most restrictive guidelines which protect all environmental values only those water quality parameters identified for this purpose have been included in the table.

Section 3

Water Quality Guidelines and Objectives

3.1.2 Minimum Trigger Values Based on Local Data

The QWQG also establish a framework for deriving and applying local guidelines for Queensland waters. Development of local guideline values is important as they reflect existing local conditions which may vary substantially from broader guidelines developed at the regional scale. Local guidelines can therefore take into account natural and anthropogenic influences on water quality and flow that would not otherwise be recognised.

The preferred means of establishing local water quality guidelines is to establish reference condition (background condition, most commonly subject to minimal disturbance, but may be modified from natural condition) immediately upstream of an activity, or in the immediate region. Guidelines for reference condition must be derived from a minimum of at least 18 samples from one or more reference sites (QWQG, 2006).

Sufficient spot water quality data is available to establish local guideline values at the sites shown in Table 3-1. Twentieth and eightieth percentile values of water quality data from Dawson River at Utopia Downs are shown in Table 3-2 for comparison with the guidelines. Cells are shaded where local data exceeds water quality guidelines.

Table 3-1 Spot water quality sampling sites with significant data

Sampling Site	Water Quality Parameter
Upper Baffle Creek 1	Temp, EC, TDS
Lower Baffle Creek 2	Temp, EC, TDS
Dawson R d/s Baffle Ck ${ }^{2}$	Temp, EC, TDS
Dawson R at Yebna Crossing ${ }^{2}$	Temp, EC, TDS
Dawson R at Utopia Downs ${ }^{2}$	Temp, pH, DO, EC, TDS, TSS, Na, K, Mg, Ca, HCO3, CI, F, SO4, TN, TP, NH4, NO3, B, Cu
Dawson R at Taroom ${ }^{2}$	Temp, EC, TDS

Note:
1 upstream of associated water discharges
2 downstream of associated water discharges
It should be noted that while the site Dawson River at Utopia Downs (1964-2007) has the most significant set of spot sample water quality data, it also lies downstream of existing associated water discharges. The data from this site were therefore examined for differences in median water quality parameter values before and after associated water discharges commenced using two sided Mann-Whitney U tests at 95% significance. The only water quality parameter with a significant increase in median concentration was Boron. Other parameters with significant shifts in median values were EC, TDS, Ca, Mg, Alkalinity, Cl and SO_{4}. All these parameters exhibit a reduction in concentration pre to post associated water discharges. Details of the statistical tests are provided in Section 5.4.4.

The data from Dawson R at Utopia Downs was therefore used to derive $20^{\text {th }}$ and $80^{\text {th }}$ percentile water quality values for comparison with the guideline based water quality objectives (Table 3-2). The local data suggests that guideline trigger values should be relaxed for nutrients, turbidity and suspended solids. These parameters are not of particular interest in the following discussion of the impacts of associated water discharges.

Water Quality Guidelines and Objectives

Table 3-2 Relevant MTV for major streams in the Upper Dawson River catchment

WQ PARAMETER	UNITS	QWQG 2006 ${ }^{\text {a }}$		ANZECC GUIDELINES 2000				MTV	Local Data ${ }^{\text {\# }}$	
		Lowland	Upland	Aquatic Ecosystems ${ }^{\text {b }}$	StockWater	Irrigation ${ }^{\text {c }}$	Recreation		20\%ile	80\%ile
Temperature*	${ }^{\circ} \mathrm{C}$	20\%ile-80\%ile	20\%ile-80\%ile	NA	NA	NA	15-35	**	14.7	26.1
pH	units	6.5-8.0	6.5-7.5	NA	NA	6-9	6.5-8.5	6.5-8.0	7.56	8.1
Electrical Conductivity (at $25^{\circ} \mathrm{C}$)	$\mu \mathrm{S} / \mathrm{cm}$	$340{ }^{\text {d }}$	$340{ }^{\text {d }}$	NA	NA	$<650^{\text {e }}$	NA	$340^{\text {a }}$	223	330
Dissolved Oxygen	\% Sat.	85-110	90-110	NA	NA	NA	>80	85-110	72	86
Total dissolved solids	mg/L	-	-	-	$4000{ }^{\text {f }}$	-	1000	1000	131	189
Total suspended solids	mg/L	10	-	NA	NA	NA	1000	10	9	124
Turbidity	NTU	50	25	NA	NA	NA	NA	50	7.0	100
Sodium	mg / L	-	-			$<115^{\text {e }}$	300	<115	24	38.1
Potassium	mg / L							-	3.3	4.7
Calcium	mg / L	-	-		1000	-	-	1000	13.0	21.0
Magnesium	mg/L							-	4.48	8
Alkalinity HCO_{3}	mg / L							-	104	153
Chloride	mg/L	-	-	-	-	$<175^{\text {e }}$	400	<175	18.0	32
Fluoride	mg/L	-	-		2^{9}	1		1	0.1	0.16
Sulphate	mg/L	-	-		<1000		400	400	1	3.2
Total nitrogen	$\mu \mathrm{g} / \mathrm{L}$	500	250	NA	NA	5000	NA	500	118	795.8
Total phosphorous	$\mu \mathrm{g} / \mathrm{L}$	50	30	NA	NA	50	NA	50	21.7	146
Ammonia	$\mu \mathrm{g} / \mathrm{L}$	20^{1}	10	900	NA	NA	NA	20	8	37.3

 national guideline triggers for ammonia- N and ammonium ion concentrations.

Section 3
 Water Quality Guidelines and Objectives

WQ PARAMETER	UNITS	QWQG 2006 ${ }^{\text {a }}$		ANZECC GUIDELINES 2000				MTV	Local Data ${ }^{\text {\# }}$	
		Lowland	Upland	Aquatic Ecosystems ${ }^{\text {b }}$	StockWater	Irrigation ${ }^{\text {c }}$	Recreation		20\%ile	80\%ile
Oxidised nitrogen (NOx)	$\mu \mathrm{g} / \mathrm{L}$	60	15	NA	400,000 ${ }^{\text {k }}$	NA	NA	60	138	524
Boron	$\mu \mathrm{g} / \mathrm{L}$	-	-	370	$5000^{\text {i }}$	500	1000	370	20	100
Copper	$\mu \mathrm{g} / \mathrm{L}$	-	-	1.4	$1000{ }^{9}$	200	1000	1.4	0.02	0.05
Chlorophyll-a	$\mu \mathrm{g} / \mathrm{L}$	5	n/a	NA	NA	NA	NA	5		
Arsenic	$\mu \mathrm{g} / \mathrm{L}$	-	-	24/13 ${ }^{\text {j }}$	500^{9}	100	50	24/13	-	-
Cadmium	$\mu \mathrm{g} / \mathrm{L}$	-	-	0.2	10^{9}	10	5	0.2	-	-
Chromium	$\mu \mathrm{g} / \mathrm{L}$	-	-	1.0 (CrVI)	$1000{ }^{9}$	100	50	50	-	-
Iron	$\mu \mathrm{g} / \mathrm{L}$	-	-	300 (interim)	-	200	300	200	-	-
Lead	$\mu \mathrm{g} / \mathrm{L}$	-	-	3.4	100^{9}	2000	50	3.4	-	-
Mercury	$\mu \mathrm{g} / \mathrm{L}$	-	-	0.6	$2^{\text {h }}$	2	1	0.6	-	-
Nickel	$\mu \mathrm{g} / \mathrm{L}$	-	-	11	$1000{ }^{9}$	200	100	11	-	-
Zinc	$\mu \mathrm{g} / \mathrm{L}$	-	-	8	<20000	2000	5000	8	-	-

NOTES a Guideline trigger values for protection of aquatic ecosystems (Central Coast Region) j AsIII/AsV respectively
b Values for 95% protection of aquatic ecosystems
k For nitrate
c Values for long term irrigation trigger chosen as most conservative
NA indicates not applicable as QWQG take precedence
d $75^{\text {th }}$ percentile of EC in relevant salinity zone (Fitzroy Central). Source QWQG (2006)
e For sensitive crops
f Suitable for beef cattle and horses
g May be hazardous to animal health if exceeded indicates no applicable guideline value

These cells are the most conservative parameter values to satisfy all environmental values
n/a Not available
h Mercury may accumulate in edible animal tissues $>2 \mu \mathrm{~g} / \mathrm{L}$ and may therefore pose a human health risk
i Higher concentrations of Boron ($>5000 \mu \mathrm{~g} / \mathrm{L}$) may be tolerated for short periods of time.
^ MTV - minimum trigger value the.

* The QWQG recommends setting temperature guidelines for protection of aquatic ecosystems so that median discharge temperature lies within the 20th and 80th percentiles of observed temperature variations. Significant diel and seasonal variation in temperature are evident within river systems. Ensuring an appropriate data set from which to identify these percentiles is problematic since samples are often collected in particular seasons and during daylight hours

Water Quality Guidelines and Objectives

Section 3

3.2 Application of Water Quality Guidelines

The guideline trigger values can be used as a benchmark against which potential developments or discharges can be assessed. However, in assessing the impacts of any discharge to the environment the guidelines should not be used on a pass or fail basis, but rather within a risk assessment framework (s3.1.1.3, ANZECC \& ARMCANZ, 2000).

The in-stream dynamics of water flow and quality (as well as the interactions between contaminants) make it difficult to make definitive statements regarding the environmental effects of particular levels of water quality. QWQG and AWQG suggest the use of aquatic health measures in preference to physico-chemical measures since ecological systems reflect the full range of conditions encountered including droughts, floods, and episodic changes in water quality.

Setting water quality guideline values for ephemeral streams is problematic and is not dealt with definitively by either by the QWQG or the AWQG. Notes within the QWQG recognise that ephemeral streams and residual pools will have poorer water quality (particularly dissolved oxygen and nutrients) than flowing streams. Due to evaporative concentration of salts within pools, it can be expected that salinity would also be marginally poorer in such systems when compared with flowing waters.

Smith et. al. (2004) completed a literature review of the effects of mining discharges to ephemeral waters identifying a wide range of ecological responses to water quality. Responses were dependent upon factors such as the level and continuity of exposure to contaminants, the type of contaminants, and the nature of the fauna.

It is therefore appropriate to consider the ecological risks of any changes in water quality likely to arise from any discharges. There is significant local information on flows, water quality and river health in the Upper Dawson River catchment to support this type of assessment.

Section 4

Existing Environment - Flow Regimes

4.1 Upper Dawson River and Tributaries

Baffle Creek, Dawson River upstream of Baffle Creek and Hutton Creek are predominately ephemeral streams. Under natural dry season conditions, Baffle and Hutton Creeks have dry beds interspersed with reasonably deep freshwater pools that probably act as refugia for flora and fauna. While no flow records are available for Baffle Creek, the nature of the streamline, catchment size, geology, aspect and close proximity to Hutton Creek suggest similar flow regimes can be expected.

The Dawson River dries up above the confluence with Baffle Creek, with some pools observed higher up the catchment. Downstream of Baffle Creek the Dawson River appears to maintain deep pools even during dry periods. Downstream of Hutton Creek, the Dawson River appears to be a continuously flowing stream probably maintained by spring flows.

Minor streamlines that feed these watercourses have intermittent flows and few refugia even during the wet season.

Flow and water quality records are available from a number of DNRW stations in the area (Figure 4-1).

Figure 4-1 DNRW Data Collection in the Upper Dawson Catchment

Existing Environment - Flow Regimes

Flow records from Hutton Creek (1972-1988) show substantial seasonal variation in flows. Monthly average flows exceed $33 \mathrm{ML} /$ day ($\sim 1000 \mathrm{ML}$ per month) in Hutton Creek on average one month in three. For wet season months there is a 50:50 chance of monthly flows exceeding $33 \mathrm{ML} /$ day. Maximum recorded average monthly flow in Hutton Creek is $18,275 \mathrm{ML} /$ day. The maximum recorded peak flow rate in Hutton Creek is 36,542 ML/day.

Flow records from Dawson River at Utopia (1966 - current) and from Dawson R at Taroom also show substantial seasonal variation in flows. The relative magnitude and peakiness of monthly average flows are shown for Hutton Creek, Dawson R at Utopia and Dawson R at Taroom in Figure 4-2.

Figure 4-2 Observed Average Monthly flows in Upper Dawson Catchment
Comparison of flow regimes is difficult from simple time series plots like the one shown above.
Flow duration curves are empirical cumulative distribution functions derived from observed flow data. They demonstrate the proportion of time that flows are less than or greater than particular values.

Figure 4-3a) is the flow duration curve for Hutton Creek, Dawson R at Utopia and Dawson R at Taroom truncated at $6000 \mathrm{ML} /$ day for clarity - it normally extends to $35000 \mathrm{ML} /$ day.

Figure 4-3 b) has been further truncated to demonstrate the low flow behaviour of each of the streams. It is clear that Hutton Creek regularly dries up. Based on the records, Dawson R at Utopia and Dawson R at Taroom are continuously flowing streams.

Section 4

Existing Environment - Flow Regimes

a) Full Duration Curve

b) Low Flow Portion of Flow Duration Curve

Figure 4-3 Duration Curves for Recorded Flows Upper Dawson River Catchment

Existing Environment - Flow Regimes

4.2 Dawson River Spring Flows

Stream gaugings under baseflow conditions at the end of the 2007 dry season show there are substantial freshwater inputs to the Dawson River downstream of the Hutton Creek confluence (URS, unpub. data) with over 80\% of the flow (Table 4-1) at Yebna Crossing coming from the shaded area in Table 4-4. According to a local land owner (Radel, pers. comm.) there are significant inflows to the Dawson River from a spring fed creek approximately 2 km downstream of the Hutton Creek confluence. Discharges from the Dawson River stream banks have also been observed in this area during river health surveys (S. Anderson, pers. comm.). Queensland EPA (2008) provides maps of springs that support these observations (Figure 4-5).

Table 4-1 Low flow gauging and water quality Upper Dawson River, October 2007

Site	Discharge (L/s)	Discharge (ML/day)	Electrical Conductivity ($\boldsymbol{\mu S} / \mathbf{c m}$)
Dawson d/s Baffle Creek	30	2.6	1500
Hutton u/s Dawson River	7	0.6	1400
Dawson River at Yebna Crossing	210	18.1	290
Estimated Spring Flows Hutton Creek Confluence to Yebna	173	14.9	35

Notes: ${ }^{1}$ by mass balance calculation
Spring inflows are fresh, but it seems unlikely that their electrical conductivity (EC) is as low as calculated in Table 4-1. Background EC in the Dawson River at Dawsons Bend at Yebna is normally of the order of $250 \mu \mathrm{~S} / \mathrm{cm}$. This is similar to the median water quality in water bores in the Precipice and Hutton Sandstone aquifers. Nevertheless, continuous EC records have occasionally detected values as low as $57 \mu \mathrm{~S} / \mathrm{cm}$ at Utopia (DNRW data). Presumably this reading is representative of locally fresh spring flows, but the possibility of instrument error or incorrect calibration also exists.

Figure 4-4 Dawson River springs area, flows and salinities, October 2007

Figure 4-5 Springs in the vicinity of Dawson Bend and Hutton Creek

Existing Environment - Flow Regimes

During March 2008 a detailed investigation was undertaken of the flows and water quality of springs discharging into the Dawson River along the reach extending Yebna Crossing upstream to the outflow of Hutton Creek to Yebna Crossing. Travel further upstream was restricted by topography.

Physical parameters (pH, EC, temperature, turbidity and DO) were measured using a Hydrolab ${ }^{\text {TM }}$ MS-5 multiprobe instrument at each spring inflow and at approximately 200 m intervals along the Dawson River. Where sufficient spring flow was present water samples were collected for laboratory analysis of a range of parameters (total metals, physico-chemical parameters, major cations and anions, nutrients indicators).

Flow measurements (gaugings) were taken where possible at springs and at regular intervals along the Dawson River. Gaugings were taken using a current meter to measure velocities at points along a cross section of the stream. Corresponding width and depth measurements were taken to provide an estimate of the flow.

With respect to flow regimes the survey identified ${ }^{2}$:

- More than thirty springs between the outflow of Hutton Creek and Yebna Crossing (Figure 4-6). Spring discharges ranged from very small bank seepages to flows of approximately $0.5 \mathrm{~L} / \mathrm{s}$.
- Extensive cattle access was evident particularly towards Yebna Crossing.
- A number of springs were noted in the stream bed and these appear to contribute the majority of flow in the area.
- Flow at Yebna Crossing was found to be approximately 250\% greater than upstream of Dawson’s Bend with the main contribution of flow occurring within 1.5 km downstream of Dawson's Bend.
- Flow at Yebna was 171 litres/second compared with 68 litres/second measured upstream of Dawson's Bend. Peak flow rate measured was 273 litres/second upstream of Yebna pond suggesting losses in or near the pond possibly to extractive use on the farm.
- Spring flows add significantly to the water flowing in the reach of the Dawson River downstream of Hutton Creek. It is estimated that the spring flow is approximately $17 \mathrm{ML} /$ day.

The water quality of spring flows is discussed further in Section 5.3.

[^23]Section 4
Existing Environment - Flow Regimes

Figure 4-6 Dawson River spring locations

Existing Environment - Water Quality

5.1 Overview of General Water Quality

Summaries of all available water quality data from sites upstream and downstream of the Fairview operations are provided in Appendix A. These tables are referred to throughout this section without specific reference.

Data were derived from the following sources:

- Monitoring data provided by Santos (from 1998 to 2002);
- River Health Assessments undertaken for Santos (from 2003 to 2007);
- Department of Natural Resources and Water (DNRW); and
- Spring flow and water quality assessment undertaken on behalf of Santos (URS, 2008).

Measurements of various water quality indicators have been collected including physical parameters, cations, anions, nutrients, trace elements and biological samples. In many instance too few samples are available to provide a fully representative set of water quality data.

5.1.1 Waters upstream of associated water discharges

The Upper Baffle Creek, Upper Hutton Creek and Upper Dawson River water quality monitoring sites lie above any influence from associated water discharge. When compared with the relevant MTVs (Table 3-2) these sites are characterised by:

Low Dissolved Oxygen (DO)

Many of the reported DO values are lower than would be reasonably expected and are likely to not be representative of actual conditions. If present the very low dissolved oxygen concentrations would be expected to cause stress to in-stream fauna and possible fish kills.

High pH

Waters in the Upper Dawson catchment are typically neutral to moderately alkaline (pH~8). However, recent field sampling (URS, 2008 unpub. data) shows some of the tributaries of the Dawson River naturally have pH circa 8.5.

High Boron

Concentrations of Boron were predominantly below the relevant MTV upstream of associated discharges with the exception of two slightly elevated concentrations in Dawson waterhole and upper Baffle creek. Boron is a widespread naturally occurring trace element of igneous rocks and is commonly found in sedimentary rocks of marine origin (ANZECC \& ARMCANZ, 2000).

High Zinc

Several concentrations of zinc marginally exceeding the relevant MTV were detected at sites upstream of associated water discharges. Zinc is an essential trace element that adsorbs to suspended material. Toxicity of zinc can increase with low dissolved oxygen (ANZECC \& ARMCANZ, 2000). However, levels of organic matter found in most freshwater streams are generally sufficient to remove zinc toxicity. Given the amount of

Section 5

Existing Environment - Water Quality

suspended sediment and relatively low zinc concentrations found in these streams it is unlikely that zinc would present a significant water quality issue.

High Iron Content

There were a number of very high iron concentrations observed at sites upstream of associated water discharges. Iron does not present a risk to livestock or ecosystem health at the concentrations detected. The main issues associated with high levels of iron are precipitation and biofouling resulting in blockages of irrigation equipment (ANZECC \& ARMCANZ, 2000).

High Suspended Solids (TSS) and High Turbidity

The soils and slopes in the area are susceptible to erosion. This has been exacerbated by the removal of vegetation in agricultural areas, and unrestricted stock access to streams. The nature of flooding in the area is a major factor driving suspended solids transport and erosion processes.

Chlorophyll-a and nutrient enrichment

Nutrient enrichment, high turbidity, high TSS and Chlorophyll a levels at sites upstream and downstream of associated water discharges suggest that these water quality issues are likely to be due to the general erosive nature of soils and existing grazing activities in the catchment.

Other Observations

There was one observation of lead marginally exceeding the MTV. Lead is generally present in very low concentrations in natural waters and is readily adsorbed to suspended matter.

Electrical conductivity readings upstream of associated water discharges are typically in the order of $150 \mu \mathrm{~S} / \mathrm{cm}$, but can range from 70 to $1,800 \mu \mathrm{~S} / \mathrm{cm}$.

5.2 Longitudinal Changes in Dawson River Water Quality

Water quality changes along the Dawson River were examined based upon data from five sites. Table 5-1 provides a summary of water quality data from these sites. Table $5-2$ provides a list of significant differences in median water quality utilising a two-sided Mann-Whitney U Test at 95% confidence level ${ }^{3}$.

The Upper Dawson River (at Arcadia) is a small stream upstream of any associated water discharges. Wide variation in EC is evident at this site and significant deviations from MTV are evident for TSS, iron and phosphorus/phosphate. High TSS and phosphorus readings at this site may indicate the effects of locally erosive soils, land clearing and/or animal grazing.

A statistically significant decrease in median temperature ($p<0.05$) is evident between Upper Dawson River and Dawson River d/s Baffle Creek. The Upper Dawson River is characterised by wide sand beds with shallow pools compared with deeper pools, narrower channel form and dense riparian vegetation downstream of Baffle Creek. The change in median temperature is within the variation that has been observed between open and shaded

[^24]
Existing Environment - Water Quality

Section 5

areas in the Dawson River (URS, 2008 unpub, data). No other significant changes in median temperatures were identified.

A statistically significant and large increase in median EC is evident between the Upper Dawson River (215 $\mu \mathrm{S} / \mathrm{cm}$) and Dawson River d/s Baffle Creek ($876 \mu \mathrm{~S} / \mathrm{cm}$), followed by a statistically significant decrease back to near the Upper Dawson River median EC at Yebna Crossing ($247 \mu \mathrm{~S} / \mathrm{cm}$). Between Yebna Crossing and Utopia ($289 \mu \mathrm{~S} / \mathrm{cm}$) a statistically significant but small increase in median EC is evident. No statistically significant difference in median EC is evident between Utopia and Taroom. These results suggest there is a significant increase in EC due to associated water discharges from Baffle Creek, but sufficient dilution to return salinity to background levels at Yebna Crossing. This is consistent with the discussion of spring flows in Section 4.2.

The increase in salinity between Yebna and Utopia is small and may be the result of more saline spring flows between these two sites.

Downstream sites on the Dawson River are generally more saline than headwater sites. Median salinity (EC) at Utopia is significantly higher than in the Upper Dawson River. Median total dissolved solids at Yebna Crossing are significantly higher than at Upper Dawson River.

Section 5
 Existing Environment - Water Quality

Table 5-1 Longitudinal water quality in the Dawson River

Water Quality Indicator		Units	MTV	Upper Dawson River				Dawson R d/s Baffle Ck				Dawson R at Yebna Xing				Dawson R at Utopia				Dawson R at Taroom				
		Min		Med	Max	n	Min	Med	Max	n														
PhysicoChemical Parameters	Electrical Conductivity		$\mu \mathrm{S} / \mathrm{cm}$ at 25 C	340	50	215	1702	12	182	876	1498	24	110	247	435	46	78	289	551	139	87	260	525	288
	pH	Stand	6.5-8.0	6.6	7	7.1	5		7.1		1	7.2	7.75	8	6	7	7.81	8.5	138	6.5	7.6	8.5	228	
	Temperature	C		15.4	25.5	28	12	13	23	28	23	12	24	28	43	8	22	77	122	9	23.1	31	182	
	Total dissolved solids	mg/L	1000	46	146	194	12	124	596	1019	24	75	168	296	46	58	160	317	130	60	152	306	173	
	TSS	mg / L	10	52	75	125	4		32		1	2	8	142	5	0	14.5	2460	114	2	50	4900	126	
$\begin{aligned} & \text { Inorganic Non- } \\ & \text { Metallic } \\ & \text { Parameters } \end{aligned}$	Bicarbonate Alkalinity	mg/L - CaCO3	-	28	95	151	5		130		1	87	113.5	130	6	24	134	289	130					
	Chloride	mg/L	<175	3	8	12	5		20		1	19	20.5	22	6	3	25	70	130	4	20.6	59.9	140	
	Fluoride	mg/L	1	0.1	0.1	0.24	5		0.31		1	<0.1	0.13	0.23	6	0.06	0.11	0.4	126	0.08	0.13	0.7	132	
	Sulphate	mg / L	400	<1	5	<10	5		<1		1	<1	7.5	<10	6	0	2	13	97	0	2	11	116	
Cations	Calcium	mg / L	1000	1	6	18	5		12		1	7	10.8	17	6	5.2	17	40	130	4.3	18	44	140	
	Magnesium	mg / L		1	5	6.1	5		3.5		1	4	5.5	6.2	6	1.5	6.5	15	130	1.4	5.2	11.8	140	
	Potassium	mg / L		<1	6	10.7	5		7.4		1	3	3.2	6	6	2.2	4	7.7	121	2.4	5.1	7.5	130	
	Sodium	mg/L	<115	3	11	22	5		59		1	27	28	33	6	7.5	32.7	112	130	7.7	28	65.8	140	
Nutrients	Ammonia-Nitrogen	$\mu \mathrm{g} / \mathrm{L}$	20	10		590	3		93		1	<10	10	14	3	0	20.1	150	56	4.3	31.8	163	53	
	Nitrate as ($\mathrm{NO}_{3}{ }^{\text {- }}$	mg / L			128		1		305		1		<44		1	2	192	7724	81	160	1080	10000	102	
	Total Phosphorous	$\mathrm{mg} / \mathrm{L}-\mathrm{P}$	50	<10	125	1900	4		76		1	<10	40	280	5	3	55	550	59	4	157	1387	71	
Trace elements	Boron	$\mu \mathrm{g} / \mathrm{L}$	370	<100	<100	500	5		480		1	16	<100	600	6	0	20	170	73	10	50	1000	73	
	Iron	$\mu \mathrm{g} / \mathrm{L}$	200	4407		5100	2		2300		1	76		390	3	1	165	460	3	10	60	4800	93	
	Lead	$\mu \mathrm{g} / \mathrm{L}$	3.4	<1		3	2		<1		2		<1		2		<1		3					
	Zinc	$\mu \mathrm{g} / \mathrm{L}$	8	<1		14	2		20		1	<1		<10	2	<1		<10	2	10	20	700	60	

Table 5-2 Differences in median water quality along the Dawson River

Water Quality Parameter Name	Units	Upstream			Downstream			Sig	p
		Site	Median	n	Site	Median	n		
Temperature	C	Upper Dawson River	25.5	12	Dawson R d/s Baffle Ck	23	24	V	0.018
		Dawson R d/s Baffle Ck		24	Dawson R at Yebna Xing		43	-	0.558
		Dawson R at Yebna Xing		43	Dawson R at Utopia		122	-	0.278
		Dawson R at Utopia		122	Dawson R at Taroom	23	182	-	0.109
EC	$\mu \mathrm{S} / \mathrm{cm}$ at 25C	Upper Dawson River	215	12	Dawson R d/s Baffle Ck	876	24	\triangle	0.0002
		Dawson R d/s Baffle Ck	876	24	Dawson R at Yebna Xing	247	46	∇	0.0000
		Dawson R at Yebna Xing	247	46	Dawson R at Utopia	289	139	\triangle	0.012
		Dawson R at Utopia		139	Dawson R at Taroom	260	288	-	0.719
Total dissolved solids	Mg/L	Upper Dawson River	146	12	Dawson R d/s Baffle Ck	596	24	A	0.0000
		Dawson R d/s Baffle Ck	596	24	Dawson R at Yebna Xing	168	46	∇	0.0000
		Dawson R at Yebna Xing		46	Dawson R at Utopia		130	-	0.234
		Dawson R at Utopia	160	130	Dawson R at Taroom	152	173	\triangle	0.007
NOTES									
Sig p Δ and ∇	Medians a indicates Mann-Whit indicates indicates an indicates n	only shown where a statisticall stically significant difference in U Test used as tests on var al level of significance e.g. $p=$ ncrease/decrease in median v ignificant change from upstre	ificant diffe dians at the indicate po indicates a from upst downstrea	ence 5\% C sible 5\% ch am to	s been identified. fidence level using a Mann ferences. nce that the medians are the ownstream.	ey U Test. rent.			

Section 5

Existing Environment - Water Quality

5.3 Water Quality circa the Dawson River Springs

Between the outflow of Hutton Creek and Yebna Crossing there are discharges to the Dawson River from freshwater springs. Water quality upstream, in the vicinity of, and downstream of springs is examined for differences. Table 5-3 provides a summary of available water quality data from sites in the vicinity of the Dawson River spring flows. Table 5-4 provides a summary list of statistically significant differences in water quality parameter values between these sites utilising a two-sided Mann-Whitney U Test at 95\% confidence level.

Only limited data is available to explore differences in median water quality parameters at Dawson River d/s Hutton \#1, Dawson River d/s Hutton \#2 and Dawson Bend. These sites are closely spaced downstream of Hutton Creek and lie in the vicinity of the Dawson River spring flows. No statistically significant differences in median water quality parameter values were identified between these sites.

Between Dawson Bend and Yebna Crossing some statistically significant changes in median water quality parameter values are evident.

- Median sodium and chloride concentrations are higher at Yebna although there is no significant difference in median electrical conductivity.
- Median pH is significantly higher at Yebna than at Dawsons Bend.
- Median concentrations of calcium are significantly lower at Yebna based upon the full datasets. However restricting the analysis to data coincident at both sites did not lead to an indication that there is a significant difference in medians. This suggests that the variability of observed data is more limited at Dawson Bend given only six samples are collected. Data at Dawson Bend is from river health sampling and is biased towards conditions at the start and end of wet season when this sampling occurs.
- Additional data is required to clearly understand the implications of these results, however, they appear consistent with the observations of spring inflows in the area.
- A comparison of surface spring water quality with the Dawson River indicates:
- Water from the surface springs has a flow weighted EC $254 \mu \mathrm{~S} / \mathrm{cm}$, temperature $21^{\circ} \mathrm{C}$ and pH 6.8 .
- Surface springs exhibit higher alkalinity, major ion and fluoride concentrations than the Dawson River. Concentrations of iron and zinc are substantially higher in spring flows compared with the Dawson River and lower Hutton Creek, above the MTVs (Table 5-3).

Existing Environment - Water Quality

Section 5
Table 5-3 Dawson River water quality circa spring flows

Water Quality Indicator		Units	MTV	Lower Hutton Creek				Dawson R d/s Hutton \#1				Dawson R d/s Hutton \#2				Dawson Bend				Dawson R at Yebna Crossing				Springs				
		Min		Med	Max	n	Min	Med^ ${ }^{\text {A }}$	Max	n																		
	Electrical Conductivity		$\begin{aligned} & \mu \mathrm{S} / \mathrm{cm} \\ & \text { at } 25 \mathrm{C} \end{aligned}$	340	131	233	1294	16	129	265	266	6	134	249	282	5	136	251	273	6	110	247	435	46	132	301	890	33
	pH	Units	6.5-8.0	6.6	7.85	8.3	16	6.2	6.95	7.4	6	7	7.2	7.6	5	6.4	6.9	7.3	6	7.2	7.8	8	6	5.8	7	7.8	33	
	Temp	C	na	9.7	23.2	31	15	9.3	18.4	22.5	6	13.8	21.8	25.1	5	16.7	20.2	24.6	6	12	24	28	43	12.9	19.5	26.2	33	
	TDS	mg/L	1000	5	28	630	16	88	126	160	6	124	160	922	5	92	129	220	6	75	168	296	46	90	205	605	33	
	TSS	mg/L	10	-	-	-	-	3	12	316	6	3	11	292	5	4	12	366	4	2	8	142	5	-	-	-	-	
	Bicarbonate Alkalinity $\left(\mathrm{CaCO}_{3}\right)$	mg/L	na	65	100	820	16	54	112	150	6	56	111	150	5	55	118	157	6	87	114	130	6	55	125	280	22	
	Chloride	mg/L	175	4	18	355	16	8	12.5	16	6	8	12	14	5	9	13.5	15	6	19	20.5	22	6	13	23	166	22	
	Fluoride	mg/L	1	<0.1	0.1	1.4	12	<0.1	0.2	0.21	6	<0.1	0.17	0.21	5	<0.1	0.2	0.28	6	<0.1	0.13	0.23	6	<0.1	1.2	1.3	22	
	Sulphate	mg/L	400	<1	5	170	12	<1	10	<10	6	<1	10	<10	5	<1	7.5	<10	6	<1	7.5	<10	6	<1	<1	64	22	
	Calcium	mg/L	1000	5	16	85	16	1	15	21	6	1	14	26	5	1	14	19	6	7	10.8	17	6	4	21	91	22	
	Magnesium	mg/L	na	2	5	67	16	2	7.5	9.2	6	2	7	11	5	<1	7.7	9.2	6	4	5.5	6.2	6	1	8	28	22	
	Potassium	mg/L	na	2	5	10	16	3	3	5	6	3	3	6	5	2.3	3	5	6	3	3.2	6	6	2	2	9	22	
	Sodium	mg/L	115	9	21	280	16	15	20.5	23	6	15	20	28	5	15	21	27	6	27	28	33	6	24	28	63	22	
$\begin{aligned} & \frac{n}{c} \\ & .0 .0 \\ & \frac{1}{2} \\ & \hline \end{aligned}$	Ammonia (as $\mathrm{N})$	mg/L	0.02	$\begin{gathered} <0.0 \\ 1 \\ \hline \end{gathered}$	0.16	0.24	3	<0.01	0.02	0.04	4	$\begin{gathered} <0.00 \\ 6 \\ \hline \end{gathered}$		<0.01	3	$\begin{gathered} <0.00 \\ 6 \\ \hline \end{gathered}$		<0.01	3	<0.01	0.01	0.014	3	-	-	-	-	
	$\begin{gathered} \text { Nitrate as } \\ \mathrm{NO}_{3} \\ \hline \end{gathered}$	mg/L	na	0.1	1.2	4	9		<0.04		1		<0.04		1		<0.04		1		<0.04		1	-	-	-	-	
	Total Phosphorous	mg/L	0.05	$\begin{gathered} \hline 0.0 \\ 1 \\ \hline \end{gathered}$	0.095	0.23	5	<0.01	0.05	0.58	6	<0.01	0.05	0.68	5	0.02	0.05	0.75	5	<0.01	0.04	0.28	5	-	-	-	-	
	Boron	$\mu \mathrm{g} / \mathrm{L}$	370	<0.1	0.06	800	12	16	100	400	6	15	100	400	5	<0.1	7	500	6	<0.1	8	600	6	<100	<100	50	22	
	Iron	$\mu \mathrm{g} / \mathrm{L}$	200	62	1700	2358	3	60		1400	3	66		950	3	23		1200	3	76		390	3	140	1090	14900	22	
	Lead	$\mu \mathrm{g} / \mathrm{L}$	3.4	<1		2	2		<1		2		<1		2		<1		2		<1		2	<1	<1	4	22	
	Zinc	$\mu \mathrm{g} / \mathrm{L}$	8	<10		1.5	2	<10		17	2	<1		<10	2	<1		<10	2	<1		<10	2	2.5	5	21	22	

NOTES: BOLD Result greater than relevant MTV
\wedge for the purposes of calculating the median, where results are reported as less than the LOR a value of half the LOR has been adopted

Section 5

Existing Environment - Water Quality

Table 5-4 Differences in median water quality Dawson Bend and Yebna Crossing

wQ parameter	Units	Dawson Bend	Yebna Crossing	\mathbf{p}	Sig
Electrical Conductivity	$\mu \mathrm{S} / \mathrm{cm}$ at 25 C	251	247	0.113	-
pH	Stand.	6.9	7.75	0.010	Δ
Total Dissolved Solids	mg / L	129	168	0.1254	-
Total Suspended Solids	mg / L	12	8	0.462	-
Sodium	mg / L	21	28	0.010	Δ
Potassium	mg / L	3	3	0.472	-
Calcium	mg / L	14.0	11.0	0.423	$\mathbf{\nabla}^{*}$
Magnesium	mg / L	7.5	5.5	0.066	-
Alkalinity as HCO	mg / L	118	114	0.522	-
Chloride	mg / L	13.5	20.5	0.005	Δ
Fluoride	mg / L	0.19	0.13	0.689	-

NOTES:
p indicates level of significance e.g. $\mathrm{p}=0.05$ indicates a 95% chance that the medians are the different.
Sig indicates direction of statistically significant change.

* restricting data sets to coincident time pairs removes the significance of this result; all other results remain the same.

5.4 Existing impacts on water quality from discharge to grade

Sites that currently receive some associated water on Hutton, Baffle and the Dawson River generally exhibit similar characteristics to upstream sites, with the following exceptions:

Fluoride

At sites downstream of current associated water discharges, fluoride was detected marginally above the MTV. Fluoride occurs naturally usually in the form of the mineral fluorspar. The main environmental impacts related to fluoride compounds are in respect of hydrogen fluoride, which immediately converts to hydrofluoric acid on contact with moisture. Under normal ranges of pH in surface waters reaction to hydrofluoric acid is very unlikely to occur. It is unlikely that the concentrations of fluoride detected would cause significant environmental harm.

Sodium

Elevated concentrations of sodium were observed in the River Health Assessments (2004 to 2007) at Baffle Creek outflow predominantly and occasionally at Upper Hutton Creek (i.e. above petroleum operations) and Hutton Creek but not at other sites downstream.

Electrical Conductivity (Salinity)

Electrical conductivity is typically elevated at those sites that receive associated water compared with upstream sites. Readings in Baffle, Hutton and Dawson Rivers ranged from approximately 150 to $1800 \mu \mathrm{~S} / \mathrm{cm}$.

pH

Occasional high pH readings $(\mathrm{pH}=9)$ have been identified during river health sampling in Baffle Creek.

Existing Environment - Water Quality

5.4.1 Minor Streamlines

A number of minor streamlines exist on the escarpment amongst the existing CSG operations. These streams typically only contain water during significant rainfall events and have few refugia. They are significantly degraded due to extensive land clearing, removal of riparian vegetation and stock access. The area is highly erosive, and unlimited stock access has denuded riparian vegetation, created erosion points, and provides direct nutrient inputs (Simmons and Bristow, 2007). Streamlines generally exhibit significant bank erosion and are incised in the landscape down to bedrock with slopes significantly greater than surrounding land contours. Some small depositional areas exist, but in general terms once rock has been reached the erosion toe moves upstream.

Due to the intermittent flows, widespread removal of riparian vegetation and active erosion in these streamlines it is highly probable that the ecosystems are under significant stress. In addition to this degradation, some streamlines have received associated water discharge to grade for the last $10-15$ years. Associated water discharges contribute continuous releases of
low dissolved oxygen, high temperature and moderate salinity water. The status of these streamlines is therefore considered heavily disturbed and this has been supported by a rapid and qualitative ecological survey (URS unpub. data 2008). Further work is planned to assess whether there is a marginal decline in streamline condition between cleared streamlines and cleared streamlines receiving associated water discharges.

A detailed quantitative study into the impacts of associated water discharge on the ecological condition of these streamlines found the addition of associated water changes the streamline environment substantially (URS unpub. data). Streamlines were investigated during the 2008 dry season, where flow was comprised entirely of associated water discharge. Water immediately below the point of discharge was found to exhibit high temperatures and pH , and low dissolved oxygen and turbidity, often dominated by algae. Dissolved oxygen and temperature tended to equilibrate within approximately 500 m . EC remained stable, and pH increased downstream of the discharge point.

Diatoms, sensitive to changes in salinity and temperature, were selected as indicators of ecological health. Diatom diversity was found to be similar between control sites and sites upstream and downstream of associated water discharge. However, a significant difference in species assemblage was observed between upstream sites or control sites, and downstream sites.

5.4.2 Baffle Creek

Two water quality sampling sites have been monitored on Baffle Creek, one upstream and one downstream of associated water discharges. The upstream site exhibits significant variations in water quality between samples possibly suggesting that data may not all come from the same site, or that sporadic contamination of the waters occurs from some upstream activity.

Comparisons of upper and lower Baffle Creek data (Table 5-5) indicate highly significant ($p<0.01$) increases in median salinity, TDS, alkalinity, chloride and sodium downstream. Significant ($p<0.05$) increases in fluoride and boron also occur downstream. Significant ($p<0.05$) decreases in median temperature and magnesium are also observed between upstream and downstream sites.

Section 5

Existing Environment - Water Quality

5.4.3 Hutton Creek

There is insufficient data to allow a valid statistical comparison of upstream and downstream water quality condition along Hutton Creek. However, there is sufficient data to allow a pre (1985 or before) vs post (post 1985) associated water discharge comparison of water quality in Lower Hutton Creek (Table 5-6). MannWhitney U tests at 9% significance level identified a significant decrease in median pH and a significant increase in median potassium concentration post associated water discharge to Hutton Creek. No other significant differences in median concentrations/values were apparent.

Table 5-5 Comparison of upstream and downstream water quality Baffle Creek

Water Quality Parameter Type	Water Quality Parameter Name	Units	MTV	Upper Baffle Creek				Lower Baffle Creek				Comparison UIS to D/S	
				Min	Med	Max	n	Min	Med	Max	n	Sig	p
Physico-Chemical Parameters	Electrical Conductivity	$\mu \mathrm{S} / \mathrm{cm}$ at 25 C	340	67	162	1901	27	188	1260	1864	29	\triangle	0.003
	pH	Stand	6.5-8.0	6.6	7.25	7.8	6	6.9	8.1	8.9	5	-	0.068
	Temperature	C		14	24	32.7	25	12	20	27	23	∇	0.034
	Total dissolved solids	mg/L	1000	43	126	1293	27	128	852	1168	29	\triangle	0.003
	TSS	mg/L	10	6	48	49	5	10	37	76	5	-	0.835
Inorganic Non-Metallic Parameters	Bicarbonate Alkalinity	$\mathrm{mg} / \mathrm{L}\left(\mathrm{CaCO}_{3}\right)$	-	47	72	99	6	570	694	916	6	\triangle	0.005
	Chloride	mg/L	<175	<0.5	7	9	6	36	56	93	6	A	0.005
	Fluoride	mg/L	1	<0.1	0.32	0.43	6	0	1	2	6	\wedge	0.031
	Sulphate	mg/L	400	<1		<10	6	<1	<10	24	6	-	0.522
Cations	Calcium	mg/L	1000	<1	1	15	6	<1	1	7	6	-	0.174
	Magnesium	mg / L		1.9	4	7	6	1	2	3	6	V	0.037
	Potassium	mg/L		4.5	6	12	6	4	6	8	6	-	0.689
	Sodium	mg / L	<115	<1	8	17	6	162	290	437	6	\wedge	0.005
Nutrients	Ammonia-Nitrogen	mg/L	20					0.016	-	0.12	3	NA	-
	Nitrate-Nitrogen	mg / L						<0.01	-	$\begin{gathered} <0.01 \\ 2 \end{gathered}$	1	NA	-
	Phosphorus/Phosphate	mg / L - P	50					66	185	350	5	NA	-
Trace elements	Boron 2	$\mu \mathrm{g} / \mathrm{L}$	370	<0.1		500	6	200	450	700	6	\wedge	0.025
	Iron	$\mu \mathrm{g} / \mathrm{L}$	200	81		1800	3	1300	-	6362	3	-	0.190
	Lead	$\mu \mathrm{g} / \mathrm{L}$	3.4	<1	<1		2	<1	-	8	2	NA	-
	Zinc	$\mu \mathrm{g} / \mathrm{L}$	8	8.3		<10	2	3	-	14	2	NA	-

Table 5-6 Comparison of upstream and downstream water quality Hutton Creek

Water Quality Parameter Type	Water Quality Parameter Name	Units	MTV	Upper Hutton Creek				Lower Hutton Creek				Comparison U/S to DIS		Lower Hutton Creek comparison pre to post								
								Pre (<=1985)	Post (>1985)		Sig			p								
				Min	Med	Max	n					Min	Med		Max	n	Sig	p	Med	n	Med	n
Physico-Chemical Parameters	Electrical Conductivity	$\mu \mathrm{S} / \mathrm{cm}$ at 25 C	340	156		1478	2	131	233	1294		16	NA	-		10		6	-	1.000		
	pH	Stand	6.5-8.0	6.6		7.9	2	6.60	7.85	8.30	16	NA	-	7.95	10	7.2	6	∇	0.045			
	Temperature	C						9.7	23.2	31.0	15	NA	-		9		6	-	0.377			
	Total dissolved solids	mg / L	1000	190		1139	2	5	28	630	16	NA	-		10		6	-	0.704			
	TSS	mg / L	10		570		1	-	-	-	-	NA	-		10		6	-	0.129			
Inorganic Non-Metallic Parameters	Bicarbonate Alkalinity	mg/L - CaCO 3	-		314		1	65	100	820	16	NA	-		10		6	-	0.914			
	Chloride	mg/L	<175	6		267	2	4	18	355	16	NA	-		10		6	-	0.871			
	Fluoride	mg/L	1	0.1		0.31	2	<0.1	0.1	1.4	12	NA	-		8		6	-	0.273			
	Sulphate	mg / L	400	<1		120	2	<1	5.0	170	12	NA	-		9		6	-	1.000			
Cations	Calcium	mg / L	1000	20		91	2	5	16	85	16	NA	-		10		6	-	0.129			
	Magnesium	mg / L			16		1	2	5	67	16	NA	-		10		6	-	0.588			
	Potassium	mg / L			9		1	2	5	10	16	NA	-	4.7	10	7.0	6	\triangle	0.020			
	Sodium	mg/L	<115	14		133	2	9	21	280	16	NA	-		10		6	-	0.481			
Nutrients	Ammonia-Nitrogen	mg / L	20		51		1	<. 01	0.16	0.24	3	NA	-									
	Nitrate (as NO_{3})	mg / L			0.17		1	0.1	1.2	4.0	9	NA	-									
	Phosphorus/Phosphate	mg / L - P	50		170		1	<10	95	230	5	NA	-									
Trace elements	Boron	$\mu \mathrm{g} / \mathrm{L}$	370	32		<100	2	10	50	800	12	NA	-		6		6	-	0.078			
	Iron	$\mu \mathrm{g} / \mathrm{L}$	200		1900		1	62	1700	2358	3	NA	-									
	Lead	$\mu \mathrm{g} / \mathrm{L}$	3.4		4.8		1	<1		2	2	NA	-									
	Zinc	$\mu \mathrm{g} / \mathrm{L}$	8		1.5		1	<10		1.5	2	NA	-									

	FAIRVIEW FIELD - CASE STUDY OF ASSOCIATED WATER DISCHARGES
Section 5	Existing Environment - Water Quality
Notes for Table 5-5 and Table 5-6:	
	indicates observation exceeds MTV
Sig	indicates statistically significant difference in medians at the 95% confidence level using a Mann Whitney U Test. Mann-Whitney U Test used as tests on variance indicate possible differences.
p	indicates actual level of significance e.g. $\mathrm{p}=0.05$ indicates a 95% chance that the medians are the different.
\triangle and ∇	indicates a significant increase/decrease in median value
-	indicates no significant change in medians
U/S to D/S	indicates change is presented as from upstream to downstream
NA	Indicates insufficient data to complete the test

5.4.4 Dawson River at Utopia

The only significant differences in pre to post associated water discharge median spot water quality are as shown in Table 5-7 (Mann-Whitney U test, 95\% significance).

Table 5-7 Significant differences in median water quality - Dawson R at Utopia

WQ Parameter	Units	Median $(\mathbf{1 9 6 4 - 1 9 8 5)}$	Median $(\mathbf{1 9 8 5} \mathbf{- 2 0 0 7)}$	\mathbf{p}	Sig
Electrical Conductivity	$\mu \mathrm{S} / \mathrm{cm}$ at 25 C	311	284	0.0090	$\boldsymbol{\nabla}$
Total Dissolved Solids	mg / L	173	153	0.0019	$\boldsymbol{\nabla}$
Calcium	mg / L	20.5	16.0	0.0000	$\boldsymbol{\nabla}$
Magnesium	mg / L	7.50	6.00	0.0008	$\boldsymbol{\nabla}$
Alkalinity as HCO 3	mg / L	150	127	0.0000	$\boldsymbol{\nabla}$
Chloride	mg / L	29.0	24.0	0.0017	$\boldsymbol{\nabla}$
Sulphate	mg / L	3.30	1.72	0.0001	$\boldsymbol{\nabla}$
Boron	$\mu \mathrm{L} / \mathrm{L}$	20	100	0.0024	Δ

Where:
p indicates level of significance e.g. $p=0.05$ indicates a 95% chance that the medians are different.
Sig indicates direction of statistically significant change

5.4.5 Continuous Salinity Data

Simultaneous continuous streamflow, temperature and EC data have also been collected by DNRW at the Dawson River at Utopia Downs site for 10 years (1997-2007).

Mean EC is $280+/-140 \mu \mathrm{~S} / \mathrm{cm}$ and median EC is $289 \mu \mathrm{~S} / \mathrm{cm}$ suggesting little skew in the data. This is confirmed by Figure 5-1 which shows a reasonably symmetric distribution of hourly EC readings.

The range of observed EC is significant. Minimum recorded EC is $57 \mu \mathrm{~S} / \mathrm{cm}$ and maximum is $800 \mu \mathrm{~S} / \mathrm{cm}$. The 90% confidence interval for the data is $163-396 \mu \mathrm{~S} / \mathrm{cm}$.

Existing Environment - Water Quality

There is evidence of a statistically significant but small reduction in spot EC pre to post associated water discharge (Table 5-7). However, the symmetry of the hourly distribution of continuous EC data and the lack of an obvious step change or trend in hourly EC time series (Figure 5-2) suggests this change may be due to sampling bias rather than the influence of associated water discharges.

Figure 5-1 Distribution of Hourly Electrical Conductivity, Dawson R at Utopia

Figure 5-2 EC Time Series Record Dawson River at Utopia Downs, 2003-2007

Section 5

Existing Environment - Water Quality

Differences in the binomial proportions of MTV exceedances for electrical conductivity and suspended solids pre- and post-establishment of Tipperary in 1985 were examined at Utopia. The analysis showed there was no statistically significant difference in observations before or after the establishment of Tipperary for both parameters and suggests sufficient dilution exists within the river system to maintain downstream water quality at Utopia under existing associated water discharges.

Significant dilution of salinity occurs on the rising limb of hydrographs during the passage of floods and freshes; sometimes reaching as low as $\sim 60 \mu \mathrm{~S} / \mathrm{cm}$. EC returns to pre-event levels over a period of 20 days or so as flows progressively becomes dominated by interflow, spring flow and/or baseflow. These behaviours are demonstrated in Figure 5-3.

Figure 5-3 Dawson River at Utopia Downs EC and Flow Relationships

5.4.6 Continuous Water Temperature Data

There is a strong seasonal and diurnal range of temperature in the Dawson River at Utopia where a range of 7C to 34C has been observed (Figure 5-4).

In the Dawson River at Taroom a water temperature range of 8 C to 26 C has been observed with similar seasonal patterns to those at Utopia Downs.

Existing Environment - Water Quality

Qld NRW WaterShed
Period 10 Year Plot Start 00:00_01/10/1996
Interval 1 Month Plot End 00:00_01/10/2006

- 130324A
- 130324A Dawson R Utopia Dns

Figure 5-4 Water Temperature and Flow at Dawson River at Utopia Downs

5.4.7 Continuous Water Quality Data at Fairview

URS temporarily deployed six Hydrolab ${ }^{\text {TM }}$ data loggers in Baffle and Hutton Creeks, and two locations in the Dawson River, as shown in Figure 5-5 and summarised in Table 5-8 below.

The instruments recorded continuous (1/2-1 hourly) measurements between June through Augsut 2008 (ongoing) of EC, pH, DO, turbidity, temperature and relative depth. Prior to initial deployment the instruments were calibrated using standardised solutions. At approximately six week intervals data sets were downloaded, the instruments cleaned, calibrated and re-deployed. Independent water quality measurements were taken for quality control purposes each time the instruments were redeployed using a TPS90FLT multi-parameter water quality instrument.

Section 5

Existing Environment - Water Quality

NB 1 cumec $=86.4 \mathrm{ML} /$ day
Figure 5-5 Water Temperature and Flow at Dawson River at Utopia Downs
Table 5-8 Data Logger Site Locations

Site Name	Easting	Northing	Upstream/Downstream AW Discharge
Baffle Creek @ Waterview	681640	7168024	Upstream
Lower Baffle Creek	698965	7168306	Downstream
Hutton Creek @ Moonah	691576	7146417	Upstream
Lower Hutton Creek	697890	7155260	Downstream
Dawson's Bend	710193	7152667	Downstream
Yebna Crossing	722336	7156534	Downstream

Hutton Creek

EC concentrations in Hutton Creek downstream of associated water discharges are approximately $300 \mu \mathrm{~S} / \mathrm{cm}$ higher than recorded upstream, and show less variation during floods (Figure 5-6). Conversely pH at both sites is circumneutral, with levels at both sites within 0.5 units.

Figure 5-6 Comparison of EC levels upstream and downstream of associated water discharge in Hutton Creek, July - September 2008

Baffle Creek

Electrical conductivity and pH at a site downstream of associated water discharge (Lower Baffle Creek) are consistently higher than upstream (Baffle Creek at Waterview). Comparison of concentrations of EC and pH between the two sites are shown in Figure 5-7 below.

Figure 5-7 Comparison of Upstream/Downstream Baffle Creek EC and pH

Dawson River at Dawson's Bend and Yebna Crossing

Comparison of EC, pH, DO, temperature, turbidity and Eh measurements collected at Yebna Crossing and Dawsons Bend indicates:

- DO and temperature fluctuate diurnally (Figure 5-8). DO measurements at Dawson's Bend are lower and temperature is higher than at Yebna Crossing. DO generally decreases with increasing temperature,

Section 5

Existing Environment - Water Quality

consistent with these observations. The higher temperatures recorded at Dawsons Bend may be attributed to the influence of springs, as discussed in Section 22 above.

Figure 5-8 Dawson's Bend and Yebna Crossing Temperature and DO Levels

- EC is reasonably consistent at each site Figure 5-8. Although slightly higher at Dawson's Bend than at Yebna Crossing, levels are well within the expected range of variability for EC measurement.
- pH is reasonably consistent at each site, but is consistently higher at Yebna Crossing than at Dawsons Bend.
- Turbidity is variable, largely fluctuating in accordance with varying depth. An increase in turbidity is noted at both sites following a rainfall event.

5.4.8 Water Quality Profiles

Associated water has comparatively high salinity, pH and temperature when compared with the average existing surface water environments. An area of concern therefore is the potential for stratification of the water column in

Existing Environment - Water Quality

deeper ponded waters receiving associated water discharge. To assess for the presence of halocline (a strong vertical salinity gradient) or thermocline (temperature gradient) vertical profiles were taken at sites downstream of associated water discharges on Baffle Creek and Hutton Creek, and at Dawsons Bend on the Dawson River.

In the thalweg of each ponded area quality parameters including EC , temperature, pH , turbidity, EC, DO and redox were measured at roughly 0.1 m vertical intervals using a Hydrolab ${ }^{\text {TM }}$ data logger.

A minimum of two profiles were logged at each location. The deepest profile has been graphed from each site below for comparative purposes. The trends exhibited for each indicator are generally similar for all profiles at a particular site.

Hutton Creek

Profiles collected from Hutton Creek upstream and downstream of associated water discharge are presented in Figure 5-9 below. Distinct differences are evident between the two sites. With the exception of redox potential (Eh) all parameters in the upstream site (Upper Hutton) remain relatively constant with increasing depth. In the Lower Hutton Creek site, however, DO levels decline sharply between 1-2 m depth before stabilising at less than $1 \mathrm{mg} / \mathrm{L}$, a level likely to result in substantial impacts to the aquatic environment. Within the same depth interval EC follows an increasing trend. Eh levels do not mirror the declining DO concentrations as would be expected; the reason for this is not known. pH remains reasonably stable and temperature both show a moderate decline.

The extremely low DO levels suggest that associated water discharge is impacting the aquatic environment during periods of low to no flow. This is only the case during the dry season; periods of high flow will remove any stratification.

FAIRVIEW FIELD - CASE Study OF ASSOCIATED WATER DISCHARGES

Section 5	Existing Environment - Water Quality

Figure 5-9 Hutton Creek vertical profiles upstream/downstream of associated water discharge

Existing Environment - Water Quality

Baffle Creek

Measurement of water quality parameters through a vertical profile was undertaken in a pool located near the outflow of Baffle Creek to Dawson River. Figure 5-10 shows that EC increases with increasing depth, whereas pH and temperature shows a decreasing trend. The temperature gradient is gradual with no indication of a thermocline. More substantial increases in EC are noted from approximately 0.8 m depth. DO shows a sharp decline with depth, reaching levels that would be expected to severely affect the survival of biological communities and result in fish kills. Redox potential (Eh) also decreases with increasing depth, likely as a result of decreasing DO levels.

Figure 5-10 Lower Baffle Creek vertical profile

	FAIRVIEW FIELD - CASE Study of associated water DISCHARGES
Section 5	Existing Environment - Water Quality
Dawsons Bend	
Vertical profiles of with sites on Baffle remain reasonably natural variability (ty parameters taken at Dawsons Bend indicate less variability when compared Creeks downstream of associated water discharges. Levels of EC, pH and DO and temperature show a slight increase/decrease within the range of expected).

Figure 5-11 Dawson River at Dawsons Bend vertical profile

Existing Environment - River Health

6.1 River Health of Major Streams

River health sampling has been undertaken from pool and edgewater habitats at a range of sites across the Fairview area since 2003 (EnviroTest various, Simmonds and Bristow 2007 \& 2008). Sites sampled include control sites upstream of impacts, and sites down the Dawson River in an attempt to assess any longitudinal changes in river health (Figure 6-1).

Figure 6-1 River health sampling sites at Fairview
The AusRivas macroinvertebrate and habitat sampling methodology and models developed under the National River Health Program are used. These models assign samples to various river health "bands" based on the fauna observed at a site compared with fauna predicted to be at that site based on habitat and other physical characteristics. Predictions of fauna are made on the basis of an analysis of fauna observed at "reference condition" sites. Thus predicted fauna represent the fauna that would be expected to be at the sampling site if it were in reference condition. Models are seasonal and sampling habitat based (e.g. pools, edgewaters).

Section 6

Existing Environment - River Health

River health bands are defined in relation to reference condition as shown in Table 6-1. Calculated AusRivas bands are shown in Table 6-2.

Table 6-1 AusRivas river health bands

Band	Condition class	Description
\mathbf{X}	Richer than reference	O/E greater than 90th percentile of reference sites
A	Equivalent to reference site	O/E within range of central 80\% of reference sites
B	Below reference	O/E below 10th percentile of reference sites (same width as Band A)
C	Well below reference	O/E below Band B (same width as Band A)
D	Impoverished	O/E below Band C down to zero

Table 6-2 AusRivas model bands for spring and autumn samples Sep 03-Apr 07

Edge Habitats Site							
	Season Date	$\begin{aligned} & \text { Spring } 03 \\ & \text { Sep-03 } \end{aligned}$	$\begin{gathered} \text { Autumn } 04 \\ \text { Apr-04 } \end{gathered}$	Spring 04 Nov-04	Autumn 05 May-05	Spring 06 May-06	$\begin{gathered} \text { Autumn } 07 \\ \text { Apr-07 } \end{gathered}$
Upstream petroleum activities							
Upper Baffle Creek		-	-	-	C	B	C
Dawson River Waterhole		-	-	-	-	-	-
Dawson River Road Crossing		-	-	-	-	B	B
Upper Hutton Creek		-	-	-	-	-	B
Downstream petroleum activities							
Baffle Creel		-	-	-	-	-	-
Baffle Creek outflow		-	C	C	C	C	B
Hutton Creek 500m upstream Dawson confluence		-	-	-	B	-	-
Hutton Creek		-	-	-	-	-	-
Hutton Creek FV66		-	C	-	C	C	C
Dawson River Hutton Creek outflow		-	-	-	-	-	C
Dawson River downstream Hutton Creek 1		-	C	B	B	C	B
Dawson River downstream Hutton Creek 2		-	-	C	B	C	B
Dawsons Bend		-	-	B	B	B	C
Yebna Crossing		-	C	C	C	B	B
Utopia Downs		-	-	-	C	C	B

Pool habitatsSite	Season Spring 03Date \quad Sep-03		$\begin{gathered} \text { Autumn } 04 \\ \text { Apr-04 } \end{gathered}$	Spring 04 Nov-04	$\begin{gathered} \text { Autumn } 05 \\ \text { May-05 } \end{gathered}$	$\begin{gathered} \text { Spring } 06 \\ \text { May-06 } \end{gathered}$	$\begin{gathered} \text { Autumn } 07 \\ \text { Apr-07 } \end{gathered}$
Upstream petroleum activities							
Upper Baffle Creek		C	D	B	-	C	C
Dawson River Waterhole		C	C	D	-	-	-
Dawson River Road Crossing \#2		-	-	-	-	B	C
Upper Hutton Creek		C	-	-	-	-	B
Downstream petroleum activities							
Baffle Creek		C	-	-	-	-	-
Baffle Creek outflow		C	C	D	C	B	C
Hutton Creek 500m upstream Dawson confluence		-	-	-	-	-	-
Hutton Creek		C	-	-	-	-	-
Hutton Creek FV66		-	C	C	C	C	C
Dawson River Hutton Creek outflow		-	-	B	-	-	C
Dawson River downstream Hutton Creek 1		-	C	C	-	C	C
Dawson River downstream Hutton Creek 2		-	C	-	C		D
Dawsons Bend		C	C	C	C	C	B
Yebna Crossing		C	C	C	C	C	C
Utopia Downs		-	-	-	C	C	A

Existing Environment - River Health

Single season models were used to assign sites to AusRivas bands in Table 6-2.
Band assignment varies significantly from year to year for sites both upstream and downstream of associated water discharges. Macroinvertebrate fauna are sensitive to a range of factors including changes in habitat, baseline and event based water quality, and flow conditions.

Recent advice from DNRW is that the AusRivas models for Central Queensland should not be used at this time since they have been found to be inaccurate. Additional work is being completed to update models over the next few years. Despite this warning, data was analysed using AusRivas models for comparative purposes as discussed below.

Since combined season models are usually considered more robust that individual season models the observed to expected (O/E50) ratios from each site were compared to identify any statistically significant changes in median O/E50 scores using Mann-Whitney U Tests at the 95\% significance level. O/E50 scores were calculated for Spring/Autumn models for both edgewater and pool habitats.

Table 6-3 Significant O/E ratio shifts between sites

Combined Seasonal Model	Upstream Site	Downstream Site	Direction of Change
Edgewater	Baffle Creek Outflow	Dawsons Bend	
Pool	Hutton at FV66	Dawson at Utopia	
Pool	Dawson at Yebna	Dawson at Utopia	
Edgewater	Hutton at FV66 ${ }^{1}$	Dawson u/s Hutton	
Edgewater	Hutton at FV66	Dawson at Yebna	

Note: 1) Hutton at FV66 is not upstream of Dawson u/s Hutton.
These results suggest that Hutton Creek at FV66 has a significantly lower river health than downstream and upstream sites on the Dawson River. There is some evidence to indicate that river health in Baffle Creek is lower than in the Dawson River, at least at Dawsons Bend. Furthermore, there is evidence to support improvement in river health between Dawson River at Yebna Crossing and Dawson River at Utopia.

Despite the limitations of the AusRivas models, and taking into account the characteristics of associated water discharges and the comparison of water quality parameters between sites in Section Error! Reference source not found., it appears that there is some evidence for river health impacts arising from associated water discharges in Baffle Creek and Hutton Creek. These changes are subtle and are not reflected in general AusRivas bands. In general the data sets are minimal and the differences may simply arise from sampling variability.

Changes in O/E50 between Yebna Crossing and Utopia Downs are more likely to be associated with habitat change between the sites, or from sampling variability due to the low sample numbers.

6.2 River Health of Minor Streamlines Receiving Discharge

A number of minor streamlines exist on the escarpment amongst the existing CSG operations. These streams typically only contain water during significant rainfall events and have few refugia. They are significantly degraded due to extensive land clearing, removal of riparian vegetation and stock access. The area is highly erosive, and unlimited stock access has denuded riparian vegetation, created erosion points, and provides

Section 6

Existing Environment - River Health

direct nutrient inputs (Simmons and Bristow, 2007). Streamlines generally exhibit significant bank erosion and are incised in the landscape down to bedrock with slopes significantly greater than surrounding land contours. Some small depositional areas exist, but in general terms once rock has been reached the erosion toe moves upstream.

Due to the intermittent flows, widespread removal of riparian vegetation and active erosion in these streamlines it is highly probable that the ecosystems are under significant stress. In addition to this degradation, some streamlines have received associated water discharge to grade for the last $10-15$ years. Associated water discharges contribute continuous releases of low dissolved oxygen, high temperature and moderate salinity water. The status of these streamlines is therefore considered heavily disturbed and this has been supported by a rapid and qualitative ecological survey (URS unpub. data 2008). Further work is planned to assess whether there is a marginal decline in streamline condition between cleared streamlines and cleared streamlines receiving associated water discharges.

The nature of associated water discharges is preferential to algal or slime growth. A number of streamlines currently receiving associated water discharges contain filamentous algae and slime mats in channel. Limited impacts are evident on riparian vegetation except in some limited cases where some tree roots appear to have been drowned.

There is some evidence to suggest that the ecological impacts of associated water discharges are temporary. Where discharge has been halted, riparian vegetation and streamlines superficially appear no different to surrounding areas. Additional work is required to confirm this.

6.3 River Health of Other Minor Streamlines

General observation of other minor streamlines in agricultural areas supports the view that widespread clearing of vegetation and unrestricted stock access places the streams under significant stress. Together with the intermittent flows experienced in the area the streamlines can be categorised as heavily impacted.

Streams that maintain their riparian vegetation exhibit less erosion and a greater diversity of fauna and flora (URS unpub. qualitative data, 2008) than agricultural streams. Few water refugia are evident.

As part of an investigation into Pony Hills Water Treatment Plant permeate discharges near FV77, Simmonds and Bristow (2007b) completed a rapid ecological assessment of a minor streamline discharging to Hutton Creek. This survey was undertaken shortly after significant rainfall in the area.

The tributary rises approximately 130 m above its confluence with Hutton Creek as shown in the elevation vs distance graph in Figure 6-2.

The tributary is certainly ephemeral and probably intermittent. It flows predominantly northeast and northwest before discharging into Hutton Creek approximately 8 km from the proposed discharge point. Riparian vegetation is relatively intact in the vicinity of the proposed permeate discharge point near FV77, though dominated by weed species. Despite the good vegetation coverage and the presence of boulders local erosion of stream banks is evident.

Existing Environment - River Health

Figure 6-2 Elevation profile unnamed tributary of Hutton Creek near FV77
From the discharge point the tributary follows an incised valley to the mid-stream sections approximately 1.5 km downstream. From this point riparian and catchment vegetation has largely been cleared and the stream is subject to stock access. There is also evidence of channel works with a number of straight sections identified (S. Anderson pers. comm.). The reach extending from the discharge point is generally narrow ($1-3 \mathrm{~m}$), with occasional pools. The substrate ranges from silty clay, sand with cobbles, boulders and bedrock, tending to sandy cobbles and sandstone towards the Hutton Creek outflow. Stream banks are undercut and show evidence of scouring and sand deposition.

Riparian vegetation along the tributary is predominantly comprised of native and exotic grasses and other weed species, which provide some shading of the waterway. The highest density of weed species occurs in the upper reaches of the tributary. Adjacent to Hutton Creek the riparian zone broadens and the tributary feeds into a spring or billabong system dominated by wetland species.

Habitat types along the northern reaches of the tributary are limited to flat water or shallow pools, with refuges provided by fallen trees and trailing vegetation. A diverse macroinvertebrate population was observed along the northern reaches of the tributary. The spring/billabong system near the Hutton Creek outflow provides significant habitat for wetland flora and fauna. A rapid flora and fauna survey of the tributary did not identify any endangered species, though potential supporting habitats were observed (BooBook, 2007).

No rare or threatened fauna or flora were encountered, and no endangered regional ecosystems or ecological communities occur within or in close proximity to the watercourse.

Fifty-eight vertebrate species were recorded including 45 birds, 4 mammals, 4 reptiles, 4 amphibians and one fish. One scheduled threatened species was detected - the squatter pigeon listed as vulnerable under the Nature Conservation Act 1992 and Environment Protection and Biodiversity Conservation Act 1999. A small flock of white squatter pigeons was flushed from the ground in white cypress pine/eucalypt woodland beside a temporary pool at One site. Another pair of squatter pigeons was flushed from the bank of the watercourse.

Section 6

Existing Environment - River Health

Habitats within and adjoining the watercourse are suitable for populations of other rare and threatened fauna including brigalow scaly-foot, golden trailed gecko, little pied bat and large-eared bat. Targeted field surveys would be required to detect these species.

A single Herbert's rock wallaby (a locally significant species) was disturbed on a rocky slope approximately 1 km downstream of the permeate discharge point.

Two hundred and three species of plants were identified along the watercourse, of which about 30 are introduced species.

Frogs, turtles and fish were found in the spring/billabong pond adjacent to Hutton Creek. However, the steepness of the stream, and likelihood of few water refugia under dry conditions suggests the stream provides little habitat for turtles and fish.

Planned Permeate Discharges 2008/2009

Two desalination plants are under consideration for the Fairview Project Area:

- Pony Hills Water Treatment Plant (PHWTP) near FV77 is planned to be constructed in 2008.
- Central Desalination Plant (CDP) is proposed for 2009.

Investigations for the Pony Hills permeate discharge are complete and detailed plans have been developed for its implementation in 2008.

Investigations for Central Desalination Plant are currently being initiated.

7.1 Pony Hills Water Treatment Plant

This Section outlines the proposed discharge of treated (desalinated) associated water to grade in an unnamed tributary of Hutton Creek (Hutton Tributary) adjacent to FV77 and the potential downstream effects of this discharge on Hutton Creek and the Dawson River.

7.1.1 Hutton Tributary

The Hutton Tributary is intermittent/ephemeral, and has a small catchment area extending approximately 3.5 km upstream of the permeate discharge point. Field observations made in December 2007 following significant flooding found a pool and channel system with significant water storage capacity (Simmons \& Bristow, 2007b). Adjacent and well connected to Hutton Creek is a billabong or spring system.

The general environment of the tributary is described in Section 6.3.
Limited water quality data (EC, pH , temperature and DO) was also collected in December 2007 from the unnamed Hutton Tributary both at the proposed discharge point (FV77) and downstream near the confluence with Hutton Creek (Simmonds \& Bristow, 2007b). The data indicates background EC in the range 354 to 533 $\mu \mathrm{S} / \mathrm{cm}$ and pH in the range 6.8 to 7.7. This is similar to median observed levels of these parameters in Hutton Creek. Further measurements of EC in early February 2008 suggest an EC range of $450-510 \mu \mathrm{~S} / \mathrm{cm}$.

Temperatures recorded by Simmonds \& Bristow (2007b) ranged from circa 22 - 31 C , and was generally lower towards the confluence with Hutton Creek. DO concentrations varied substantially ($0.8-8.2 \mathrm{mg} / \mathrm{L}$) along the tributary.

7.1.2 Permeate Discharge

The operation of the PHWTP will involve the use of a number of chemicals including biocides and antiscalants for backwash and cleaning purposes. All water will be captured from these operations and treated. No discharge of this water is planned and it is estimated that any residual amounts of chemicals used in this process will be undetectable in permeate due to dilution and the reverse osmosis process.

Permeate is therefore likely to be clean. The predicted permeate water quality range is shown in Table 7-1 where it is compared with relevant MTV for the area. Only those water quality parameters of relevance to permeate are shown. The temperature of permeate is likely to be less than the temperature of associated water at the wells but above ambient temperatures particularly in the dry season.

Section 7

Planned Permeate Discharges 2008/2009

The salinity, pH and temperature of permeate are likely to be higher than the MTVs. The ecological risks associated with these likely exceedances are considered in the context of the existing catchment and receiving water environments in the following sections.

Table 7-1 Predicted permeate discharge quality PHWTP

Water Quality Parameter Type	Water Quality Parameter Name	Units	Min.	$\begin{gathered} 90^{\text {th }} \\ \text { percentile } \end{gathered}$	MTV	
					Value	Source
Physico-Chemical Parameters	Electrical Conductivity	$\mu \mathrm{S} / \mathrm{cm}$ at 25C	150	500	340	
	pH	Stand	6.5	8.76	6.5-8.0	
	Temperature	C	NA	NA		
	Total dissolved solids	mg/L	100	325	1000	
	TSS	mg/L	0	0	10	
	TOC	mg / L as C	0	0		
	DOC	mg / L as C	0	0		
Inorganic Non-Metallic Parameters	Total Alkalinity	mg / L as CaCO3	40	125	20-400	QWQG
	Bicarbonate Alkalinity	mg / L as CaCO3	40	115		
	Carbonate Alkalinity	mg / L as CaCO3	0	10		
	Chloride	mg/L	30	72	175	
	Fluoride	mg / L	0	0.5	1	
	Sulphate	mg/L	0.2	0.3	400	
	Silica	mg / L as SiO_{2}	0.2	1.0		
Cations	Calcium	mg / L	0	0.5	1000	
	Magnesium	mg / L	0	0		
	Potassium	mg/L	0	0.6		
	Sodium	mg / L	35	107	115	
Nutrients	Ammonia-Nitrogen	mg/L	0	0.05	$20^{\#}$	
	Nitrate-Nitrogen	mg / L	0	0.02	0.4	
	Phosphorus/Phosphate	mg / L as P	ND	0.0004	0.05	
Trace elements	Aluminium	mg / L	0	0.05		
	Barium	mg / L	0	0.03		
	Boron	mg / L	0.1	3	370	
	Iron	$\mu \mathrm{g} / \mathrm{L}$	0.3	0.7	200	
	Lead	$\mu \mathrm{g} / \mathrm{L}$	0.3	1.7	3.4	
	Manganese	ug/L	0.05	0.1	$\begin{gathered} <10 \\ 1900 \end{gathered}$	QWQG* AWQG
	Zinc	$\mu \mathrm{g} / \mathrm{L}$	0.05	0.75	8	
	Strontium	mg/L	0.004	0.037		

NOTES:

* Guideline for aquatic aquaculture
\# WQO is for Ammonia

Planned Permeate Discharges 2008/2009

7.1.3 Potential Impacts on Typical flows

The full flow record from Hutton Creek is compared with permeate discharges in Figure 7-1. The bankfull flood ($6620 \mathrm{ML} / \mathrm{day}$) in Hutton Creek is also shown. The bankfull flood is generally accepted as the flow that maintains channel geometry and has an Average Recurrence Interval of ~ 2.33 years.

Figure 7-1 All Hutton Creek flows compared with PHWTP permeate discharge
The permeate discharge is not visible in Figure 7-1 since it is a very small percentage of the channel forming flood discharge.

To provide an improved view of the relative size of the permeate discharge to natural flows in Hutton Creek, the below figure has been split into two covering the periods $1972-1981$ and $1982-1988$. Furthermore any flows greater than $50 \mathrm{ML} /$ day are removed from Figure 7-2 a) and b).

When flows do occur in Hutton Creek, it is likely that the permeate will be significantly diluted by the large flow volumes that occur. However, there are long periods during which the instream water quality will be significantly affected by permeate discharge. The degree of impact will be dependent upon the level of mixing that occurs instream since Hutton Creek maintains long deep pools.

Section 7

Planned Permeate Discharges 2008/2009

Figure 7-2 Low Hutton Creek flows compared with PHWTP permeate discharge

Planned Permeate Discharges 2008/2009

7.1.4 Potential Impacts on Channel Erosion

At the point of the proposed permeate discharge the unnamed Hutton Tributary has a width of approximately 20 m and a depth of approximately 1.4 m . This is more than sufficient to carry $4.5 \mathrm{ML} /$ day permeate discharge within a small proportion of the stream bed. Local engineering works are planned to minimise erosion at this point.

Downstream of this point the tributary narrows but significant water storage capacity is available in scour pools and the channel system. Heavy rains lead to local flooding prior to the December 2007 field visit (Simmonds and Bristow, 2007b). There was no evidence of overbank flow even in the narrowest sections of the stream. Erosion and scour arising from the planned volumes of permeate water discharge are expected to be minimal.

Rating tables from the Hutton Creek gauging station suggest a rise in water level of approximately 100 150 mm associated with the permeate discharge in Hutton Creek. This will simply maintain flows within the bottom of the channel since the dominant features of Hutton Creek are long wide ponds with short riffle sections between. Increased erosion is therefore considered unlikely during low flows in Hutton Creek.

At Utopia Downs on the Dawson River, DNRW rating tables suggests a rise of water level of circa 20 mm during normal flows. Once again this rise in water level will be well contained within the existing channel and no significant increase in erosion or scouring is likely.

7.1.5 Potential Impacts on Downstream Flooding

Discharges from the desalination plant will result in small rises in Hutton Creek and Dawson River as discussed in the previous section. Frequency analysis of floods in the Hutton Creek, Dawson River at Utopia and Dawson River at Taroom suggest that permeate discharge will be 0.07% and 0.03% of bankfull discharges respectively. Consideration of the cross-sections at these sites (see Figure 7-3 a and b) suggests little if any rise in natural bankfull flood levels.

7.1.6 Potential Salinity Impacts from Permeate Discharge

The predicted EC of the permeate discharge is comparable with existing EC levels in the unnamed Hutton Tributary and significantly lower than the elevated EC levels observed in Hutton Creek under low flow conditions. The proposed permeate discharge will therefore dilute salinity levels in Hutton Creek.

Estimated EC in Dawson River

The impacts of permeate discharges on the Dawson River EC have been estimated using a simple model that assumes complete mixing and conservation of mass. Two conservative flow conditions were considered:

- The "very low flows" condition is the minimum observed discharge during the dry season, and
- The "median November flows" condition was adopted as representative of small to medium flows.

Section 7

Planned Permeate Discharges 2008/2009

a) Hutton Creek

b) Utopia Downs

Figure 7-3 River cross-sections in Hutton Creek and Dawson River
Figure 7-4 shows the results of this modelling using various EC targets for a $4.5 \mathrm{ML} /$ day permeate discharge. Under the very low flow condition, permeate discharges will potentially have a more significant effect on Dawson River EC compared with moderate flow conditions (as represented by median November flows) when little impact on Dawson River EC is likely.

Planned Permeate Discharges 2008/2009

To minimise EC impacts from the permeate it is intended to operate the plant to deliver $4.5 \mathrm{ML} / \mathrm{day}$ at 500 $\mu \mathrm{S} / \mathrm{cm}$ which is within the observed range of EC at the discharge point in the unnamed Hutton Tributary, and below the current range of EC in Hutton Creek. A discharge with $500 \mu \mathrm{~S} / \mathrm{cm}$ will also mean that the relevant WQO ($340 \mu \mathrm{~S} / \mathrm{cm}$) is met within the Dawson River even under very low flows. This represents a very conservative operating scenario and very low risk of impacting on the riverine environment.

Figure 7-4 Modelled Impacts of Pony Hills Permeate Discharges

7.1.7 Potential Impacts from Permeate Discharge on Salt Loads

Annual salt loads from the Dawson River at Utopia Downs were calculated for the period 1997-2006 using the full length of the EC record at that site. In some years, insufficient information was available to provide a reliable estimate of annual load. Since discharge data and EC records are concurrent, a simple sum of hourly flow x salinity was used to calculate annual loads. Time weighted scaling was used to account for missing record where possible. Calculated average annual salt load is $4477+/-1267$ tonne.

Permeate discharge of $4.5 \mathrm{ML} /$ day at $500 \mu \mathrm{~S} / \mathrm{cm}$ from Pony Hills Water Treatment plant is equivalent to an annual salt load of 558.8 tonne. This load is well within the natural variation in the catchment.

The dominant mechanism for natural salt load movement in the Dawson River is via flood events in the wet season. The increase in catchment salt load arising from the desalination plant discharge arises from a constant input in both wet and dry seasons.

During the dry season the dominant issue with permeate discharge is likely to be the concentration rather than the load.

During wet season the relative size of existing storages along the Dawson River (Glebe Weir 17,700 ML, Neville Hewitt Weir $11,300 \mathrm{ML}$) is small compared with even the median flow volume at Taroom ($195,000 \mathrm{ML}$). Regular flushing of water in these storages is expected with no long term aggregation of salt in the weir pools.

Section 7
 Planned Permeate Discharges 2008/2009

Given the predicted increase in salt loads is within the natural annual variability, the low level of concentration of salt discharged, and the high flow rates in the catchment it is unlikely that the increased salt load will cause any significant issues in the Dawson or Fitzroy river systems.

Table 7-2, below provides a comparison of predicted permeate water quality outputs and existing water quality observed instream. Minima, medians and maxima are shown for Hutton Creek, Dawson Bend and Yebna Crossing.

7.1.8 Other Potential Water Quality Impacts

Fluoride

Due to the proposed low concentration of fluoride in the desalination water, the discharge is predicted to dilute existing fluoride levels downstream.

Nutrients

Median ammonia concentrations in the permeate are approximately five times lower than median concentrations in Hutton Creek. The differences between maxima are within the error of measurement. Nitrate concentrations are approximately half that found in Hutton Creek, and the maximum concentration in permeate discharges is a one hundredth of that found in Hutton Creek. Consequently, nutrient concentrations are expected to improve in sites downstream of the discharge point.

Sodium

Median concentrations of Sodium in permeate water discharges will increase median concentrations in Hutton Creek but remain below guideline values. Maximum concentrations of Sodium in the permeate are well below existing observed maxima in Hutton Creek.

pH

Associated water pH is alkaline with a predicted median pH of 8.5 entering the desalination plant. Dosing with acid and other processes within the plant is expected to largely neutralise the pH of the discharge water with the expected range of pH discharged being 6.5 to 8.5 units, similar to background levels in the area. pH is expected to rapidly adjust towards local conditions on contact with soils in the balancing pond, through the proposed cooling tower, and on discharge to the unnamed Hutton Tributary. It is noted the predicted pH of the discharge water is lower than currently recorded in the unnamed Hutton Tributary, and therefore water quality within the tributary could potentially become more neutral.

Planned Permeate Discharges 2008/2009

Table 7-2 Predicted permeate quality versus existing stream water quality.

MTV	Units	Permeate		Hutton Creek				Dawson Bend				Dawson R @Yebna Crossing			
		Min	$\begin{gathered} 90^{\text {th }} \% \mathrm{i} \\ \text { le } \end{gathered}$	Min	Med	Max	n	Min	Med	Max	n	Min	Med	Max	n
Physico-Chemical Parameters															
Electrical Conductivity	$\mu \mathrm{S} / \mathrm{cm}$ at 25C	150	500	131	233	1294	16	136	251	273	6	110	247	435	46
pH	Stand	6.5	8.76	6.60	7.85	8.30	16	6.4	6.9	7.3	6	7.20	7.75	8.00	6
Temperature	C	NA	NA	84	150	1010	16	92	129	220	6	75	168	296	46
Total dissolved solids	mg/L	100	325	5	28	630	16	4	12	366	4	2	8	142	5
TSS	mg/L	0	0	-	-	-	-	-	-	-	-	-	-	-	-
TOC	mg/L - C	0	0	-	-	-	-	-	-	-	-	-	-	-	-
DOC	mg/L-C	0	0	6.60	7.85	8.30	16	6.4	6.9	7.3	6	7.20	7.75	8.00	6
Inorganic Non-Metallic Parameters															
Total Alkalinity	$\begin{aligned} & \mathrm{mg} / \mathrm{L}- \\ & \mathrm{CaCO} \end{aligned}$	40	125	-	-	-	-	-	-	-	-	-	-	-	-
Bicarbonate Alkalinity	$\begin{gathered} \mathrm{mg} / \mathrm{L}- \\ \mathrm{CaCO} \end{gathered}$	40	115	65	100	820	16	55	118	157	6	87	114	130	6
Carbonate Alkalinity	$\begin{aligned} & \mathrm{mg} / \mathrm{L}- \\ & \mathrm{CaCO} \end{aligned}$	0	10	-	-	-	-	-	-	-	-	-	-	-	-
Chloride	mg/L	30	72	4	18	355	16	9	14	15	6	19	21	22	6
Fluoride	mg/L	0	0.5	<0.1	0.1	1.4	12	<0.1	0.2	0.2	6	<0.1	0.2	0.2	6
Sulphate	mg / L	0.2	0.3	<1	5.0	170	12	<1	<10	<5	6	<1	<5	<10	6
Silica	$\begin{gathered} \mathrm{mg} / \mathrm{L} \\ \mathrm{SiO} 2 \end{gathered}$	0.2	1.0	-	-	-	-	-	-	-	-	-	-	-	-
Cations															
Calcium	mg/L	0	0.5	5	16	85	16	1	14	19	6	7	11	17	6
Magnesium	mg/L	0	0	2	5	67	16	<1	8	9	6	4	6	6	6
Potassium	mg / L	0	0.6	2	5	10	16	2	3	5	6	3	3	6	6
Sodium	mg/L	35	107	9	21	280	16	15	21	27	6	27	28	33	6
Nutrients															
Ammonia-Nitrogen	mg/L	0	0.05	<. 01	0.16	0.24	3	<0.006	<0.01	<0.01	3	<0.01	<0.01	0.014	3
Nitrate-Nitrogen	mg/L	0	0.02	1	1	69	9	-	<10	-	1	<10	-	-	1
Phosphorus/ Phosphate	mg/L - P	ND	0.0004	<10	95	230	5	20	53	750	5	<10	40	280	5
Trace elements															
Aluminium	mg/L	0	0.05	-	-	-	-	-	-	-	-	-	-	-	-
Barium 2	mg / L	0	0.03	-	-	-	-	-	-	-	-	-	-	-	-
Boron 2	mg/L	0.1	3	<0.1	0.06	800	12	<0.1	257	500	6	-	-	-	-
Iron	$\mu \mathrm{g} / \mathrm{L}$	0.3	0.7	62	1700	2358	3	66	97	950	3	76	156	390	3
Lead	$\mu \mathrm{g} / \mathrm{L}$	0.3	1.7	<1		2	2	<1	-	<1	2	<1	-	<1	2
Manganese	$\mu \mathrm{g} / \mathrm{L}$	0.05	0.1	-	-	-	-	-	-	-	-	-	-	-	-
Zinc	$\mu \mathrm{g} / \mathrm{L}$	0.05	0.75	<10	-	1.5	2	<1	-	<10	2.00	<1	-	<10	2
Strontium	mg/L	0.004	0.037	-	-	-	-	-	-	-	-	-	-	-	-

Section 7

Planned Permeate Discharges 2008/2009

Aluminium

Aluminium has not been measured in the waterways of the Upper Dawson River catchment. Modelled Aluminium $90^{\text {th }}$ percentile concentrations in permeate may reach as high as $0.05 \mathrm{mg} / \mathrm{L}$ just under the AWQG trigger value for 95% protection of aquatic ecosystems ($0.055 \mathrm{mg} / \mathrm{L}$).

Strontium

Strontium has not been detected in the Upper Dawson River waterways to date.
Strontium will not be discharged in the permeate under normal conditions. However, from time to time Strontium may be sourced from associated water with a maximum predicted concentration in permeate of $0.05 \mathrm{mg} / \mathrm{L}$. No guideline values for Strontium 2+ are available in Australia.

Natural concentrations of Strontium in the worlds groundwaters typically lie in the range $0.0001-0.1 \mathrm{mg} / \mathrm{L}$ (Chapman, 1998); although natural concentrations as high as $15 \mathrm{mg} / \mathrm{L}$ have been identified in drinking water extracted from some German aquifers (Behrens et al, 2001). The world average concentration for unpolluted rivers is $0.1 \mathrm{mg} / \mathrm{L}$. This suggests that occasional Strontium discharges will not cause significant environmental harm. A working group of the German Federal Environmental Agency considered the use of Strontium salts as a tracer in groundwater investigation and recommend an upper limit of $15 \mathrm{mg} / \mathrm{L}$ is not significantly exceeded in drinking water (ibid.).

Temperature

Associated water has a temperature range of circa $30-45 \mathrm{C}$. Without further treatment, permeate temperatures are likely to be close to ambient water temperatures during summer and significantly higher than ambient during winter.

High temperature discharges could pose ecological risk due to the relative constant temperature of associated water in contrast to the seasonal temperature fluctuations in streams in the area. The relative volumes of flow and almost complete mixing expected within stream means that the temperature regime in Hutton Creek may be expected to be significantly affected, while the temperatures in the Dawson River may be expected to have minimal change from current conditions due to the dominance of spring flows (the minimum $90^{\text {th }}$ percentile monthly observed flow at Utopia is 211 ML/day nearly 50 times the permeate discharge).

Due to the uncertainties surrounding the rate of movement of permeate temperature back to ambient stream temperature, Santos will install cooling towers downstream of the RO plant. Cooling towers will ensure the maintenance of diurnal and seasonal temperature variations in the discharge tributary, Hutton Creek and downstream. Cooling towers will normally deliver water within 5C of wet bulb temperature.

Installation and operation of the cooling towers will be monitored. Discharge water temperatures will be monitored and compared with conditions in Hutton Creek (upstream and downstream of the tributary) and Dawson River (upstream and downstream of Hutton Creek).

7.1.9 Potential River Health Impacts from Permeate Discharge

Discharges from the proposed desalination plant may improve habitat for rock wallabies and pigeons. Changes to the billabong adjacent to Hutton Creek are likely to be minimal due to the relative size of the pond compared with flows and existing connection with Hutton Creek,

Planned Permeate Discharges 2008/2009

The main potential ecological change is a shift in macroinvertebrate species evident in the lower reaches of the tributary due to the increased flow regime. This shift is likely to be minor.

Water quality in the tributary post permeate discharge is expected to be significantly better than at present with higher dissolved oxygen, salinity closer to background levels.

Permeate water discharge is likely to lead to a general improvement in water quality through dilution of a range of parameters. The volumes of discharge are significant under low flow conditions, but are mainly expected to lead to an improvement in available habitat as pools will remain full for longer periods and riffles between pools will contain flow. There is unlikely to be a major shift in aquatic species.

The surface waters of the Upper Dawson River are of economic, environmental and social importance. Small, low order streamlines within the Santos Production Licences are often intermittent and certainly ephemeral; and they are subject to significant erosion due to clearing and stock access. These streams do not offer significant refugia during the dry season and are considered of less value that lower order streams such as Hutton Creek, Baffle Creek and Dawson River which maintain large pools even during dry season.

7.2 Central Desalination Plant

Investigations for the potential installation and use of the Central Desalination Plant are currently underway and will be presented in detail in the 2009 EMP for the Fairview Project Area.

Using the same model for salinity as for the PHWTP and taking into account planned discharges from PHWTP and spring flows in the Dawson River it is estimated (Figure 7-5) that the permeate from the Central Desalination Plant must be no higher than $340 \mu \mathrm{~S} / \mathrm{cm}$ in order to maintain the salinity in the Dawson River at Dawson Bend at or below the relevant WQO.

Discharges are assumed to be $15 \mathrm{ML} /$ day from the CDP in this preliminary scenario.

Figure 7-5 Modelled Impacts of Central Desalination Plant Permeate Discharges

Section 8

Limitations

URS Australia Pty Ltd (URS) has prepared this report in accordance with the usual care and thoroughness of the consulting profession for the use of Santos Pty Ltd and only those third parties who have been authorised in writing by URS to rely on the report. It is based on generally accepted practices and standards at the time it was prepared. No other warranty, expressed or implied, is made as to the professional advice included in this report. It is prepared in accordance with the scope of work and for the purpose outlined in the Proposal.

The methodology adopted and sources of information used by URS are outlined in this report. URS has made no independent verification of this information beyond the agreed scope of works and URS assumes no responsibility for any inaccuracies or omissions. No indications were found during our investigations that information contained in this report as provided to URS was false.

This report was prepared between November 2007 and January 2009 and is based on the information reviewed and conditions encountered at the time of preparation. URS disclaims responsibility for any changes that may have occurred after this time.

This report should be read in full. No responsibility is accepted for use of any part of this report in any other context or for any other purpose or by third parties. This report does not purport to give legal advice. Legal advice can only be given by qualified legal practitioners.

ANZECC \& ARMCANZ (1994). National Water Quality Management Strategy, Environment Australia.
ANZECC \& ARMCANZ (2000). Australian and New Zealand Guidelines for Fresh and Marine Water Quality, National Water Quality Management Strategy No. 4, Environment Australia.

Behrens H, Beims U, Dieter H, Dietze G, Eikmann T, Grummt T, Hanisch H, Henseling H, Kan W, Kerndorff H, Leibundgut C, Muller-Wegener U. Ronnefahrt I, Scharenberg B, Schleyer R, Scholz W and Tilkes F (2001), Toxicological and ecotoxicological assessment of water tracers, Hydrogeology Journal 2001 9:321-325

Boobook (2007), Field Survey, Proposed FV77 Discharge Streamline, December 2007
Chapman D. (1998). Water Quality Assessments A guide to the use of biota, sediments and water in environmental monitoring, Second Edition, UNESCO, WHO, UNEP, Published by E \& FN Spon, ISBN 0-419-21590-6

DNRM (2006), Fitzroy Basin Resource Operations Plan, Department of Natural Resources and Mines, April 2006

DNRW (2006), Queensland Groundwater Database
EnviroTest (2003), Biological monitoring of macroinvertebrate communities in the Upper Dawson River September 2003, Consultants report to Tipperary Oil and Gas Australia, November 2003

EnviroTest (2004a), Biological monitoring of macroinvertebrate communities in the Upper Dawson River April 2004, Consultants report to Tipperary Oil and Gas Australia, June 2004

EnviroTest (2005a), River Health Assessment of the Upper Dawson River November 2004, Consultants report to Tipperary Oil and Gas Australia, March 2005

EnviroTest (2005b), River Health Assessment of the Upper Dawson River May 2005, Consultants report to Tipperary Oil and Gas Australia, August 2005

EnviroTest (2006a), River Health Assessment of the Upper Dawson River May 2006, Consultants report to Santos Ltd, June 2006

EnviroTest (2006b), River Health Assessment of the Upper Dawson River October 2006, Consultants report to Santos Ltd, December 2006

Hart BT, Bailey P, Edwards R, Hortle K, James K, McMahon A, Meredith C and Swadling K (1990). Effects of salinity on river, stream and wetland ecosystems in Victoria, Australia. Water Research. Vol. 24, No. 9,pp. 1103 - 1117.

Hart BT, Bailey P, Edwards R, Hortle K, James K, McMahon A, Meredith C and Swadling K (1991). A review of the salt sensitivity of the Australian freshwater biota. Hydrobiologia. 210: pp. 105-144.

Henderson C (2000). State of the Rivers. Comet, Nogoa and Mackenzie Rivers. An Ecological and Physical Assessment of the Condition of Streams in the Comet, Nogoa and Mackenzie River Catchments. Department of Natural Resources, Brisbane, June 2000

Hydro Tasmania Consulting (2008), Dawson's Creek Survey April 2008, Consultants report to URS Australia Pty Ltd, April 2008

Section 9

References

Kefford B, Dunlop J, Nugegoda D and Choy S (2007). Understanding salinity thresholds in freshwater biodiversity: freshwater to saline transition, Chapter 2 in Lovett S, Price P and Edgar B (eds) 2007; Salt, Nutrient, Sediment and Interactions: Findings from the National River Contaminants Program, Land and Water Australia, 2007

Negus P (2007). Water Quality Information Summary for the Fitzroy Region. Department of Natural Resources and Water, Queensland.

Nielsen DL, Brock MA, Rees GN and Baldwin DS (2003). Effects of increasing salinity on freshwater ecosystems in Australia, Aust J Botany, 2003, 51, 655-665

Queensland EPA (2005). Establishing Draft Environmental Values and Water Quality Objectives, Resource Assessment Guideline, Queensland EPA 02/05 Version 1.1

Queensland EPA (2008), Queensland Wetland Map Version 1.2, Maps for Hornet Bank 8746 and Injune 8646 from http://www.epa.qld.gov.au/wetlandinfo/site/MappingFandD.html accessed April 2008

Simmons and Bristow (2007). River Health Assessment of the Upper Dawson River April 2007, Consultancy report to Santos TOGA Pty Ltd, June 2007.

Simmons and Bristow (2007b), Field Survey, Proposed FV77 Discharge Streamline, December 2007
Simmons and Bristow (2008). River Health Assessment of the Upper Dawson River November 2007, Consultancy report to Santos TOGA Pty Ltd, March 2008.

Smith R, Jeffree R, John J and Clayton P (2004), Review of Methods for Water Quality Assessment of Temporary Stream and Lake Systems, Australian Centre for Mining Environmental Research, September 2004

Telfer D. (1995). State of the Rivers. Dawson River and Major Tributaries. An Ecological and Physical Assessment of the Condition of Streams in the Dawson River Catchment. Department of Primary Industries, Resource Management, Brisbane.

Table A10

Upper Dawson River Spring Analytical Results

Location	Sample ID	Date Sampled	Metals (Total)									Major Ions										Alkalinity			
			Arsenic	Boron	Cadmium	Chromium	Copper	Iron	Lead	Nickel	Zinc	Calcium	Chloride	Fluoride	Magnesium	Potassium	Sodium	Sulfate as SO4 2-	Total Anions	Total Cations	$\begin{gathered} \text { lonic } \\ \text { Balance } \end{gathered}$	Hydroxide Alkalinity as CaCO3	Carbonate Alkalinity as CaCO3	Bicarbonate as CaCO 3	Total Alkalinity
		LOR	0.001	0.1	0.0001	0.001	0.001	0.05	0.001	0.001	0.005	1	1	0.1	1	1	1	1	0.01	0.01	0.01	1	1	1	1
		Units	mg/L	meq/I	meq/	\%	mg/L	mg/L	mg/L	mg/L															
		MTV	$\begin{aligned} & \hline 0.024 / \\ & 0.013 \\ & \hline \end{aligned}$	0.37	0.0002	0.05	0.0014	0.2	0.0034	0.011	0.008	1000	175	1	na	na	115	400	na						
SP01	SP01_30/04/08	30/04/2008	0.002	<0.1	0.0003	0.001	0.002	9.39	0.002	0.002	0.01	37	46	1.2	10	4	43	4	4.71	4.67	0.53	<1	<1	167	167
SP01	SP01_30/04/08CHK	30/04/2008	0.002	<0.1	0.0002	<0.001	0.002	9.42	0.002	0.002	0.008	-	51	1.2	-	-	-	-	-	-	-	<1	<1	191	191
SP02	SP02_30/04/08	30/04/2008	0.001	<0.1	0.0002	0.001	0.003	3.68	0.002	0.003	0.015	91	166	1.2	28	9	63	57	10.6	9.82	3.67	<1	<1	235	235
SP02	QC01_30/04/08	30/04/2008	0.001	<0.1	0.0002	<0.001	0.002	1.48	0.001	0.002	0.009	83	52	1.2	24	6	55	64	8.39	8.68	1.67	<1	<1	280	280
SP03	SP03_30/04/08	30/04/2008	0.006	<0.1	0.0002	0.002	0.004	14.9	0.004	0.01	0.017	36	13	1.3	13	4	33	7	4.54	4.38	1.81	<1	<1	201	201
SP04	SP04_01/05/08	1/05/2008	0.002	<0.1	0.0002	<0.001	0.002	4.4	<0.001	0.001	0.01	20	28	<0.1	6	2	28	8	2.91	2.82	-	<1	<1	98	98
SP04	SP04_01/05/08CHK	1/05/2008	-	-	-	-	-	-	-	-	-	19	-	-	6	2	26	8	-	-	-	-	-	-	-
SP05	SP05_01/05/08	1/05/2008	<0.001	<0.1	0.0001	<0.001	<0.001	0.73	<0.001	<0.001	<0.005	4	13	1.2	1	2	25	<1	1.6	1.4	-	<1	<1	62	62
SP06	SP06_01/05/08	1/05/2008	<0.001	<0.1	0.0005	<0.001	0.001	1.15	<0.001	<0.001	0.008	4	19	1.1	2	2	24	<1	1.63	1.45	-	<1	<1	55	55
SP07	SP07_01/05/08	1/05/2008	<0.001	<0.1	0.0004	<0.001	0.011	0.72	<0.001	<0.001	0.021	4	21	1.1	2	2	25	<1	1.71	1.54	-	<1	<1	56	56
SP08	SP08_01/05/08	1/05/2008	<0.001	<0.1	0.0002	<0.001	<0.001	0.82	<0.001	0.006	0.007	28	46	1.3	8	4	45	14	4.1	4.06	0.47	<1	<1	125	125
SP09	SP09_01/05/08	1/05/2008	<0.001	<0.1	0.0006	<0.001	0.001	1.09	<0.001	<0.001	<0.005	7	23	1.1	3	2	28	<1	1.97	1.85	-	<1	<1	66	66
SP10	SP10_01/05/08	1/05/2008	<0.001	<0.1	0.0001	<0.001	0.001	1.25	<0.001	<0.001	<0.005	6	23	1.2	3	2	45	<1	2.73	2.54	-	<1	<1	104	104
SP10	SP10_01/05/08CHK	1/05/2008	<0.001	<0.1	0.0002	<0.001	0.001	1.26	<0.001	<0.001	<0.005	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SP11	SP11_01/05/08	1/05/2008	<0.001	<0.1	0.0002	<0.001	<0.001	0.41	<0.001	<0.001	<0.005	6	24	1.2	3	2	44	<1	2.79	2.59	-	<1	<1	106	106
SP11	SP11_01/05/08CHK	1/05/2008	-	-	-	-	-	-	-	-	-	-	24	1.2	-	-	-	-	-	-	-	<1	<1	102	102
SP12	SP12_01/05/08	1/05/2008	<0.001	<0.1	0.0002	<0.001	<0.001	0.45	<0.001	<0.001	<0.005	8	26	1.2	3	2	39	<1	2.65	2.46	-	<1	<1	96	96
SP13	SP13_02/05/08	2/05/2008	<0.001	<0.1	0.0002	<0.001	<0.001	0.8	<0.001	<0.001	<0.005	22	21	1.2	12	2	27	<1	3.39	3.26	2	<1	<1	140	140
SP14	SP14_02/05/08	2/05/2008	<0.001	<0.1	0.0003	<0.001	<0.001	0.78	<0.001	<0.001	<0.005	22	21	1.2	12	2	27	<1	3.43	3.3	1.9	<1	<1	142	142
SP14	QC02_02/05/08	2/05/2008	<0.001	<0.1	0.0005	<0.001	<0.001	0.78	<0.001	<0.001	<0.005	22	20	1.3	11	2	30	<1	3.42	3.41	0.17	<1	<1	143	143
SP15	SP15_02/05/08	2/05/2008	0.001	<0.1	0.0005	<0.001	0.001	1.08	<0.001	<0.001	0.005	21	19	1.3	11	2	26	1	3.14	3.15	0.16	<1	<1	129	129
SP15	SP15_02/05/08CHK	2/05/2008	-	-	-	-	-	-	-	-	-	21	-	-	11	2	28	1	-	-	-	-	-	-	-

NOTES
MTV - minimum guideline trigger value
"CHK" - lab duplicate sample
"QC" - field duplicate sample
BOLD Greater than relevant MTV

Table A1
URS Water Quality Parameters Upper Dawson Catchment

Site ID		Date/Time	Water Quality Parameters					
Number	Name	Date	Time (EST)	EC ($\mu \mathrm{S} / \mathrm{cm}$)	$\begin{array}{\|c\|} \hline \mathrm{DO} \\ (\mathrm{mg} / \mathrm{L}) \end{array}$	pH	Turbidity (NTU)	Temp (oC)
			MTV	340		6.5-8	50	
D002	Dawson River @ Yebna Crossing	05-Mar-08	12:00	107	6.2	7.1	270	23.9
D002	Dawson River @ Yebna Crossing	02-Feb-08	10:35	264	5.47	6.76	166	25.4
D002	Dawson River @ Yebna Crossing	14-May-08	16:20	265	11.3	7.5	9	17.3
D003	Pine Creek @ Phelps Rd	05-Mar-08	-	-	-	-	-	-
D003	Pine Creek @ Phelps Rd	02-Feb-08	12:20	227.2	4	6.59	266	29.2
D003	Pine Creek @ Phelps Rd	13-May-08	15:45	-	-	-	-	-
D004	Dawson River @ Taroom-Roma Rd	05-Mar-08	16:40	150	6.01	7.73	555	23.3
D004	Dawson River @ Taroom-Roma Rd	02-Feb-08	13:36	270	5.23	6.82	215	27.3
D004	Dawson River @ Taroom-Roma Rd	13-May-08	10:55	368	9.84	7.78	14	14.6
D005	Eurombah @ Hornet Bank Rd	05-Mar-08	17:10	118	6.15	7.5	492	24.4
D005	Eurombah @ Hornet Bank Rd	02-Feb-08	14:15	317	5.95	7.16	191	28.8
D005	Eurombah @ Hornet Bank Rd	13-May-08	10:00	340	6.22	7.3	13	16.1
D006	Bridge/Ram Creek @ Roma Rd	05-Mar-08	16:30	192	7.43	8.41	111	28.1
D006	Bridge/Ram Creek @ Roma Rd	02-Feb-08	14:43	271	6.18	7.51	32	30.9
D006	Bridge/Ram Creek @ Roma Rd	13-May-08	11:30	-	-	-	-	-
D007	Paddys Creek @ Roma Rd	05-Mar-08	16:05	65.3	8.62	8.41	2	31.2
D007	Paddys Creek @ Roma Rd	02-Feb-08	14:56	232	4.57	8.05	408	30.8
D007	Paddys Creek @ Roma Rd	13-May-08	11:45	265	7.9	7.4	240	17.4
D008	Middle Creek @ Roma Rd	05-Mar-08	15:40	186	6.4	8.5	152	28.6
D008	Middle Creek @ Roma Rd	02-Feb-08	15:30	234	8.58	8.34	54	33.7
D008	Middle Creek @ Roma Rd	13-May-08	12:15	488	11.3	8.5	160	20.7
D009	Juandah Creek @ Roma Rd	05-Mar-08	15:20	120.2	2.26	7.14	473	28.5
D009	Juandah Creek @ Roma Rd	02-Feb-08	15:46	244	6.04	8.06	163	30.4
D009	Juandah Creek @ Roma Rd	13-May-08	12:30	218	6.36	6.8	410	20.5
D010	Dawson River @ Old Taroom Bridge	05-Mar-08	14:50	157.2	5.39	7.42	427	24.2
D010	Dawson River @ Old Taroom Bridge	02-Feb-08	16:23	225.1	4.15	6.98	243	27.8
D010	Dawson River @ Old Taroom Bridge	13-May-08	13:35	420	8.22	7.77		18.9
D011	Kinnoul Creek @ Taroom Rd	05-Mar-08	10:50	104	4.3	7.2	30	25.1
D011	Kinnoul Creek @ Taroom Rd	02-Feb-08	17:00	245	6.48	7.49	28	28.8
D011	Kinnoul Creek @ Taroom Rd	13-May-08	14:10	205	9.5	7.43	28	20.2
D012	Hutton Creek @ Carnarvon Hwy	05-Mar-08	-	-	-	-	-	-
D012	Hutton Creek @ Carnarvon Hwy	03-Feb-08	9:00	485	4.5	7.2	5	26.8
D012	Hutton Creek @ Carnarvon Hwy	13-May-08	9:15	260	6.7	6.98	22	14.9
D013	Dawson River @ Arcadia Valley Rd	06-Mar-08	10:00	136	-	7.1	-	-
D013	Dawson River @ Arcadia Valley Rd	03-Feb-08		222.9	6.33	7	31	25.5
D014	Dawson River @ Hornet Bank Rd	02-Feb-08	14:00	-	-	-	-	-
D015	Dawson River @ Baralaba	04-Feb-08	12:45	132	7.88	6.58	180	27.6
D016	Dawson River @ Carnavon Hwy	03-Feb-08		-	-	-	-	-

[^25]CLNo cSS Surace e water

Sample Collection Point	Sample Date	Physical										Cations				Anions				Nutients 8 Biological					Trace Elements										Flow		$\underset{\substack{\text { Physical } \\ \text { Apearance }}}{ }$	Data
		Time			pH	(1,	(mo ${ }_{\text {che }}$		(mst	(mgst	(tubidity	Sodium	$\begin{gathered} \text { Potassium } \\ (m \text { mgLL } \end{gathered}$	$\begin{array}{\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|} \substack{\text { (mol) }} \end{array}$	$\begin{gathered} \text { Magnesium } \\ \text { (ngsLL) } \end{gathered}$	$\begin{array}{\|c\|} \hline \text { Bicarbonate } \\ \text { as HCO3 } \\ \text { (mg/L) } \end{array}$	$\begin{array}{\|c\|c\|c\|c\|c\|c\|c\|crcc\|} \substack{\text { mggLL }} \\ \hline \end{array}$	(Fluride		$\begin{array}{\|c\|c\|c\|c\|c\|c\|c\|} (1) \end{array}$	$\left.\begin{array}{\|c\|c\|} \hline \text { (ugl) } \end{array}\right)$	$\underset{\substack{\text { Ammoniaa } \\ \text { (HgLLL }}}{ }$		$\underset{\substack{\text { chla } \\(\operatorname{cglLL}}}{ }$	$\begin{array}{\|c} \text { Arsenic } \\ \text { (HglL) } \end{array}$	$\left\|\begin{array}{c} \text { Broon } \\ \text { (agg LL } \end{array}\right\|$	$\begin{array}{\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|} \substack{\text { (9gL }} \\ \hline \end{array}$	$\underset{\substack{\text { chromium } \\ \text { (gglL) }}}{\substack{\text { (ghom }}}$		$\begin{array}{\|l\|l\|l\|l\|l\|l\|l\|l\|} (\operatorname{logh} \end{array}$		$\underset{\substack{\text { mercurur } \\ \text { (egulu }}}{ }$	$\left\lvert\, \begin{gathered} \text { Nickelel } \\ (\text { cgaclu } \end{gathered}\right.$	$\left.\begin{array}{l} \left(z_{(0, i n}(2)\right. \end{array}\right)$	Level	velocity		
		MTv	na	$\substack{\text { 20.80 } \\ \text { oile }}$	${ }_{8.0}^{6.5}$	${ }^{340}$	${ }^{\text {na }}$	${ }^{85-110}$	na	10	50	115	${ }^{\text {na }}$	1000	na	${ }^{\text {na }}$	175	1,2	400	500	50	${ }^{20}$	700	5	$24 / 13$	370	0.2	50	1.4	200	3.4	0.6	11	8	${ }^{\text {na }}$	${ }^{\text {na }}$		
Davson River - Acradia valley	${ }_{4}^{40512002}$																																				Noflow	s
Davson River - Acradia valey	(10012002																																				$\frac{\text { No fow }}{\text { Noflow }}$	s
Davson River-Acradia valey	220682001																																				No fow	${ }^{\text {s }}$
	${ }^{2505052001}$																																				$\frac{\text { No fow }}{\text { No fowm }}$	s
Davson River-Acradia valey	88032001			${ }^{26}$		199			${ }^{135}$																												Clear	${ }^{\text {s }}$
Danson River A Acadia valley Dawson River- Arcaid Valley	8022001 5011201	隹迆		${ }^{26}$		${ }^{285}$			194 190 1																												${ }_{\text {Clear }}^{\text {Clear }}$	
Dawson River-A Acradia valey	171/222000	${ }_{1400}$		${ }^{25}$		${ }^{231}$			157																												Clear	s
		15.30		${ }^{25}$		${ }^{231}$			157																												Clear	
Danson River- Acradia Valley	${ }^{50992000}$																																				No water	
Davson River A Acadia valey	30822000 13072000																																				$\xrightarrow{\text { No water }}$	s
Davson River-Acradia valley	150682000																																				No Sample	
Daason River A Acadia valey	${ }^{208022000}$																																					
Dasson River-Acracaia valley	${ }^{104242000}$																																				Not Fowing	
Daason River A Acadia valey	${ }^{20332000}$																																				No fiow	s
	30012200																																					
Dasson River - Acradid V Valey	${ }^{29111 / 1999}$																																					s
Danson nverer Acaialavaley	3009919999																																				Not Fowing	
Dasson River-A Arcaidivaley	${ }^{29081 / 1999}$																																				No Water	s
																																					No Waler No Water	
Davson River-A Arcaid V Valley	705019999																																				No Water	s
Danson River A Acadia Valley Dawson River-Acadia valey	${ }_{\substack{\text { 50041999 } \\ 60311999}}$	15.00		${ }_{28}^{28}$		135 176			${ }_{122}^{92}$																												$\underbrace{\substack{\text { sight tow, murky }}}_{\text {Nof for, mud hole }}$	
Davson River-Acradia vally	260217999																																				No water	
Danson River-Acradia Valley	${ }^{101111999}$																																				No fow	${ }_{5}$
	${ }^{21212111998}$																																				$\xrightarrow{\text { Nof olow }}$ No fow	${ }^{\text {s }}$
Ustream Davson Waietrole	911012003			26.5	7.1	170	6.80	${ }^{86}$	109			${ }^{17}$	11	${ }^{14}$	3	${ }^{98}$	${ }^{8}$	${ }^{0.1}$	${ }^{<}$							100									led			
Usptram Dawson Waienole	${ }^{220404}{ }^{1711104}$			${ }_{2}^{24.9}$	${ }_{6} 7.6$	${ }_{1702}^{273}$	${ }_{\text {l }}^{\text {7.90 }}$	${ }_{69}^{96}$	${ }^{156}$	${ }_{82}^{52}$		$\stackrel{22}{3}$	$\stackrel{6}{<1}$	${ }^{14}$	5	151 70	${ }^{12}$	0.1 0.24	< ${ }_{<10}^{<10}$	7780	${ }_{190}^{190}$	${ }_{380}$				cioo										${ }_{\text {Low }}^{\text {Low }}$		¢
Dawson Road Crossing	${ }^{\text {50992000 }}$			15.4	7	50	${ }^{8.61}$	84	46	${ }^{125}$	101	${ }^{3}$	4	1	1	${ }^{28}$	3	0.1	4	570		10			4	<100	${ }^{0.1}$	16	2	4407	${ }^{3}$	<0.1	4	14				
soon Road Crossing	266042007		19.5	18.9	6.6	159	0.81	9	160	${ }^{68}$		11	10	18	6	95	6	0.24	<1	3300	110	590	${ }^{128^{*}}$	8.8	2.8			<1	<2	100		<0.5	<3					${ }_{\text {RH }}$

Water Quality Data Summary

Sample CollectionPoint	${ }_{\substack{\text { Sample } \\ \text { Date }}}^{\text {ate }}$	Time	Physical									Cations				Anions				Nutrients				Trace Elements													Physical Appearance	
			$\begin{array}{\|c\|} \hline \text { Teir } \\ \text { Aen } \end{array}$		pH		(mgl) ${ }_{\text {po }}$	$\underset{\text { sat }}{\substack{\text { ooot } \\ \text { sat }}}$	${ }_{\substack{\text { ros } \\ \text { (mgl) }}}^{\text {den }}$	${ }_{\substack{\text { rsss }}}^{\text {Tss }}$		(${ }_{\text {Sodium }}^{\substack{\text { (mgl) }}}$	$\underset{\substack{\text { Potassium } \\ \text { (mgL) }}}{\text { ata }}$	(calcium	$\begin{array}{\|c\|c\|c\|c\|c\|c\|c\|c\|} \\ \text { (mgsium } \end{array}$	Bicarbonate as $\mathrm{HCO}^{(\mathrm{mg} / \mathrm{L})}$ (mg	$\left.\begin{array}{c} \text { chhoride } \\ \text { (mg }(L L L) \end{array}\right)$	(matice	$\begin{gathered} \text { Sulphate } \\ \text { (mgLL } \end{gathered}$	$\underset{\text { (1) }}{\substack{\text { (ug) }}}$	(ugl)	Ammond	$\begin{array}{\|c\|} \hline \text { Nitrate as } \\ \mathrm{NO}_{3} \\ (\mu \mathrm{~g} / \mathrm{L}) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Arsenic } \\ \text { (uggl) } \end{array} \\ \hline \end{array}$	(1) $\begin{gathered}\text { Boron } \\ \text { (ugl) }\end{gathered}$	Casmium	$\begin{aligned} & \text { Chromium } \\ & (\mu \mathrm{g} / \mathrm{L}) \end{aligned}$	coper	$\left.\right\|_{\substack{\text { roma } \\(\text { mglu }}}$	$\begin{array}{\|l\|l\|} \hline(\text { Lead } \\ \text { (egal }) \end{array}$	(ersary	$\left\|\begin{array}{c} \text { Nickel } \\ \text { (eglL } \end{array}\right\|$	(zinc		Level	Velocity		(Data source
		MTV	${ }^{\text {na }}$		6.5.8.0	340	na	85-110	${ }^{\text {na }}$	10	${ }^{50}$	115	${ }^{n a}$	1000	${ }^{n 9}$		${ }^{175}$	${ }_{1,2}$	${ }^{400}$	500	${ }^{50}$	${ }^{20}$		${ }^{24173}$	${ }^{370}$	0.2	${ }_{50}$	1.4	200	${ }_{3} .4$	${ }_{0}^{0.6}$	11	${ }^{8}$	${ }^{5}$	${ }^{\text {na }}$	${ }^{\text {na }}$		
Upeer Baffe Creek	40552002	15.40		${ }^{21}$		1585			1078 108 108																												Clear	s
Upper Baffe creek	1017202	10.30		- ${ }_{2}^{24}{ }_{2}$		1570 1570			(10681068 108																												Siligh loudy brown	s
Upper Bafle Creek	10112002	14.35		${ }^{25}$		147			100																												Sot fowing - Yelow Brown	s
Upeer Bafte Criek	10112002	13.35		${ }^{27}$		128			${ }^{87}$																												Slight fow, mudy	s
Upeer Bafte criek	10172022	13:10		29		${ }_{9}^{97}$			${ }_{68}^{66}$																													s
Upper a affec creek	1012002	${ }^{13,10}$		${ }_{27}^{29}$		${ }_{1144}^{115}$			${ }_{98}^{78}$																												Stight $\begin{aligned} & \text { Silow, muddy } \\ & \text { Mod fow mudy }\end{aligned}$	s
Upper Eaffer ireek	220682001								0																												No fow	
Uperer Biffecreek	${ }^{25050520001}$								0																												${ }^{\text {Nofow }}$	${ }_{5}$
Upper Baffec creek	${ }^{2010420001} 8$								\bigcirc																												$\xrightarrow{\text { Nof fow }}$	s
Upper Baffe Creek	511020000								0																													
Uperer Baffe creek	${ }^{5} 5$								0																												${ }^{\text {Nofow }}$	${ }_{5}$
Upper batif Creek	${ }^{303882000} 1$	14.29		${ }^{24}$		142			${ }_{97}$																												$\xrightarrow{\text { Cloudy so somesesediment }}$	s
Upper Baffe creek	150682000	${ }^{14.22}$		${ }_{24}^{24}$		${ }_{1226}$			${ }^{881}$																												Cloud, some sediment	s
Uppere Batif creek	${ }^{20682000}$																																					
Upper bilfe Cieek	10	${ }^{10.30} 10$		${ }_{24}^{24}$		${ }_{1456}$			${ }^{990}$																													
Upper Bafte creek	20332000			${ }^{24}$		${ }_{1467}$			${ }^{998}$																												Slight coudy brown	
Upper Batfe creek	301212000 30121999	10.30		${ }^{24}{ }_{25}^{24}$		1856 200 20			${ }^{1262}$																												Stight loudy bown	s
Upper Bafte creek	291111199	11:17		${ }_{2} 24$		280			190																												Not Fowing	
Upper Batif Creek	301101999 30091999	15.42		${ }_{2}^{25}$		460 211			313 143																												Not Fowing	s
Upere Baffe creek	290711999			${ }^{15}$		185			${ }^{126}$																												No fow	${ }_{5}$
Upper Batif Creek	290771999			$\stackrel{19}{14}$		${ }_{1}^{191}$			130 110 10																												Not Fowing	s
Upper Batfe cieek	7106519999	${ }^{14,00} 18$		${ }^{14} 18$		${ }^{162} 8$			${ }^{10} 58$																												Not Fowing	s
Uperer Baffle creek	50441999			${ }^{27}$		${ }^{98}$			${ }^{67}$																												sight fow, muky	$\stackrel{\text { s }}{ }$
Upper Baffif creek	${ }^{\text {91092003 }}$ 2104204			17.5 2.5 2.5	${ }^{6.8}$	${ }_{152}^{67}$	${ }^{8.90} 120$	${ }^{94}$	${ }_{64}^{43}$	6		${ }_{8}^{6}$	${ }_{6}^{5}$	$\frac{1}{6}$	${ }_{4}^{2}$	${ }_{7}^{54}$	${ }^{20.5} 7$	$\stackrel{0.1}{\text { < } 1}$	< <10	1350	${ }_{60}$				<100											${ }_{\text {Low }}^{\text {Low }}$		
Upper Bafte creek	161112004			${ }^{22.7}$	${ }^{7} .8$	134	8.60	119	${ }^{84}$	49		${ }^{<1}$	7	4	3	cr		0.32	<10		1000	100			<100										Low	Low		RH
Upper Baffle Creek	2005				7.4	108			114	30		5	5	4	4	47	6	0.43	<10	810	50	${ }^{30}$							1800									
Upper Baffec creek	${ }^{501882006}$			${ }^{15.8}$	76	${ }^{212}$	${ }_{7}^{9.87}$	85	${ }^{126}$	${ }^{48}$	105	17	${ }^{6}$	15	7	${ }_{9}^{99}$	9	${ }^{0.4}$	$\stackrel{3}{4}$	${ }^{480} 1100$	<10	${ }_{17}^{10}$		$\stackrel{-1}{4}$	<100	${ }^{<0.1}$	${ }^{<}$	<1	${ }_{81} 81$	<	${ }^{0} 0.1$	<1	10		Mod	Low		
${ }_{\text {Upper bafte creek }}^{\text {Bafle }}$	${ }^{2270420071} 7$		27.5	22.9	7.6	${ }^{1382}$	${ }^{7} 23$	85	$\stackrel{100}{1034}$	49			12	${ }^{15}$		${ }^{93}$	5								${ }^{25}$	4	<1			<1	${ }^{0.5}$	${ }^{<}$	${ }^{8.3}$	${ }^{6.5}$			clear	
${ }_{\text {Batil Creak }}$	${ }_{\text {51712001 }}$			${ }_{2}^{22}$		1384 1484 1			${ }^{941}$																												Brown tige	s
	${ }_{\text {2 }}{ }^{121008202000}$					${ }_{1}^{1484} 1$			109 1009																												Brown tige	
Baffe Creek	10072001			${ }^{22}$		${ }_{1530}^{1750}$			1040																												Sar, sight brown tinge	${ }_{5}$
	${ }^{501041999}$	11.50		${ }^{23}$		${ }^{775}$			${ }_{5}^{527}$																													
Baffle Creek outtow	110112002								0																												Not tested	
Baffle Creak outtow	100112002								0																												Nottested	
Batfe Creek outtow	${ }^{101012002}$	11:30		${ }^{27}$		${ }_{3}^{188}$			${ }^{1228}$																													
Baffe Creak outiow	${ }^{2220652000}$			${ }^{19}$		1280 130 130			${ }^{857}$																												Slighty coudy Brown	s
Baffe Creek outiow	${ }^{2505052001}$			${ }_{25}^{23}$		(1340			${ }_{9}^{911}$																													
Beafe Creek outtow				${ }^{26}$		1459			992																												Cliar, Slight brown tinge	s
	${ }^{5} 5$								\bigcirc																												No Sample Nosample	s
Baffle Creak outtow	${ }^{230772000}$								0																												No Sample	s
Baffe Creak outiow	15150622000								\bigcirc																												No sample Not Fowing	
Baffle Creak outtow	10422000	13.00		${ }^{21}$		${ }^{1150}$			782																												Slight cloudy brown	s
	${ }^{101042000}$	$13: 00$							${ }^{917}$																												Slight doudy boon	s
Baffe Creek outtow	30012000 3012000	$13: 00$		${ }^{24}$		1252			851																												Slight coudy brown	
Batfe Creek outiow	${ }^{301219999}$	14.22		${ }^{22}$		880			${ }_{5}^{585}$																												$\xrightarrow{\text { Not Fowing }}$ Not Fowing	s
Bafte Creek outtow	291011999	${ }^{924}$		${ }^{21}$		${ }^{880}$			${ }^{598}$																												Not Fowing	s
	${ }^{300091999}{ }^{20771999}$			18 16 18		(1281			${ }_{5}^{871}$																												Stiow fow ${ }_{\text {Sow fow -muky }}$	s
Bafte Creak outiow	290711999			${ }^{13}$		${ }^{1233}$			${ }^{838}$																												Stow-Med. Flow	s
Batfe Creek outiow	106651999	${ }^{12,13} 11: 00$		${ }_{19}^{14}$		${ }_{6521}^{553}$			${ }_{422}^{376}$																												Stow fow- mury	${ }^{\text {s }}$
Baffle Creak outiow	50411999			${ }^{26}$		649			441																												Slow-med fow	s
	${ }^{\text {91202003 }}$ 2204204			${ }^{19}$		${ }_{870}^{1444}$	${ }_{5.10}^{7.30}$	79	${ }_{612}^{925}$	${ }^{37}$		(347	${ }_{5}^{4}$	$\frac{1}{5}$	$\frac{1}{3}$	${ }_{916}^{726}$	${ }_{36}^{56}$	0	${ }_{<10}^{<10}$	3970	220				${ }_{700}^{200}$										Low	Low		${ }_{\text {RHH }}^{\text {RH }}$
Batit Creek outiow	$17 / 112004$			${ }^{23}$		1403	0.40	5	${ }_{852}$	76		232	8	<1	2	${ }_{623}$	56	1	<10	1800	${ }^{350}$				400										Mod	Low		${ }_{\text {RH }}$
Batfe Creek outiow	${ }^{21 / 052005} 5$			14 12 12		cince	10.10 7.90	${ }_{73}^{98}$	${ }^{\text {cose }}$	${ }_{39}^{10}$	${ }_{154}$	(349 ${ }_{4}^{34}$	${ }_{6}^{6}$	$\stackrel{<}{1}$	2	${ }_{7}^{684}$	68 93 9	$\stackrel{2}{2}$	${ }_{24}{ }_{20}$	$\xrightarrow{720}$	150 <10	${ }_{\text {c10 }}^{120}$		9	500	${ }^{20.1}$	16	3	${ }_{\substack{6013 \\ 6362}}$	8	${ }^{20.1}$	3	14		Low	${ }_{\text {Low }}^{\text {Low }}$		$\stackrel{\text { RH }}{\text { RH }}$

BoLD | Geater than minimum tigger |
| :---: |
| MTV minimum tiggervalue |

TV. minimutrige vaue

Baffle Creen
s- santos

\begin{tabular}{|c|}
\hline \& \& \& \& \& \& \& ical \& \& \& \& \& \& ions \& \& \& \& \& \& \& \& Nutrients \& \& \& \& \& \& ce Eleme \& \& \& \& \& \& Biologic \& \& \\
\hline Sample Collection Point \& Sample \& Time \& \& \[
\begin{array}{|c|c|c|c|c|c|c|}
\substack{\text { Temp } \\
\text { (ep) } \\
\hline}
\end{array}
\] \& pH \& \({ }_{(\mu \mathrm{Sc} / \mathrm{cm})}^{\text {EC }}\) \& \[
\begin{gathered}
\circ \\
(\mathrm{mglL})
\end{gathered}
\] \& \& \[
\begin{array}{|c|}
\hline \text { Tos } \\
(\mathrm{mglLL})
\end{array}
\] \& \[
\begin{array}{|c|c|}
\hline \text { Tss } \\
(\mathrm{mglL})
\end{array}
\] \& \[
\begin{array}{|l|l}
\substack{\text { sodium } \\
\text { (mglL }}
\end{array}
\] \& \[
\underset{\substack{\text { Potassium } \\(\text { mglL })}}{ }
\] \& \[
\begin{array}{|c|}
\hline \text { Calcium } \\
(\mathrm{mg} \mathrm{~L})
\end{array}
\] \& \[
\underset{(\text { magnesium }}{\substack{\text { Mage }}}
\] \& \[
\begin{array}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \text { as } \text { mglL } \\
\hline
\end{array}
\] \& \[
\begin{gathered}
\text { chloride } \\
(\mathrm{mg} / \mathrm{L})
\end{gathered}
\] \& \[
\begin{gathered}
\text { Fluoride } \\
(\mathrm{mg} \mathrm{~L})
\end{gathered}
\] \& \[
\begin{gathered}
\text { Sulphate } \\
(\mathrm{mg} / \mathrm{L})
\end{gathered}
\] \& \[
\begin{array}{|c|}
\hline \mathrm{TN} \\
(\mathrm{Hg} L \mathrm{~L}) \\
\hline
\end{array}
\] \& \[
\begin{array}{|c|c|}
\substack{\text { (uglL } \\
\hline}
\end{array}
\] \& \[
\underset{\substack{\text { Ammonia } \\(\text { (HgLL) }}}{ }
\] \& Nitrate as NO (\(\mathrm{\mu g} / \mathrm{L}\)) \& \[
\begin{array}{|c}
\text { Arsenic } \\
\text { (4ggLL) }
\end{array}
\] \& \[
\left.\begin{array}{|c}
\text { Boron } \\
(\mu g L L)
\end{array} \right\rvert\,
\] \& \[
\underset{\substack{\text { Cadmium } \\(\mu \mathrm{g} / \mathrm{L})}}{ }
\] \& \[
\begin{aligned}
\& \text { Chromium } \\
\& (\mu \mathrm{g} / \mathrm{L})
\end{aligned}
\] \& \[
\begin{array}{|c}
\substack{\text { copper } \\
(\mu \mathrm{\mu g} / \mathrm{L}} \\
\hline
\end{array}
\] \& \[
\begin{aligned}
\& \text { fron } \\
\& \text { (egl) }
\end{aligned}
\] \& \[
\left.\begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\text { (ed }
\end{array}\right)
\] \& \[
\left.\begin{array}{c}
\text { Mercury } \\
(\text { (galL) }
\end{array}\right)
\] \& \[
\left.\begin{array}{|l|l|}
\text { Nickele } \\
(\mathrm{Lg} / \mathrm{L}
\end{array}\right)
\] \& \[
\underset{(\mathrm{zing} \mathrm{~L})}{(2)}
\] \& \[
\begin{aligned}
\& \text { Chl-a } \\
\& (\mu \mathrm{g} / \mathrm{L})
\end{aligned}
\] \& Physical Appearanc \& (tata \\
\hline \& \& MTV \& \({ }^{\text {na }}\) \& 0.80 \%ill \& (6.5-8.0 \& \({ }^{340}\) \& na \& -110 \& na \& 10 \& \({ }^{115}\) \& na \& 1000 \& na \& na \& 175 \& 1,2 \& 400 \& 500 \& 50 \& 20 \& 700 \& \({ }^{24 / 13}\) \& 370 \& \({ }^{0.2}\) \& 50 \& 1.4 \& 200 \& \({ }^{3.4}\) \& 0.6 \& 11 \& 8 \& 5 \& \& \\
\hline Dawson Dowstream Bafle \& \({ }^{405512002} 10\) \& Not tested
Notested \& s \({ }_{\text {s }}\) \\
\hline Dawson Downstram Baffe \& 110122002 \& Nootested \& s \\
\hline Dawson Downstram Baflie \& \({ }^{220612001}\) \& \& \& \({ }_{19}^{19}\) \& \& \({ }^{1130}\) \& \& \& \({ }^{768}\) \& Silty cloud Prown \& s \\
\hline Dawson Dowsstream Baffe \& \({ }_{2250512001}^{22001}\) \& 11:00 \& \& \({ }^{23}\) \& \& 980
884 \& \& \& 666
574
57 \& \& \\
\hline Dawson Downstram Baffe \& 220682001 \& 12:15 \& \& 26 \& \& 853 \& \& \& 580 \& Sow fow, muddy \& \(\stackrel{5}{5}\) \\
\hline Dawson Dowstream Bafle \& \({ }^{2200612001}\) \& \& \& \& \& 182 \& \& \& 124 \& Slow fow-lt Brown \& s \\
\hline Dawson Dowstream Bafte \& \({ }_{\text {220062001 }}^{22062001}\) \& \({ }^{\frac{11}{11: 05}} 10\) \& \& \({ }_{2}^{26}\) \& \& \& \& \& \({ }_{\substack{532 \\ 240}}^{\substack{\text { 20, }}}\) \& Sth fow, muddy \& s \\
\hline Dawson Dowstream Bate \& \({ }^{22206200012001}\) \& \& \& \({ }^{27}\) \& \& \begin{tabular}{|c}
353 \\
673
\end{tabular} \& \& \& \({ }_{458}^{240}\) \& \& s \\
\hline Dawson Downstream Bafle \& \({ }^{\text {20,042001 }}\) \& \& \& \({ }_{24}^{24}\) \& \& \begin{tabular}{l}
800 \\
208 \\
\hline
\end{tabular} \& \& \& \(\begin{array}{r}544 \\ 196 \\ \hline\end{array}\) \& Silty coudy Brown \& s \\
\hline Dawson Dowstream Batie \& 810322001
51012000 \& 10:30 \& \& \({ }_{2}^{25}\) \& \& \begin{tabular}{l}
288 \\
1367 \\
\hline 1
\end{tabular} \& \& \& \(\stackrel{196}{930}\) \& \& s \\
\hline Dawson Downstram Baffe \& 510922000 \& 10:00 \& \& 24 \& \& 1498 \& \& \& 1019 \& Clear, sts sediment \& s \\
\hline Dawson Downstram Baflie \& \({ }^{30882000}\) \& 10:00 \& \& 20 \& \& 1358 \& \& \& 923 \& Clear, sts sediment \& s \\
\hline Dawson Dowstream Bafle
Dawson Dowstram Bafle \& \({ }_{\text {23072000 }}^{15062000}\) \& \(\frac{\text { No Sample }}{\text { No sample }}\) \& s \\
\hline Dawson Downstream Bafte \& 20682000 \& \\
\hline Dawson Downstream Bafle \& \({ }^{2910412000}\) \& \\
\hline Dawson Dowstream Batie \& 1042000 \& 1.00PM \& \& \({ }_{24}^{24}\) \& \& 1060
1152 \& \& \& \({ }_{783}^{721}\) \& (silty doudy bronn \& s \\
\hline Dawson Downstram Baffle \& 300112000 \& \(\stackrel{5}{5}\) \\
\hline Dawson Downstram Baftle \& 311211999 \& \(2: 30\) \& \& \({ }^{21}\) \& \& 1050 \& \& \& 714 \& Slow flow-Ltyellow \& s \\
\hline Dawson Dowstream Batie \& \({ }_{\text {2911011999 }}\) \& \({ }^{15000} 10\) \& \& \({ }_{21}^{22}\) \& \& 880
910 \& \& \& 598
619 \& Slow fow L-L y ylow \& \\
\hline Dawson Dowstream Batie \& 301091999

20071099 \& \& \& | 18 |
| :--- |
| 15 |
| 15 | \& \& $\begin{array}{r}1402 \\ \hline 82 \\ \hline\end{array}$ \& \& \& ${ }_{953} 95$ \& Slow Flow \& s

\hline Dawson Dowstream Bafle
Dawson Dowstram Bafte \& ${ }_{\text {290771999 }}$ \& \& \& 15
15

15 \& \& (872 \& \& \& | 593 |
| :---: |
| 897 | \& Slow fow - murcky \& s

\hline Dawson Downstram Bafle \& 106/1999 \& 11:30 \& \& 13 \& \& 556 \& \& \& 378 \& Slow fow - murcky \&

\hline Dawson Dowstream Batile \& ${ }^{7} 715519999$ \& 11:15 \& 24.6 \& 19 \& 8.3 \& ${ }_{6}^{664} 1296$ \& 6.05 \& 67.0 \& | 452 |
| :--- |
| 990 | \& 99.0 \& 280.0 \& 10 \& 10 \& 5.5 \& 820 \& 120 \& 1.4 \& <1 \& 1600.0 \& 90.0 \& 82.0 \& 35^{*} \& 3.4 \& 480.0 \& <1 \& ${ }^{8.3}$ \& <2 \& 1700 \& <1 \& <0.5 \& 4.2 \& 1.5 \& 15 \& Slow flow-Ltyellow \& $\stackrel{\text { s }}{\text { RH }}$

\hline
\end{tabular}

Samples collected
s- S.
RHintiver
Healt

$\begin{gathered} \text { Sample Collection } \\ \text { Point } \end{gathered}$	Sample Date	Physical										Cations				Anions				Nutrients				Trace Elements										Biologica	Fow		
		Time		$\begin{array}{\|c} \hline \text { Water } \\ \text { Temp } \\ \left({ }^{\circ} \mathrm{C}\right) \\ \hline \end{array}$	pH	EC ((s/m)	Do (mgl)	D0\% sat	TDS (mgl)		${ }^{\text {a }}$	$\begin{array}{\|c} \begin{array}{c} \text { sodium } \\ \text { (mglL) } \end{array} \\ \hline \end{array}$	$\begin{gathered} \text { Potassium } \\ (\text { mglL }) \\ \hline \end{gathered}$	$\begin{array}{\|l\|l} \hline \begin{array}{c} \text { calcicum } \\ \text { (mad } \end{array} \end{array}$	$\begin{aligned} & \text { Magnesium } \\ & \text { (mg/L) } \end{aligned}$		$\begin{gathered} \substack{\text { chioride } \\ \text { (malL }} \end{gathered}$	$\begin{array}{\|c} \begin{array}{c} \text { Fuboride } \\ \text { (mglu) } \end{array} \end{array}$	$\begin{array}{\|c} \text { Suphate } \\ \text { (masLL) } \end{array}$		$\begin{gathered} \substack{\text { Total } \\ \text { phosphorous } \\ \text { (hglL }} \\ \hline \end{gathered}$	$\begin{gathered} \text { Ammonia } \\ (\text { gelL } \end{gathered}$		$\begin{array}{\|l\|l\|} \hline \text { Arsenic } \\ (\text { egll } \end{array}$	$\begin{array}{\|l\|l} \hline \text { Boron } \\ \text { (uglu) } \end{array}$	$\begin{array}{\|c} \substack{\text { Cadmium } \\ \text { (uglL }} \\ \hline \end{array}$	$\underbrace{}_{\substack{\text { chromium } \\ \text { (egll }}}$	$\begin{gathered} \substack{\text { copper } \\ \text { (egLL }} \\ \hline \end{gathered}$	$\begin{array}{\|l\|l\|} \substack{\text { (egn } \\ \hline} \end{array}$	$\underset{\substack{\text { Lead } \\ \text { (egl) } \\ \hline}}{ }$	$\begin{array}{\|l\|l\|} \hline \text { mercury } \\ \text { (1gLL) } \end{array}$		(ug)	$\underset{\substack{\text { chia } \\ \text { (ugl) }}}{\substack{\text { a }}}$	Level	ty	Dota
Upeer Hutuon Creek	91102003	MTV	na	${ }^{0.880} 0$	$\frac{6.5 .8}{7.9}$	${ }_{\substack{340 \\ 1478}}^{\text {10, }}$	${ }_{\text {n }}^{\text {na }}$	${ }_{85}^{85110} 9$	$\frac{n 9}{1139}$	10	50	${ }_{1}^{135}$	${ }_{9}{ }_{9} 9$	1000 91	${ }^{\text {na }}$	${ }_{31}$	${ }_{275}^{178}$	$\frac{1.2}{0.1}$	400 120 10			20		2413	${ }_{\text {ckion }}^{370}$	0.2	50	1.4	200	3.4	0.6	11	8	5	${ }_{\text {na }}^{\text {Lisaled }}$	na	
Upper tutuon Creek	2504242007		27.7	22.5	${ }^{6.6}$	${ }^{156}$	4.31	49	190	570		${ }^{14}$		${ }^{20}$			${ }^{6}$	0.31	<1	1800	${ }^{170}$	51	${ }^{168^{*}}$	<1	${ }^{32}$	${ }^{4}$	${ }^{4}$	2	1900	4.8	<0.5	${ }^{6.3}$	1.5	13			${ }^{\text {RH }}$
Hutuo Criek Huton Creak	190042004			24.4	7.2	${ }_{358}$	3.60	${ }^{41}$	${ }^{292}$	${ }^{10}$		${ }^{27}$	7.0 100 10	${ }^{27}$	7	${ }_{1}^{171}$	${ }^{28}$	<	<10 <10		70 100				800 8100										Modeate Low Low	${ }_{\text {Low }}^{\text {Low }}$	$\underset{\substack{\text { RH } \\ \text { RH } \\ \hline}}{ }$
${ }_{\substack{\text { Hutto Creek } \\ \text { Huton } \\ \text { creek }}}$				${ }^{23.7}$	$\stackrel{7.6}{7}$	${ }_{195}^{461}$	${ }_{\text {5.60 }}^{5.90}$	- ${ }_{88}^{66}$	${ }_{195}^{284}$	36 170 170		${ }^{39} 18$	10.0 7.0	${ }^{30}$	9	190 87	${ }^{39}$ 12	-	<10	(1300	100 230	${ }^{240}$			${ }_{<100}$				2358						Low	${ }_{\text {Low }}$	${ }_{\text {RH }}^{\text {RH }}$
Hutton Creek	500822006			14.9	${ }^{6.6}$	183	8.00	\%	116	${ }_{123}^{12}$	116	${ }^{24}$	6.0	5	2	${ }_{83}$	${ }^{12}$	0.2	5	680	<10	<10		2	<100	${ }^{0.1}$	5	${ }^{4}$	62	2	<0.1	${ }^{4}$	<10		Mod	Low	${ }_{\text {RH }}$
Hutuon Creek	2110412007		34.3	21.3	7.1	273	3.49	${ }^{39}$	220	${ }_{32}$		59	7.4	12	4	130	20	0.31	${ }^{<1}$	1200	76	${ }^{93}$	101*	1.6	79	$\stackrel{1}{4}$	<	<2	2300	<1	${ }^{0.5}$	<3	${ }^{20}$	${ }^{6.6}$			${ }_{\text {RH }}$
$\pm \begin{aligned} & \text { Hutto Cieek } \\ & \text { Huton } \\ & \text { creek }\end{aligned}$	80881973	${ }^{1350}$		${ }_{31}^{19}$	8.1 7.9	155 300 30			$\begin{array}{r}\text { ¢ } \\ \hline 198 \\ \hline 18\end{array}$	${ }^{116}$		14 30	${ }_{6}^{5.4}$	${ }_{\text {11 }}^{11}$	${ }_{7}$	- 145	10 87	0.14 0.5 0.5	4				1200														${ }_{\text {ONRW }}^{\text {ONRW }}$
	${ }^{\text {cosion }}$	${ }^{1405}$			${ }_{8.2}$	${ }_{2} 215$			${ }^{198}$	10	75		${ }^{6.8}$	${ }^{36}$	4	${ }^{148}$	${ }^{15}$	0.1	${ }_{5}^{4}$				${ }_{4}{ }_{4000}$														${ }_{\text {ONRW }}^{\text {ONT }}$
Hutoon Creek	${ }^{250331982}$	1405		${ }_{2}$	8	160			97	200	100	12	4.2	12	3	77	8		5.4				2100														DNRW
Hutuon Creek	$161 / 21983$	930		24	8.2	${ }^{195}$			${ }_{1} 130$	${ }^{20}$	${ }^{25}$	17	4.6	16	4	${ }_{90}$	${ }^{15}$		${ }^{2.7}$				${ }^{1200}$		20												
Hutto Cieek Huton Creek	200391984	${ }^{1400}$		${ }_{14}^{27}$	${ }_{7}^{7.8}$	250 270			- 150	10 5	12	${ }_{22}^{20}$	4.9 4.8	20 22	5	110 135	25 19	0.1 0.1	6.3 3 1.3						${ }_{20}^{20}$												
Hutton Creek	1910101984	1500		20	7.9	570			${ }^{320}$	5		70	1.6	${ }^{34}$	11	185	${ }_{81}$	0.1	${ }^{12}$				1100		10												${ }_{\text {ONRW }}$
Hutuon Creek	150119895	${ }^{920}$		${ }^{24}$	7.8	${ }^{200}$			${ }^{120}$	445	100	17	5.2	15	4	${ }^{88}$	16	0.1	2				1100		${ }^{20}$												${ }_{\text {ONRW }}$
	${ }^{20010191985}$	1025 1099		20 25	8.2	$\substack{390 \\ 131}$			1010 84	${ }_{630}^{10}$	$\stackrel{1}{100}$	${ }_{9}^{175}$	$\stackrel{4.5}{4.3}$	-85	67	${ }_{6}^{275}$	$\underset{4}{355}$	${ }_{0}^{0.3}$	$\stackrel{170}{12}$				(100 10												

BOLD $\begin{gathered}\text { Greater than minimum trigge value (refer ENviommental Values Table) } \\ \text { MTV mininumm }\end{gathered}$
Samples collecected oownstream of exsising associated waler discharge points

$s-$ Santos
RH -River tea

RNR- Department of Nawural Resources

Tale A7
Uoper Jaws

GLNG CSG Surface WateSample Collection Point	Sample ate	Physical										Cations				Anions				Nutrients				Trace Elements													Physical Appearance	Data
		Time			pH		（mgl）		${ }_{\text {ros }}^{\text {ros }}$（mal）	Tss（mgl）		Sodium	（eotessium		${ }_{\substack{\text { Magnesum } \\ \text { masL）}}}^{\substack{\text { a }}}$		chorde	${ }_{\text {Flor }}^{\substack{\text { Fuorde } \\ \text {（mal）}}}$	$\underbrace{\text { a }}_{\substack{\text { sulpate } \\ \text {（mal）}}}$	N（\％g）	TP（gg）	${ }_{\substack{\text { Ammonia } \\ \text {（9al）}}}^{\text {a }}$	$\left.\begin{array}{c} \text { Nitate as } \\ \text { Nas } \\ \text { (gas } \end{array}\right]$	${ }_{\text {Arsenic }}^{\substack{\text {（ugl）}}}$	（e）Bron （egl）		chomich	${ }_{\substack{\text { copeer } \\ \text {（egl）}}}^{\substack{\text { ata }}}$	${ }_{\text {and }}^{\text {（ron）}}$	$\underbrace{\substack{\text { ceal }}}_{\text {Lead }}$	$\underbrace{\text { mercury }}$（eal）	（ $\begin{gathered}\text { Nickel } \\ \text {（egl）}\end{gathered}$	Zinc（wgl）		Lovel	Velocity		
Dawson dis tutuon－1		MV	${ }^{\text {n }}$	0．8020 21	${ }_{6}^{6.5 .80} 6$	${ }_{264}^{364}$	${ }_{49}^{\text {na }}$	$\frac{855170}{56}$	${ }_{\text {na }}^{\text {ne }}$	${ }^{10} 6$	50	$\frac{115}{20}$	${ }^{\text {na }}$	${ }_{1}^{1000}$	$\frac{n 9}{6}$	${ }_{\text {ci }}^{\text {ne }}$	$\frac{175}{14}$	$\frac{1,2}{\text { ¢ }}$	$\frac{400}{40}$	${ }^{500} 10$	50 190	${ }^{20}$		${ }^{24 / 3}$	370	0.2	50	${ }^{1.4}$	200	${ }^{3.4}$	${ }^{0.6}$	11	8	${ }_{5}$	$\stackrel{\text { na }}{\text { noterate }}$	$\frac{\text { na }}{\text { noterate }}$		
Dawson dis tutum－1	199112004			22.1	1	${ }^{29}$	7.90	${ }_{91}$	${ }_{88}$	${ }^{316}$		15		1	2	${ }_{54}$	8	${ }^{0.1}$	<10	4100	580				<100										Moderate	Moderate		${ }_{\text {RH }}$
Danso dis tutor－1	${ }^{27055202005}$			9.3 124 	${ }_{8}^{74}$	${ }_{226}^{265}$	${ }^{13.40}$	${ }_{75}^{116}$	${ }_{183}^{143}$	${ }^{3}$		${ }^{21}$	${ }_{3}^{3}$	${ }^{15}$	$\stackrel{8}{9}$	111 113	14 16 16	0.21 0.2	＜10	120 170	ciso	${ }_{\substack{40 \\ 40}}$			＜100													$\underset{\text { RH }}{\text { RH }}$
				12.4 14.6 1	7 7.3	265 226 28	${ }^{8.120}$	${ }_{70}^{75}$	${ }_{108}^{108}$	${ }^{3}$	6	${ }^{21}{ }_{18}^{21}$	${ }_{3}$	${ }^{16}$	9	${ }^{\frac{113}{113}}$	16 10	0.2 0.2	＜10	${ }_{60}{ }^{170}$	＜ 40	${ }_{40}^{40}$		${ }^{<}$	＜100	${ }^{0.1}$	${ }^{<1}$	${ }^{<1}$	60	$\stackrel{1}{4}$	${ }^{0} 0.1$	$\stackrel{1}{4}$	＜10		${ }_{\text {Mod }}$	${ }_{\text {Low }}^{\text {Lod }}$		${ }_{\text {RH }}^{\text {RH }}$
Daasond ds tutuon－1	230424007		3.9	22.5	6.9	265	4.16	49	160	9		${ }^{23}$	${ }^{3}$		9		11	0.21	1	550	＜20	30	$44{ }^{\text {c }}$	${ }^{1}$	16	${ }^{4}$	${ }^{4}$	<2		${ }^{4}$	${ }^{0.5}$	$<^{4}$	17	${ }^{4}$				
Dawsond dis tutur－2	23042004			25.	7.6	260	5.40	${ }^{6}$	132	${ }^{20}$		${ }^{20}$	3	${ }^{14}$	6	${ }^{138}$	${ }^{14}$	＜ 1	<10	${ }^{280}$	110				400										Low	Modeate		RH
Dawson dis suto－2				${ }_{13,8}^{22.7}$	${ }_{7}^{7}$	${ }_{29}^{134}$	${ }_{\text {8．}}^{\text {8．00 }}$	${ }_{93}^{93}$	${ }^{922}$	$\frac{292}{3}$		${ }^{15}$	${ }_{3}^{6}$	$\stackrel{1}{16}$	$\stackrel{2}{9}$	${ }_{\substack{56 \\ 111}}$	$\stackrel{8}{14}$	－0．08	＜10	3100 190 1	cici	＜10			＜100											Moderate		${ }_{\text {RH }}^{\text {RH }}$
Dawson dls thutor－2	51020006			15.4	7.6	228	7.20	71	124	11	4	19	3	14	7	106	12	0.2	${ }^{4}$	${ }_{60}$	＜10	＜10		${ }^{4}$	<100	${ }^{0.1}$	$\stackrel{1}{4}$	${ }_{4}$	${ }_{97}$	4	${ }^{2} 0.1$	4	＜10		Mod	Mod		${ }_{\text {RH }}$
$\frac{\text { Dawsond ds Stutoon－2 }}{\text { Davsons send }}$	${ }^{2394042007}$		31.5	21.8 19.2	${ }_{6} 7$	${ }_{2}^{288}$	${ }_{5.93}^{5.0}$	${ }_{58}^{68}$	${ }^{160}$			$\stackrel{28}{27}$	$\stackrel{4}{2}$	${ }^{26}$	$\frac{11}{7}$	${ }_{\substack{150 \\ 157}}^{10}$	$\stackrel{12}{12}$	${ }_{\text {coin }}^{0.21}$	$\stackrel{<1}{<5}$				${ }^{544}$		$\stackrel{\text { c15 }}{\substack{100}}$									4	Low	Low		
Dawsons Bend	20042004			24.6	6	270	4.50	${ }_{54}$	92			${ }^{21}$	3	14	7	${ }_{131}$	15	$\stackrel{¢}{¢}$	<10	270	60				500										Low	Low		
Davosons enend				21.2	${ }^{6} 9$	${ }^{136}$	7.40	${ }^{84}$	${ }^{136}$	${ }^{366}$		${ }^{15}$	${ }^{5}$	1	$\stackrel{<}{4}$	${ }_{55}^{55}$	$\stackrel{9}{15}$	${ }^{0.17}$	${ }_{<10}$	3400															Moderate	Moderate		${ }_{\text {R }}^{\text {RH }}$
Doamons end	${ }_{\text {24052005 }}$			${ }^{17.9}$	7.1	${ }_{228}^{248}$	${ }^{8.90}$	${ }^{89}$	${ }^{148}$	$\stackrel{4}{10}$	2	${ }^{21}$	${ }_{3}$	${ }_{14}^{14}$	${ }_{8}^{9}$	－ 106	15 ${ }_{13}^{13}$	－0．21	＜10	40 90 9	${ }^{\text {c }}$	${ }_{c}^{<10}$			＜100				${ }_{23}^{62}$	${ }^{-1}$		${ }^{\circ}$			${ }_{\text {cow }}^{\text {Low }}$			
${ }^{\text {dancons }}$	${ }^{\text {23040200 }}$		23.1	${ }_{24.1}^{10.1}$	${ }_{6} 6.9$	${ }_{273}^{22}$	5.03	${ }_{60}$	${ }^{220}$	${ }_{14}$		${ }_{22}$	3	${ }_{19}$	9	${ }_{130}$	14	${ }_{0}^{0.28}$	${ }_{<1}$	${ }_{540}$	${ }_{46}^{20}$	${ }_{6} 6$	${ }^{44}{ }^{\text {a }}$	<1	14	${ }_{<} 1$	${ }^{4}$	$\stackrel{2}{ }$		<1	${ }_{0} 0.5$	${ }^{<}$	${ }^{<1}$	4				
${ }_{\substack{\text { rebua Cossing } \\ \text { Venana cossing }}}$	$\xrightarrow{3109091999}$ 104202	15.00		${ }_{22}^{19}$		${ }_{4}^{438}$			${ }_{\substack{292 \\ 124 \\ \hline}}$																													s
Yena Cocossing	71012002					${ }^{244}$			${ }^{166}$																												Stubuty	
Yeona crossing	（1017202	${ }^{15.50}{ }^{1500}$		${ }^{25}$					${ }^{216}$																												Vers silit oloudy bown	
Yenna Cossing	91112001			21		${ }_{\text {234 }}^{234}$			159 159																												${ }_{\text {Clar }}$	${ }_{5}$
Yenna Cososing	290882001			${ }^{22}$		${ }_{241}$			${ }_{164}$																												${ }_{\text {clear }}$	
¢	${ }^{\text {a }}$			${ }_{18}^{21}$		${ }_{2}^{250}$																																
Yeban Cossing	250552001			${ }^{24}$		165			${ }^{112}$																												Silghy mury	
Y Yenac Cossing	$\xrightarrow{20042001}$ 8032001			${ }^{24}$		${ }_{\substack{160 \\ 176}}$			109 120 1																												Sighty Mury	
Yena Cososing	4022001	${ }^{1500}$		${ }^{26}$		${ }^{186}$			${ }^{126}$																												Slighly cluyy	
Yeona cosossing	191222000	${ }^{14600}$		${ }_{25}^{25}$		${ }^{249}$			${ }_{169} 1$																													
${ }^{\text {Y Vena Cososing }}$	${ }^{211112000}$	13.00 $\substack{1130}$ 10		${ }^{26}$		${ }^{266}$			${ }^{181}{ }^{197}$																												Clear	
Yebea Cosssing	${ }^{10210232000}$	年1：30		25 25 25					192 02																												${ }_{\text {coar }}$	
Yeena cossing		${ }_{\text {l }}^{14.37}$		25 25 25		${ }_{226}^{257}$			175 ${ }_{181}^{181}$																												${ }_{\text {ctear }}^{\text {Clear }}$	
Yebac cososing	2118822000	${ }^{1424}$		${ }^{25}$		${ }^{275}$			187																												Clear	
${ }_{\text {Yeona Cosssing }}^{\text {Vema }}$	${ }^{14140425000}$	${ }^{\frac{1500}{}} 12$		${ }_{2}^{25}$		${ }_{305}^{241}$			164 207 1																												Vers sight oudy bown	
Yeena Cosssing		${ }^{12: 30}$		${ }_{2}^{21}$		279 234 18			＋190																												Fainct Coudy brown	
Yenota Corossising	${ }^{\text {a }}$ 30301200000	${ }^{12: 30}$		${ }_{25}^{24}$		${ }_{282}$			${ }_{192}{ }^{29}$																													
	${ }^{301212999}$	${ }_{\text {cose }}^{10.45}$		－${ }_{20}^{20}$		（			${ }^{177}$																												${ }_{\text {Fow }}^{\text {Fow }}$	
Yenna Cossisig	${ }^{2910} 171999$	$18: 00$		${ }_{15}^{23}$		${ }_{4}^{430}$			${ }_{\text {222 }}^{223}$																												Flow	
Yeona crossing	${ }^{2930717999}$ 2971999			${ }^{15}$					${ }^{238}$																													
Yeena Cossisig	${ }^{10861999}$	${ }_{\text {8，}}^{8.0}$		12 18 18		245 194 1	400		${ }^{168}{ }^{132}$																												Sown fow－munky	
${ }_{\text {Vebua Cosssig }}$	${ }^{\text {82050299999 }}$	${ }^{9.50}$		${ }_{25}^{18}$		${ }^{194} 10$																																
Yeona Cossing	${ }^{23321999}$	10：00		${ }^{28}$		${ }^{187}$			${ }^{127}$																												Mod fow，mudy	
Yoona Cosossing	288111998	11：30		${ }_{17}^{26}$		${ }_{286} 28$			${ }_{194}^{194}$																												Med fow－Biomm	
${ }_{\text {Veban Cossing }}$	${ }^{281711998}{ }^{281119988}$	${ }^{14330}$1500 10		${ }^{28}$		${ }_{\substack{200 \\ 176 \\ \hline}}$			${ }_{1}^{136}$																												Mod form muky	
${ }^{\text {Yobona Cossing }}$	${ }^{\text {9088203 }}$			19.1	${ }_{7}^{78}$	214	${ }^{9.50}$	${ }^{103}$	${ }_{9}^{89}$			${ }^{31}$	${ }^{3}$	${ }_{11}^{11}$	${ }_{5}^{5}$	${ }_{127}^{127}$	${ }^{19}$	${ }_{0} 0.1$	${ }^{<} 5$						${ }^{100}$										Moderate	Moderate		
Vrona	${ }_{\text {20，}}^{200420004} 1$			${ }_{24.6}^{20.6}$	${ }_{7}^{7.3}$	${ }^{2273}$	t．20 5.00	${ }_{80}^{81}$	${ }^{92}$	${ }_{142}^{4}$		${ }^{27}$	${ }_{6}$	${ }^{14}$	5	${ }^{124}{ }_{103}^{124}$	${ }^{22}$	${ }_{0.23}^{\text {¢，}}$	${ }_{<10}$	寺100	${ }_{20}^{280}$				夈 600										${ }_{\text {M Mooate }}^{\text {Modiligh }}$	${ }_{\text {cow }}^{\text {Lod }}$		
	25052005 51112006			${ }_{13}^{13}$	${ }_{78}^{77}$	${ }_{228}^{228}$	1300 1430 143	${ }_{124}^{124}$	${ }^{127}$	${ }_{8}^{2}$			3 3		${ }_{4}^{6}$	${ }^{88}{ }_{8}^{88}$	${ }_{21}^{22}$	${ }^{0.16}$	${ }_{4}^{10}$		c50 40 40	${ }_{4}^{40}$			${ }_{400}$				${ }_{76}^{156}$							$\underset{\substack{\text { mod } \\ \text { Nod }}}{ }$		
Yeona corossing	${ }^{\text {240420007 }}$		27.4	${ }_{21,5}^{12.6}$	$\stackrel{7}{8}$	${ }_{242}^{228}$	－ 19.30	${ }^{135} 107$	${ }^{188}$	$\stackrel{8}{11}$		${ }_{33}^{27}$	${ }_{4}$	$\stackrel{9}{17}$	${ }_{6}$	${ }_{1}^{130}$	${ }_{20}^{21}$	0.12 0.22	$\stackrel{4}{4}$	300 50	${ }_{22}$	$\stackrel{10}{14}$	${ }^{444^{\circ}}$	$\stackrel{1}{<1}$	－100	$\stackrel{\square}{¢ 1}$	$\stackrel{4}{<1}$	$\stackrel{1}{<2}$	330	＜1	${ }_{60.5}$	${ }_{4}$	${ }^{10}$	＜				${ }_{\text {RH }}^{\text {RH }}$

Exceeds sadopeded adideline value（efere Envirommental values Talee）

NR－Oenatmento oN Natural Resource

Water Quality Data Summar

Some	Socte						(ect					(ros ${ }^{\text {mos }}$				Potas	${ }^{\substack{\text { caicum } \\ \text { cmal) }}}$	Manesum		${ }_{\text {chen }}^{\substack{\text { chorate } \\ \text { max }}}$		$\underbrace{\substack{\text { sumate } \\ \text { motu }}}_{\text {sumpate }}$	$\xrightarrow{\text { Toank }}$	(oatp					coicce	${ }_{\text {cosen }}^{\substack{\text { Roon } \\ \text { uelt }}}$	${ }_{\text {coin }}^{\substack{\text { coper } \\ \text { (a) }}}$	${ }^{\substack{\text { mon } \\ \text { mon) }}}$		(e)			(tatares		(enter	(tan		${ }_{\substack{\text { Oata }}}^{\text {suace }}$
					urv	${ }^{\text {na }}$	20.8080	${ }_{\text {c }}^{80}$	${ }_{3}^{30}$	${ }^{\text {na }}$	88510	${ }^{\text {na }}$	${ }^{10}$	${ }_{50}$	${ }_{175}$	${ }^{\text {na }}$	1000	${ }^{\text {na }}$	${ }^{\text {na }}$	${ }^{175}$	${ }_{1}, 2$	${ }_{40}$	50	${ }_{50}$		${ }^{20}$	${ }^{200}$	${ }^{5}$		${ }^{371}$	${ }_{1}$	200			\bigcirc							
Onemer		140					${ }^{19}$		${ }_{4}^{45}$			${ }^{\frac{33}{63}}$																														s
demosor Taom	vatanoz	${ }^{1245}$					19		${ }^{257}$			175																														s
Damenon Taomm	Nata202	1800					${ }^{28}$		${ }_{30}$			${ }^{204}$																													Mod toun mouter	
Oamenotaom	$1{ }^{1042}$	1700							${ }^{193}$			${ }^{131}$																														s
Damanomamem	1042020	1:10					${ }^{25}$		${ }^{117}$			${ }^{80}$																													Mod fory, muatey	
Oamontraom	varano	1130					${ }^{27}$		${ }_{140}$			${ }^{95}$																													Mod tomomuxy	s
Damono Troom	varane2						${ }^{27}$		${ }^{258}$			${ }^{175}$																													Wod foum muxy	
Oemen	,	(1800					${ }_{24}^{24}$		$\underbrace{}_{\substack{216 \\ 27 \\ 27}}$																																	
Oeamer foiom		1600					${ }_{2}^{24}$		${ }_{\substack{24 \\ 24 \\ 24}}$																																	
	,						${ }^{22}$					$\underbrace{\substack{16}}_{\substack{165 \\ 140}}$																													come	
							($\underset{\substack { 190 \\ \begin{subarray}{c}{105{ 1 9 0 \\ \begin{subarray} { c } { 1 0 5 } } \\{105}\end{subarray}}{\text { 10, }}$																														
							- ${ }_{\text {24 }}^{24}$																																		come	
		130					28		${ }^{364}$																																	
	${ }^{2020}$						${ }_{\substack{26 \\ 26}}^{\substack{26}}$		${ }_{\substack{231 \\ 208}}$			(in																													coil	
							$c2424$	-	${ }^{\frac{204}{324}}$			$\underbrace{\substack{20}}_{\substack{20 \\ 20}}$																													emar	
Oemen frowe	3020200	20.					24		${ }^{39}$			${ }^{205}$																													Comat	
${ }^{\text {omamonomamm }}$	${ }^{220727200}$	${ }^{1438}$					${ }^{24}$		${ }^{297}$			${ }^{202}$																														
Doamo froum	20068200	${ }_{\substack{14,60}}^{14,0}$					${ }^{24}$		${ }^{294}$																																	s
Somen		${ }^{11.4}$					$\stackrel{22}{21}$		${ }_{4}^{410}$			${ }^{219}$																													$\substack{\text { coer } \\ \text { coer }}$	
Onem		11.4					${ }^{\frac{23}{24}}$					${ }^{256}$																														
Oemen Tosem	${ }_{\text {and }}^{\text {and }}$						${ }^{22}$		${ }^{300}$																																${ }_{\substack{\text { four } \\ \text { fow }}}^{\text {for }}$	
Oameno Traom	23071999						${ }_{16}$		${ }_{36} 3$			${ }_{20}$																														
Ommon Tasom	20871989						17		450			${ }_{30}{ }^{6}$																														
Oamson Tasom	10661998	9.10					${ }^{14}$		${ }^{319}$			${ }^{27}$																													Nomer	s
Doamon Tasom	avelige	${ }^{1100}$					19		${ }^{20}$			${ }_{12}$																														
(1anseat	${ }^{11272763}$	${ }_{\text {l }}^{1285}$	${ }^{0.87}$	O.60	${ }_{0}^{0.10}$			${ }_{\substack{8,0 \\ 8.0}}$	${ }_{\substack{200 \\ 24}}$			${ }_{\substack{200 \\ 148}}^{\substack{18}}$			${ }_{\text {c }}^{\substack{36 \\ 36}}$		${ }^{\frac{2}{210}}$	${ }_{\text {110 }}^{110}$		${ }_{\substack{36 \\ 32}}$	O20	${ }_{20}^{20}$															000			${ }_{\substack{2462 \\ 246.6}}$		
			${ }^{0.65}$	(ent	(0.00				${ }^{\substack{287 \\ 30 \\ 30}}$			${ }_{\substack{188 \\ 184}}^{\substack{19 \\ \hline}}$					(i80	($\underbrace{}_{\substack { 188 \\ \begin{subarray}{c}{195{ 1 8 8 \\ \begin{subarray} { c } { 1 9 5 } } \\{\hline 195}\end{subarray}}$	${ }_{\substack{32 \\ 32}}^{\substack{32}}$	¢0.00 0.00 0.0	${ }^{10}$														(iseo	${ }_{0}^{000}$		${ }_{\substack{68 \\ 10}}^{18}$			(inco
		${ }^{80}$	0.71	020	0.10		${ }^{20}$	820												${ }^{32}$																						
		cosise	${ }_{0}^{088}$	$0_{0.18}^{0.18}$	0.10		${ }^{24}$	${ }_{780}^{280}$	${ }^{1812}$						${ }^{22}$		${ }_{190}^{190}$	${ }_{50}^{50}$	${ }^{93}$	${ }^{12}$	${ }_{0}^{0.15}$	${ }_{40}^{10}$														${ }^{2600}$			${ }_{68}{ }_{68}$			(ind
(10024		${ }^{1065}$	0.88	${ }_{0}^{0.18}$	0.10		17	${ }_{720}{ }^{180}$	${ }_{\text {136 }}^{138}$						${ }^{22}$		${ }^{190}$	${ }^{50}$	${ }^{120}$	${ }^{14}$	${ }_{0}^{0.10}$	4.														8200			${ }_{158}$			(inden
		${ }_{\substack{380}}^{\substack{380}}$	${ }^{\text {0,74 }}$		0.00		${ }^{18}$	${ }_{720}^{20}$	${ }^{35}$						${ }^{35}$		${ }_{3}^{420}$	${ }_{100}^{100}$	${ }^{20} 189$	${ }_{\text {30 }}^{30}$	${ }_{0}^{0.15}$															15550	000		${ }^{121}$			(incon
coser	${ }^{20808989}$	${ }_{\substack{180 \\ \hline 85}}^{185}$			0.0		${ }^{17}$		30						${ }^{5}$		${ }^{32}$	100	${ }^{189}$	${ }^{30}$	0.5																					
			${ }^{0.65}$	${ }^{002}$	0.10			270	${ }^{212}$						${ }^{30}$		${ }^{230}$	60	${ }^{122}$	${ }^{24}$	020															1160	000		${ }^{82}$	${ }^{262}$		(inco
		${ }_{\text {a }}^{885}$	0.68	0.14	0.10		析	720	${ }^{165}$			${ }^{113}$	${ }^{197}$		${ }^{15}$	${ }^{67}$	${ }^{145}$	${ }^{35}$	${ }^{93}$	10	0.9						1000			∞		${ }^{200}$		200		7600			51	${ }_{1332}^{132}$		(incm
		${ }_{\substack{1880}}^{1200}$	${ }^{086}$	${ }^{136}$	0.10		,	${ }^{280}$	${ }^{180}$			${ }^{115}$	2		${ }^{18}$	${ }^{52}$	${ }^{137}$	${ }^{35}$	${ }^{13}$	${ }^{18}$		${ }^{20}$										2200		${ }^{1330}$		800		02	49	${ }^{141.1}$		(incon
		${ }_{\substack{180 \\ 180}}^{\substack{180}}$	0.0	022	0.10		${ }^{29}$	${ }^{7} 8.8$	${ }^{230}$			${ }^{134}$	70		${ }^{18}$	${ }^{6} 1$	220	${ }^{4 .}$	${ }^{116}$	${ }^{16}$	0.17											${ }^{300}$		1000		5000	0.00	04	14	${ }^{188}$		
			0.70	024	0.10		${ }^{25}$	270	30			${ }^{204}$	20		${ }^{36}$	${ }^{68}$	220	${ }^{8.5}$	110	${ }^{28}$	0.3													${ }_{1}^{1400}$		${ }^{12000}$	0.00	0.5	${ }^{102}$	276		
-		${ }_{170}^{170}$	0.78	0.52	0.10		${ }_{15}$	720	${ }^{265}$			${ }^{152}$	${ }^{85}$		${ }^{28}$	${ }^{65}$	200	${ }^{63}$	${ }^{122}$	${ }^{24}$	0.15													${ }^{900}$		1000	000	。	12	${ }^{265}$		
		${ }^{1720} 170$	0.6	021	0.10		${ }^{19}$	780	${ }^{315}$			${ }^{175}$			${ }^{37}$	${ }^{37}$	${ }^{180}$	70	${ }^{146}$	${ }^{34}$	${ }^{027}$													300		${ }^{12000}$	000	\bigcirc				
		${ }^{1088}$	${ }_{\substack{0.89 \\ 0.69}}^{\substack{\text { 0. }}}$	${ }_{0}^{025}$	0.10		2	${ }^{270}$	${ }^{200}$			${ }^{188}$			3	${ }^{33}$	170	6	${ }^{129}$	${ }^{30}$	0.17													200			000	\bigcirc				
		${ }_{\text {a }}^{\substack{1065 \\ 1065}}$	${ }^{0.58}$		0.10		${ }^{30}$	${ }^{230}$	${ }^{310}$			${ }^{192}$	3		32	${ }^{63}$	${ }^{195}$	${ }^{68}$	${ }^{196}$	${ }^{30}$	0^{022}													${ }^{3000}$		11200	${ }^{000}$	-		2208		,
	${ }^{2077495}$	${ }^{1065}$	${ }^{\text {O. }}$		010		${ }_{18}$		20			40	14																													
(10032A		${ }^{1245}$	0.59	${ }^{003}$	0.0		${ }^{16}$	${ }_{720}$	${ }^{261}$			${ }^{100}$	${ }^{20}$		${ }_{31}$	${ }^{36}$	${ }^{120}$	${ }_{5}^{57}$	${ }^{115}$	${ }^{26}$	0.10													${ }^{200}$		\%	000	-	${ }^{69}$	3, ${ }^{3 / 1}$		
		1880	0.58	${ }^{003}$			${ }^{\frac{23}{24}}$																																			owew
		${ }_{\text {cex }}^{1060}$	${ }^{0.85}$	${ }_{\substack{185 \\ 1.85}}$	020		${ }^{27}$	8.15	${ }^{268}$			${ }^{188}$	n		${ }^{23}$	64	${ }^{210}$	${ }^{6}$	${ }^{115}$	${ }^{22}$	${ }^{020}$	30					${ }^{2200}$									\%6000		${ }^{08}$	${ }^{78}$			Sonem
	$\underbrace{13097976}$	$\underbrace{\substack{182}}_{\substack{182 \\ 1820}}$	${ }_{0}^{064}$	${ }_{\text {c, }}^{0.16}$	${ }^{0.10} 0$			${ }^{8.50}$	${ }^{\frac{30}{20}}$			${ }^{\frac{201}{188}}$	130		${ }^{48}$	${ }^{34}{ }^{34}$	${ }^{240}$	${ }^{78}$	${ }^{165}$	${ }^{38}$	0.70	${ }^{20}$					${ }_{\substack{200 \\ 1700}}$							${ }^{120}$			(000	${ }^{\frac{32}{0.1}}$	${ }^{\frac{92}{60}}$			
			0.98	0.40	0.0		${ }^{24}$	800	310			${ }^{12}$	27		${ }^{28}$	${ }^{57}$	${ }^{240}$	${ }^{12}$	${ }^{120}$	${ }^{26}$	0.10	${ }^{60}$					${ }^{200}$							1860		10000		0.	\bigcirc	2714		
		${ }_{\text {2120 }}^{12120}$	0.80	0.12	0.10		${ }^{24}$	820	${ }^{335}$			${ }^{174}$			${ }^{4}$	${ }^{34}$	${ }^{130}$	${ }^{78}$	112	${ }^{33}$	020						${ }^{20}$							${ }_{4.00}$		${ }^{18300}$		${ }^{1.1}$	${ }_{6}$	24.7		Nomen
	${ }^{122049898}$	${ }_{\text {cose }}^{1248}$	0.2	0^{021}	0.10			${ }^{200}$	${ }^{20}$			${ }^{199}$	${ }^{19}$		${ }^{21}$	${ }^{50}$	210	${ }^{58}$	${ }^{128}$	${ }^{18}$	020	25					${ }^{20}$							${ }^{1100}$		1060		0.6	${ }^{76}$	${ }^{203}$		
		${ }_{\text {ces }}^{1205}$	${ }^{0.89}$	$\underbrace{0.48}_{0} 0$			- ${ }^{14}$																																			
	Sill	${ }_{\substack{104 \\ 104 \\ 104}}^{104}$	${ }^{128}$	273	0.10		${ }^{25}$	${ }^{750}$	${ }^{200}$			${ }^{122}$	${ }^{1270}$		${ }^{16}$	74	17.0	4.5	${ }^{95}$	7	0.10	50					500							${ }^{1330}$		${ }^{7800}$		02	${ }^{6}$	1688		(in
		120	${ }^{\text {O.7 }}$	${ }_{0}^{0.4}$	0.0			7.70	30			${ }^{189}$	10	${ }^{13}$	${ }^{34}$	${ }_{42}$	250	${ }^{26}$	${ }^{160}$	${ }^{30}$	0.10	1.0					200							${ }_{60}$		${ }^{13200}$		0.5	${ }^{4}$	${ }^{294}$		Now
		${ }^{1940}$	${ }^{1.19}$	147	0.10		17	${ }^{290}$	${ }^{160}$			101	${ }^{50}$	${ }^{100}$	${ }^{13}$	${ }^{53}$	${ }^{120}$	${ }^{31}$	${ }^{65}$	11	0.10	80					${ }^{4000}$							${ }^{1200}$		4400		$0^{0.3}$	${ }^{43}$	${ }^{121.8}$		
		${ }_{\substack{140 \\ 800}}^{\text {en }}$	${ }^{0.57}$	${ }^{0.25}$	${ }_{0}^{0.0} 0$			200	${ }_{\substack{40 \\ 300}}$			${ }^{\frac{212}{207}}$	${ }^{10} 10$	${ }_{5}^{5}$	${ }_{4}^{41}$	${ }^{\frac{37}{36}}$	${ }_{2}^{230}$	${ }^{\frac{88}{82}}$	${ }^{\frac{188}{17}}$	${ }^{\frac{34}{34}}$	${ }^{0.10} 0$	500					100							- $\begin{aligned} & \text { 300 } \\ & \text { 300 }\end{aligned}$		$\underbrace{\text { cen }}_{\substack{18200 \\ 18600}}$		${ }^{11} 0$	${ }^{108}$	${ }_{\substack{3225 \\ 235}}$		
	${ }^{2}$		${ }^{0.81}$	${ }^{0.22}$			${ }_{23}^{23}$																																			
		${ }^{1285}$	0.78	0.4	0.10		${ }^{15}$	8.50	${ }^{320}$			${ }_{10}$	-	$\stackrel{2}{2}$	${ }^{36}$	${ }^{37}$	${ }^{21.0}$	${ }^{6}$	${ }^{100}$	${ }^{2}$	0.10	30					${ }_{40}$			${ }^{20}$		${ }^{20}$		100								
		${ }^{105}$	${ }^{0}$	0.2	0.10		${ }^{25}$	8.0	30			10	10	${ }^{8}$	39	${ }^{38}$	${ }^{155}$	${ }_{6}^{66}$	${ }^{100}$	${ }^{34}$	${ }_{0}^{020}$	1.0					${ }_{0}$									${ }^{10000}$			${ }^{6}$			
			${ }^{0.98}$	080	0.10		${ }^{26}$	${ }^{270}$				${ }^{200}$	${ }^{20}$		${ }_{5}^{38}$	49	${ }^{220}$	${ }_{9}{ }^{78}$	10	${ }^{25}$	0.10	${ }^{83}$					${ }^{50}$			${ }^{20}$		${ }^{100}$		14.0		${ }^{10000}$						
			${ }_{656}$	${ }_{97688}$	0.10		${ }^{15}$	720	${ }^{485}$			${ }^{180}$	${ }^{1000}$	${ }^{100}$		\%	${ }^{3} 5$.	6	,	0.0	3								10		460		\%00		7800		${ }^{\text {a }}$	12			
			${ }_{652}$	1505099	0.10		${ }^{13}$	600	${ }^{175}$			${ }^{120}$			${ }^{21}$	${ }^{64}$	100	${ }^{23}$	${ }_{85}$	\bigcirc		,					2200						${ }_{100}$	${ }_{1900}$		now			${ }^{34}$	${ }^{14}$		$\xrightarrow{\text { OnNeN }}$
			${ }^{\frac{6,43}{6.3}}$		${ }^{\frac{0.10}{0.0}}$			¢50,	${ }^{120}$					(100		¢00	${ }^{\frac{8.7}{17}}$	-	¢	$\stackrel{6}{6}$													${ }_{\text {O }}^{0.02}$	${ }^{2000}$		cise			${ }^{30}$	(1026		
,					0.10		${ }^{24}$								${ }^{5}$	${ }^{24}$	260	${ }^{89}$	${ }^{188}$		0.0	${ }^{20}$								${ }_{10}$		20		600				${ }^{12}$	${ }^{102}$			(in
		,	${ }^{08}$	0.15	0.0		23					${ }^{180}$	${ }^{10}$,	${ }^{5}$	${ }_{38}$	${ }_{20}^{20}$.	,	${ }_{3}{ }^{23}$	${ }_{0}$,			\ldots		${ }^{20}$,		12700			${ }^{6}$	3201		

Water Quality Data Summax

												${ }_{\text {ras }}^{\text {mos }}$ Tss						Mamasim		choreme		sumpe	（tan）	Tomal									Is／Trace Eleme $\begin{array}{c}\text { Manganese as } \\ \text { Mn soluble }\end{array}$	Silica as SiO2 sol								${ }_{\substack{\text { Oatab }}}^{\text {sumeco }}$
					NV	${ }^{\text {na }}$	22080 \％ut																																			
			1.07	${ }^{107}$	mv			䧶	${ }^{30}$	na	${ }^{85170}$	${ }^{\text {n90 }}$	${ }_{20}^{10}$	${ }^{50}$	${ }_{36}{ }^{175}$	${ }_{36}$	${ }_{1900}^{190}$	${ }_{\substack{n 9 \\ 64}}$	${ }^{145}$	${ }_{35}^{775}$	${ }_{0}^{1,2}$	${ }^{40}$	50	${ }^{50}$			2700 500			${ }^{37}$		${ }^{20}$	${ }_{0}^{001}$	${ }^{100}$				${ }_{0}^{0.7}$	${ }^{74}$	${ }^{264} 4$		
18002a	Hille		0.92	${ }^{0.38}$			${ }^{\frac{23}{23}}$		${ }_{315}$																																	
，103029		${ }^{1100}$	082	0.12	0.10		${ }^{29}$	120	$\underbrace{}_{\substack{235 \\ 134}}$			${ }^{140}$	8	${ }^{2}$	${ }^{22}$	${ }^{57}$	170	50	10	${ }^{18}$	020	20					${ }_{500}$			30		so	00	1500		9100		${ }_{0} .5$	${ }^{63}$	${ }^{181 / 4}$		（onew
，103029at		${ }^{1227}$	${ }^{0.78}$	${ }^{005}$	0.10		${ }^{23}$	820	${ }^{2275}$			${ }^{150}$	${ }^{105}$	2	${ }^{24}$	50	${ }^{230}$	60	${ }^{130}$	${ }^{17}$	020	${ }^{21}$								30		${ }^{\circ}$		800		10900		${ }^{12}$	${ }^{82}$	${ }^{2086}$		
			081	0.11	0.0		15	8.10	${ }^{315}$			${ }^{180}$	${ }^{20}$	$\stackrel{8}{-}$	${ }^{36}$	50	${ }^{240}$	20	${ }^{185}$	${ }^{30}$	0.10									${ }^{20}$		${ }^{30}$		${ }^{100}$		${ }^{12300}$		${ }^{13}$	${ }^{8}$			
${ }^{103022}$			0.95	007	0.10		${ }^{25}$	8	${ }^{300}$			${ }_{160}$	5	7	${ }^{33}$	${ }^{37}$	${ }^{205}$	${ }^{64}$	${ }^{160}$	${ }^{27}$	0.10									10		${ }^{30}$				${ }^{12600}$		0.	${ }^{18}$			
Sosa	为	${ }^{1349}$	${ }^{080}$	${ }^{003}$	0.10		25	\％	${ }_{\substack{20 \\ 206}}^{\substack{26 \\ 206}}$			${ }^{100}$	${ }^{28}$		${ }^{22}$	${ }^{64}$	220	${ }^{50}$	${ }^{125}$	$\stackrel{16}{17}$	020									${ }^{20}$		3		${ }^{1200}$		${ }^{10350}$		${ }^{04}$	${ }^{13}$	${ }^{108}$		
			${ }^{085}$	${ }^{0.088}$	0.10		${ }^{13}$	200	${ }^{3}$			${ }^{100}$	$\stackrel{5}{142}^{1}$	${ }^{3}$	${ }^{33}$	${ }^{46}$	200 150	${ }^{60}$	${ }^{100}$	${ }^{27}$	0.10 0.10						${ }^{100}$			10		${ }^{20}{ }^{30}$		${ }^{100}$		${ }_{\text {ckeo }}$		0.	${ }_{5}$	${ }_{\substack{2129}}^{209}$		
边	\％		${ }^{329}$	${ }^{0.23}$	010		${ }^{26}$	20				${ }^{120}$	${ }^{13}$	${ }_{100}^{100}$	${ }^{26}$	${ }^{68}$	${ }^{200}$	${ }^{33}$	${ }^{105}$	${ }_{5}^{6}$	${ }_{0} 020$	${ }^{26}$					${ }^{300}$			${ }^{20}$		${ }^{30}$		${ }_{1200}^{100}$		$8{ }^{860}$		0.1	${ }^{64}$	${ }^{1671}$		，
，	Sozerse		${ }^{0.85}$	${ }^{\text {3，20 }}$	0.10		${ }^{23}$	${ }_{7}^{10}$	${ }^{\frac{188}{180}}$			${ }_{10}^{10}$	302	100	${ }^{21}$	${ }^{36}$	${ }^{200}$	${ }_{30}$	10	${ }_{14}$	0.10	${ }^{22}$					${ }_{1000}$					${ }_{30}$		${ }_{141400}^{1200}$		\％700		02	${ }_{4}$	${ }_{1632}$		（iven
2024	2as		\％	${ }^{0.3}$			${ }^{18}$																																			
			${ }^{0.80}$	008	0.10		${ }^{21}$	720	${ }_{\substack{200 \\ 295}}$			${ }^{150}$	\bigcirc	${ }^{36}$	${ }^{29}$	32	200	52	${ }^{125}$	${ }^{23}$	0.10											${ }^{40}$		${ }_{300}$		10400		${ }^{06}$	\cdots	${ }^{2061}$		（inco
			${ }^{146}$	${ }^{443}$	0.10		${ }^{26}$	700	${ }_{\substack{125 \\ 185}}^{\text {185 }}$			${ }^{83}$	${ }^{200}$	100	10	${ }_{5}^{53}$	${ }^{89}$	${ }^{24}$	${ }^{56}$	10	0.10						80					${ }^{1300}$		1900		1860			${ }^{32}$	${ }^{342}$		$\underset{\substack{\text { ONSN } \\ \text { DNRW }}}{\text { and }}$
			${ }^{195}$	${ }^{1178}$	0.10			780				${ }^{180}$	${ }^{124}$	${ }^{100}$	${ }^{19}$	${ }^{74}$	${ }^{155}$	${ }^{4.1}$	${ }^{87}$	19		22					4700					190		${ }^{120}$		${ }^{1200}$			${ }^{56}$			
			097	0.88	0.10			7.70				180	${ }^{100}$	100	${ }^{36}$	${ }^{35}$	${ }^{230}$	${ }^{73}$	${ }_{10}{ }^{0}$	${ }^{36}$	0.10	${ }_{4} 4$					50			${ }^{6}$		${ }^{6}$		${ }^{800}$		11500		${ }^{0.4}$	${ }^{8}$	${ }^{232}$		
${ }^{\text {cosema }}$			${ }^{109}$	${ }_{0}^{1045}$	0.0		${ }^{23}$	780	${ }^{\frac{20}{210}}$			${ }^{124}$	14	200	2	${ }^{65}$	${ }^{143}$	4.5	${ }_{87}$	17	0.14	36					1200			${ }^{20}$		${ }^{\circ}$		1220		${ }^{1200}$	001	${ }_{0} 0$	${ }^{54}$	1365		（in
	边		${ }^{103}$	0,83	0.10		${ }^{10}$	${ }_{\substack{820 \\ 80}}$				${ }^{23}$	${ }^{6}$	${ }^{88}$	4	${ }_{4}^{4 .}$	${ }^{28.1}$	${ }^{92}$	160	${ }^{38}$	0.13	60					${ }^{100}$			10		330		${ }^{17,70}$		${ }^{14140}$	${ }_{0}^{003}$	${ }^{15}$	${ }^{107}$	3012		Nown
			${ }^{084}$	0.3	0.10		${ }^{25}$	\％iso	${ }^{525}$			${ }^{205}$	11	${ }^{8}$	6	${ }^{52}$	${ }^{330}$	${ }^{11,8}$	${ }^{21}$	${ }^{6}$	0.19	${ }^{33}$							${ }^{0.05}$	30	40			${ }^{650}$		18200	0.0	1	${ }^{131}$	${ }^{40}$		
		${ }^{12}$	${ }^{0.08}$	$\stackrel{107}{107}$	0.10		${ }^{2}$		${ }^{\frac{204}{20}}$			${ }^{180}$	$\underbrace{}_{\substack{103 \\ 5}}$	${ }^{100}$	${ }^{32}$	${ }_{64}^{46}$	${ }^{240}$	${ }_{5}^{58}$	${ }^{130}$	${ }_{\substack{27 \\ 16}}$	－0．00	${ }_{4}^{4.8}$					$\underbrace{}_{\substack{\text { Inoo } \\ \text { sob }}}$		0.15 0.04 0.	${ }_{10}^{10}$	${ }_{\substack{20 \\ 40}}$	${ }^{20}$	0.1	${ }_{\substack{1800 \\ 1320}}$	${ }^{10} 10$	$\xrightarrow{\text { lumo }}$	00	${ }^{0.5}$	${ }^{\frac{88}{66}}$	${ }_{\text {cke }}^{\substack{200 \\ 1885}}$		
			0.8	0.13	0.0		${ }^{24}$	（ise	${ }_{\substack { \text { as } \\ \begin{subarray}{c}{20 \\ 305{ \text { as } \\ \begin{subarray} { c } { 2 0 \\ 3 0 5 } }\end{subarray}}$			19	10	5	${ }^{12}$	${ }^{6}$	219	${ }^{75}$	${ }_{185}$	${ }_{37}$	0.15								0.9	10				${ }_{130}$		${ }_{12800}$	${ }^{002}$	08	${ }^{85}$	${ }^{2691}$		（incon
			${ }_{\substack{0.45 \\ 088}}^{\substack{\text { a }}}$	${ }_{0}^{0.47}$	0.0			（im0	${ }_{\substack{404 \\ 404}}^{\text {304 }}$			${ }^{251}$		${ }^{\frac{5}{20}}$	${ }_{\substack{52 \\ 19}}$	${ }^{6.8}$	${ }^{301}$	${ }^{10.4} 4$	${ }^{206}$	$\stackrel{44}{9}$	${ }^{0.18} 0$	19							${ }_{\text {O．}}^{0.08}$		${ }_{\substack{20 \\ 10}}$	${ }_{\substack{20 \\ 190}}^{\substack{\text { a }}}$		${ }_{\text {270 }}^{2740}$	10	$\xrightarrow[\substack{\text { IT000 } \\ 8400}]{ }$	${ }_{\text {or }}^{0.000}$	${ }_{0}^{0.5}$	${ }^{\frac{117}{60}}$	（3358		
${ }^{\text {ligasen }}$			0,78	0.09	0.0		19	8.10	${ }_{30}^{204}$			${ }^{139}$	\％		${ }_{34}$	30	195	${ }^{65}$	${ }^{135}$	${ }^{26}$	0.13	${ }^{0} 4$					100		00					0.50		${ }^{\text {п1300 }}$	${ }^{003}$	${ }^{1.1}$	${ }_{75}$	${ }^{2276}$		（iven
${ }^{\text {120302 }}$			1,18	${ }_{588}$			${ }^{\frac{19}{27}}$	${ }_{7,2}$	${ }^{310}$																																	（inew
			${ }_{0}$	${ }_{0}^{0.13}$	0.10			${ }_{7}^{1760}$	${ }^{\frac{385}{35}}$			${ }^{183}$	12	3	${ }^{37}$	56	215	${ }^{82}$	${ }^{184}$	${ }^{28}$	0.14	${ }^{18}$					${ }^{20}$				10	${ }^{10}$		490	10	12800	0.0	${ }_{0} 4$	8	${ }^{2367}$		
${ }^{\text {cosema }}$	${ }^{23}$		${ }^{148}$	${ }^{588}$	0.0		${ }^{5}$	7	${ }^{289}$			${ }^{156}$	${ }^{1}$	${ }_{36}$	${ }^{22}$	${ }_{6}^{67}$	${ }^{210}$	${ }_{5}^{53}$	${ }^{126}$	${ }^{19}$	0.14	${ }^{15}$					${ }^{3200}$				${ }^{20}$	6		${ }^{1100}$		${ }^{12300}$	0.1	${ }^{02}$	${ }^{74}$	${ }^{204}$		
${ }^{\text {cosema }}$	隹		${ }^{1.088}$	${ }_{\substack{\text { 0．90 } \\ 0.9}}$	0．0．0			${ }_{7}^{70}$	${ }^{268}$			${ }_{\substack{100 \\ 100}}^{\text {¢ }}$	${ }_{4}^{46}$	${ }_{\substack{20 \\ 43}}$	${ }^{\frac{14}{27}}$	${ }^{\frac{8}{64}}$	${ }^{122}$	（ ${ }_{\text {32 }}^{54}$	${ }_{\substack{18 \\ 13}}$	${ }_{19}$	${ }_{0}^{0.11}$	${ }^{23}$							${ }_{0} 0.17$		${ }_{\substack{40 \\ 30}}$	${ }^{130}$		${ }_{\substack{1150 \\ 1500}}$		${ }^{\frac{8}{8300} 0}$	${ }^{\frac{001}{0.00}}$		${ }^{\frac{44}{13}}$			，
	30atiom		07	003	0.0		${ }^{20}$	8.0	${ }^{\frac{314}{314}}$			${ }^{194}$		＋	${ }^{37}$	44	${ }^{195}$	${ }^{63}$		${ }^{27}$	${ }^{011}$	04					${ }^{30}$				10			${ }^{030}$		ก530	001	${ }_{0}$	${ }^{14}$	${ }^{234}$		
	为		，																					${ }^{220}$	000																	
${ }^{\text {12002as }}$			120		0.10			${ }^{720}$	${ }^{268}$			${ }^{138}$	${ }^{120}$	${ }^{200}$	${ }^{35}$	${ }^{48}$	${ }^{150}$	${ }^{4 .}$	${ }^{113}$	${ }^{31}$	${ }_{0} 0.4$	1.		3300			${ }^{1000}$		${ }^{0.37}$		40	${ }^{20}$	${ }^{0.01}$	590	10	${ }^{3300}$		0.1	${ }^{6}$	${ }^{2662}$		$\xrightarrow{\text { Onven }}$
																									0.18	${ }_{50}$		${ }^{200}$														（insen
			${ }^{0.89}$	${ }_{\substack{\text { O．0．} \\ \text { O．90 }}}$	（020	${ }^{25}$	${ }^{20}$	${ }_{\text {l }}^{729}$	${ }^{220}$	${ }^{321}$		${ }_{179}$	7	2	${ }^{38}$	${ }_{60}$	${ }^{202}$	${ }_{6}{ }^{5}$	${ }_{151}$	${ }^{29}$	0.15	0		${ }^{657}$			${ }_{50}$		${ }_{0} 000$			10	${ }^{0.00}$	4.30		${ }^{12480}$	0.0	0.38	n， 13	${ }^{25188}$		（in
${ }^{\text {cosema }}$			${ }_{\substack{083 \\ 800}}^{\substack{\text { a }}}$		（0．00		${ }^{27}$	$\xrightarrow{7,74}$	${ }^{\frac{342}{148}}$			${ }^{8}$	$4{ }^{41}$	${ }^{20}$	14	${ }^{55}$	10.1	${ }^{21}$	${ }^{62}$	8	0.11	${ }^{21}$					400		${ }^{027}$			${ }^{10}$	000	${ }^{1140}$		5150	000	${ }_{0}^{0.05}$	उ383	1085		
																								504	0.16	${ }^{67}$																$\xrightarrow{\text { OnNeN }}$
${ }^{\text {cosem }}$			${ }^{600}$	5000	${ }^{0.20}$		${ }^{23}$	\％	${ }^{136}$					18														${ }^{200}$														
（1anora												${ }^{133}$	${ }_{6}$	${ }^{18}$	${ }^{2}$	${ }^{6} 1$	${ }^{174}$	${ }^{60}$	10	${ }^{14}$	0.13	${ }^{13}$		1134	0.2	${ }^{350}$	1010		0.3		${ }^{50}$	${ }^{8}$	0.02	${ }_{1220}$		9，00	0.02	0.67	${ }^{339}$			（in
${ }^{\text {cosen }}$	$\underbrace{20808989}$		${ }^{0.78}$	028	${ }^{0.30}$		${ }^{27}$	${ }_{\substack{688 \\ 888}}$	${ }^{228}$	${ }^{\frac{378}{3,8}}$																																
			${ }_{0}^{0.44}$		0，30			${ }_{7}^{\text {PTin }}$	${ }^{37}$			${ }^{189}$	15	${ }^{12}$	${ }^{35}$	${ }_{56}$	${ }^{24} 3$	72	${ }^{186}$	${ }^{28}$	0.13	15		${ }^{245}$			${ }^{180}$		0.0		10		0	920	10	${ }^{12900}$	0.0	0.51	${ }^{0023}$	2992		（in
隹			${ }^{0.74}$	${ }^{0.06}$	020		${ }^{21}$	780	$3{ }^{32}$	440				${ }^{15}$											0.	\％																
，	$\underbrace{20}$		${ }_{0}^{0.6}$	${ }_{0}^{0.1}$	（020			${ }_{178}^{178}$	${ }^{\frac{31}{303}}$			$1{ }^{168}$	＂	${ }_{6}^{6}$	${ }^{3}$	${ }^{37}$	${ }_{188}$	59	${ }^{138}$	${ }^{29}$	0.14	0.5		40					${ }_{0} 001$		30		000	${ }^{120}$	10	${ }^{11360}$	001	0.46	n， 17	${ }^{2443}$		（incoum
		${ }_{\text {130 }} 1$	0.73	0.46	020			${ }^{7,7}$	${ }^{288}$			${ }_{18}{ }^{18}$	${ }^{17}$	1	${ }^{37}$	${ }^{37}$	${ }^{203}$	${ }^{64}$	${ }^{141}$	${ }^{29}$	0.12	0		${ }^{4}$	000	${ }^{27.4}$	${ }^{20}$		${ }^{000}$		${ }^{30}$	${ }^{120}$	${ }^{001}$	000		11650	0.0	0.42	${ }_{8680}$	${ }^{2891}$		
																								${ }^{126}$	000	${ }^{303}$																（inco
	${ }_{\text {and }}^{\text {3ntinaes }}$	${ }^{1200}$	${ }^{0.13}$		20， 0.0	${ }^{25}$	${ }^{20}$	${ }_{7}^{780}$	${ }^{\frac{317}{180}}$	${ }^{620}$		${ }^{92}$	${ }^{30}$	${ }_{40}^{11}$	14	${ }^{50}$	${ }^{120}$	${ }_{3} 1$	10	。	0.11	${ }^{11}$					$9{ }^{20}$		0.00		${ }^{40}$		${ }_{0} 00$	${ }^{1220}$		${ }_{5} 520$	${ }_{0} 00$	0.11	${ }_{4269}$	${ }^{11537}$		
	（19965																							3229	0.05	${ }^{6,1}$																
			${ }^{10.2}$	${ }^{50.1}$	${ }_{0}^{0.10}$		2	${ }_{18,}^{180}$	${ }_{\substack{136 \\ 306}}$	，		${ }^{24}$	17	${ }^{39}$	${ }^{42}$	${ }^{62}$	${ }^{268}$	${ }^{83}$	${ }_{180}$	${ }^{32}$	0.15	1.0		${ }^{46}$					${ }_{0} 0.0$		10	40	001	${ }_{1240}$		${ }_{182} 8$	${ }_{0} 001$	${ }_{0} 0$	10.58	3×6		
	${ }^{20}$			0.11			${ }^{24}$			4.11															001	${ }^{63}$																
			0.72		${ }^{020}$			${ }^{294}$	${ }^{24}$			${ }^{128}$	5	${ }^{205}$	${ }^{28}$	${ }^{47}$	${ }^{128}$	${ }^{35}$	${ }^{104}$	${ }^{14}$	0.16	${ }^{18}$		${ }_{138}$			${ }^{130}$		0.00		${ }^{20}$		000	${ }_{1090}$	${ }^{10}$	8550	000	${ }^{0.14}$	${ }_{4}^{63}$	1788		
	$\underbrace{20458969}$	：	0.8	0.31	020	21	${ }^{15}$	${ }^{730}$	${ }^{217}$	${ }^{680}$				${ }^{216}$											0.04	${ }^{422}$										8000						
			${ }^{0.76}$	${ }^{0.14} 0$	0.10			＋${ }^{780}$	${ }^{317}$			${ }_{187}$	${ }^{14}$	．	${ }^{37}$	40	${ }^{196}$	${ }^{63}$	${ }^{141}$	${ }^{28}$	0.11	0.5							0.00			10	．000	${ }_{170}$	${ }^{10}$	11680	001	0.68	${ }^{7} 4,81$	${ }_{26889}$		
							14		，	821														${ }_{166}$	000	${ }^{102}$																
			${ }_{406}$	${ }^{\text {9，100 }}$	0．0．0			${ }^{201}$	${ }^{\frac{16}{12}}$			${ }^{11}$	${ }^{197}$	${ }^{127}$	19	${ }^{2}$	${ }^{10,7}$	25	${ }^{4}$	10	0.08	${ }^{25}$		${ }^{2084}$			${ }^{1100}$		000		10	10	000	1830	s	${ }^{\text {6889 }}$	000	${ }^{0.005}$	${ }^{3689}$	${ }_{137.19}$		
${ }^{13032024}$	为						${ }^{24}$																		0.30	1830																
			${ }^{\text {a06 }}$	${ }^{1380}$	0．00			${ }_{7}{ }_{75}{ }^{\text {a }}$	${ }^{39}$			${ }^{183}$	5	${ }_{6}$	30	${ }^{6} 6$	${ }^{249}$	${ }^{65}$	134	${ }^{20}$	0.13	${ }^{20}$		${ }_{186} 1$			${ }^{132}$		0．00		10		0.00	${ }^{1530}$		${ }^{12850}$	000	${ }^{029}$	${ }^{\text {®8\％}}$	${ }^{2559}$		
	$\underbrace{2083}$	，	0.95	${ }^{198}$	020		${ }^{24}$	780	309	${ }^{500}$				\because											0.04	${ }^{61.8}$																
	${ }^{1200898989}$		${ }^{0.74}$	${ }_{0}^{0.11}$	2020			${ }^{708}$	${ }^{319}$			${ }_{188}$	${ }^{13}$	－	${ }^{37}$	${ }^{42}$	${ }^{20,1}$	${ }_{60}$	${ }^{146}$	${ }^{28}$	${ }_{0} 0.8$	0							0.00		10		0.00	0.80		${ }^{12030}$	000	0,9	${ }_{7}^{7482}$	22153		
																								${ }^{92}$	0.0	${ }^{318}$																
			${ }^{222}$	${ }^{\frac{14149}{14,9}}$	${ }^{0.20} 0$	${ }^{19}$	${ }^{23}$	${ }_{\text {\％}}^{\text {\％}}$	${ }_{\substack{187 \\ 184}}$	${ }^{500}$		${ }_{12}$	${ }^{1944}$	${ }^{2000}$	${ }^{23}$	${ }_{46}$	${ }^{78}$	${ }^{1,7}$	${ }^{6}$	14	0.11	${ }_{48}$					3270		－00		10		000	1270	\cdots	50.10	0.00	0.05	286	${ }^{2023}$		
			074					${ }_{720}$					${ }^{100}$	${ }_{40}$	11	${ }^{75}$	${ }_{195}$		100	10					0.19	${ }^{667}$	${ }^{200}$									8800	000	0.1		\％80		
					0.10			730							11	15		${ }^{4 .}$	100		020	20		3300	${ }^{009}$	${ }^{840}$																
			${ }^{0.74}$	${ }_{0}^{0.07}$	${ }_{0}^{0.00} 0$	${ }^{23}$	${ }^{24}$	${ }_{\substack{128 \\ 8.0}}^{\substack{\text { a }}}$	${ }_{\substack{126 \\ 206}}$	215		140	10	${ }_{\substack{48 \\ 10}}$	${ }^{29}$	${ }_{4}^{4.1}$	${ }_{165}$	${ }_{61}$	${ }^{120}$	${ }^{22}$	0.10	${ }^{20}$					50		${ }_{0}^{005}$	${ }_{10} 0$	${ }^{50}$	${ }^{20}$	${ }_{0} 02$	100	${ }^{20}$	10000	000	0.9	${ }^{62}$	${ }^{20}$		（oven
																								${ }^{20}$	000	${ }_{6} 6$																Onew
${ }^{\text {Pamane }}$		，	0.78	0.14	${ }_{0} 0.30$	．	－	${ }_{72}$	${ }^{265}$	${ }^{2}$		${ }^{141}$	${ }^{14}$	${ }^{20}$	30	${ }^{42}$	164	5.	${ }^{122}$	${ }^{23}$	0.13	0.4	249	${ }^{428}$			210		0.02		10	${ }^{20}$	0.00	1.50		10060	0.0	0^{02}	6139	20.186		（incon
		，	${ }^{0.77}$		O． 0.30	${ }^{28}$	${ }^{18}$	${ }^{7} 7.85$	${ }^{268}$	${ }^{158}$		${ }_{12}^{12}$	${ }^{93}$	${ }_{\substack{24 \\ 100}}^{\substack{\text { a }}}$	${ }^{25}$	${ }^{63}$	184	${ }^{37}$	${ }^{103}$	${ }^{20}$	0.10	${ }^{28}$					100		${ }^{0.00}$		${ }^{20}$		0.0	18.50			000	0.14	$6_{6,13}$	${ }^{178 .}$		
	Soleme							－															1086	${ }^{2565}$	0.10	${ }^{104}$																

Water Quality Oata Summary

	Somp		coin									ros mos	$\begin{array}{\|c\|} \hline \text { rss mosu } \\ \hline 10 \\ \hline \end{array}$				$\begin{array}{\|c\|c\|c\|c\|c\|c\|c\|c\|c\|} \substack{\text { anten }} \\ \hline 1000 \\ \hline \end{array}$			$\frac{\substack{\text { chnorase } \\ \text { mole }}}{\substack{175 \\ \hline 30 \\ \hline 30}}$	$\frac{\substack{\text { Finarae } \\ \text { most }}}{1,2}$										$\underset{\substack{\text { copeat } \\ \text { quat }}}{ }$ 14	（100）								\pm		${ }_{\substack{\text { Oafa }}}^{\substack{\text { saure }}}$		
	源		0.76	0.16	020				330															120.0							0.05					1100		${ }^{13500}$		$0^{\circ 8}$	${ }^{85}$	${ }^{20}$		
	，		${ }^{0.76}$	${ }^{0.16}$	${ }^{020}$		${ }^{25}$	\％	${ }_{40}^{40}$	${ }^{330}$				${ }_{35}^{35}$											004	${ }^{110}$																		
${ }^{120022} 4$			${ }^{208}$	${ }^{18,30}$	0.10			${ }^{758}$	${ }^{145}$			$\%$	${ }^{30}$	${ }^{315}$	${ }^{14}$	${ }^{62}$	100	${ }^{26}$	8	${ }^{6}$	0.10	${ }^{20}$		420.0			${ }^{1500}$		021	100	so	${ }^{20}$	002	1500	${ }^{20}$	6600	000	0.1	${ }^{355}$	${ }^{120}$		（onem		
隹		${ }^{200}$	${ }^{208}$		${ }^{0.10}$	${ }^{24}$	${ }^{26}$	${ }^{265}$	${ }_{\substack{189}}^{200}$	${ }_{547}$		${ }^{120}$	\％	${ }_{\text {col }}^{\substack{\text { s77 } \\ 10}}$			${ }^{140}$			${ }^{13}$					0.12	${ }_{320}$						${ }^{20}$								${ }^{100}$				
隹												${ }^{120}$	8		21	${ }^{69}$	${ }^{140}$	${ }^{39}$	${ }_{6}$	${ }^{13}$	0.10	20		2000			${ }^{1200}$		0.05	100	${ }^{50}$	10	002	${ }^{1400}$	${ }^{20}$	${ }^{8200}$	000	${ }^{0.6}$		${ }^{160}$		$\xrightarrow{\text { OnNeN }}$		
		${ }^{\frac{1720}{120}}$	${ }_{\substack{0.97 \\ 0.78}}$	${ }_{0}^{098}$	${ }^{020}$	${ }_{32}$	${ }^{\frac{28}{13}}$	${ }^{730}$	${ }_{\substack{2313}}^{23}$	${ }^{400}$				${ }^{181}$																												－		
		，	${ }_{4 \times 8}$	${ }^{12214}$	${ }^{0.10}$			${ }^{1745}$	${ }^{\text {che }}$			9	180	${ }^{\frac{12}{25}}$	18	6	${ }^{19}$	${ }^{22}$	${ }_{6}$	7	0.10	20		4500			${ }^{1500}$		${ }^{023}$	${ }^{100}$	50	${ }^{20}$	${ }_{0} 02$	${ }^{1700}$	${ }^{20}$	5300	000	${ }^{0.1}$	${ }^{29}$	${ }^{10}$				
	9034	${ }^{50}$	${ }^{4.36}$	${ }^{13214}$	0.10	${ }^{24}$	${ }^{25}$	${ }^{205}$	${ }_{181}$	${ }^{380}$															${ }^{0.18}$	${ }^{260}$																（inew		
				0.08				${ }^{305}$	${ }^{320}$			${ }^{20}$	10	${ }^{12}$	${ }^{12}$	5.	${ }^{230}$	72	${ }^{165}$	3	0.10	${ }^{20}$		${ }^{480}$			50		${ }^{0.0}$	100	${ }_{50}$	${ }^{20}$	0.0	60	${ }^{20}$	${ }^{13500}$	0.00	${ }^{11}$	${ }^{87}$	${ }^{20}$				
	7804199		${ }^{0.75}$	008	${ }^{\text {0．30 }} 0$	${ }^{25}$	${ }^{17}$	720	${ }^{345}$	670				${ }^{13}$									${ }_{364}$	${ }^{335}$																				
	Some	${ }^{175}$	${ }_{\text {O，78 }}^{0.74}$	${ }_{\text {O，}}^{0.22}$	${ }^{0.10} 0$		14	${ }_{7}^{788}$	${ }^{325}$	${ }^{820}$		${ }^{161}$	11	${ }^{32}$	${ }^{3}$	${ }^{4,1}$	${ }^{188}$		112	${ }^{25}$	0.12	04				\ldots	${ }_{30}$		${ }^{0.00}$					${ }_{10}^{1,0}$	10	${ }^{11765}$	${ }^{001}$	${ }^{063}$	${ }^{74404}$	${ }^{22213}$		（en		
						2	${ }^{19}$			${ }^{780}$					${ }^{34}$	4.	${ }_{188}$	${ }_{68}$	${ }^{102}$	${ }^{25}$	0.12	04	${ }^{2667}$	${ }^{420}$			${ }^{360}$		0.00				${ }_{0} 00$	${ }^{1.10}$								（in		
	${ }^{8}$	${ }^{1560}$	0.7	003	${ }_{0} 000$		，	${ }^{2 \times 9}$	${ }^{231}$	－		190	\bigcirc	$\stackrel{\square}{9}$	41	${ }_{5} 5$	2.0	${ }^{78}$	162	3	0.16	0	3288	394			550		0.0				0.0	3.0	30		0．0	0.58	${ }^{84} 4$	${ }^{2609}$		（in		
	${ }_{\text {dind }}^{81212999}$	${ }_{\text {cose }}^{\substack{150 \\ 180}}$					${ }^{27}$	${ }^{760}$		${ }_{692}$															001	${ }^{334}$																（owen		
		${ }^{927}$	${ }^{368}$	${ }^{6838}$	${ }^{020}$			202	${ }^{145}$			${ }^{9}$	${ }^{19}$	${ }^{197}$	12	${ }^{75}$	${ }^{105}$	${ }^{26}$	${ }^{6}$	12	0.11	${ }^{26}$	${ }^{12210}$	520			${ }^{1600}$		000				0.00	${ }^{1310}$		${ }^{\text {80，16 }}$	000	${ }^{108}$	\％69	${ }^{10,0.4}$				
		${ }^{29}$	${ }^{3,66}$	${ }^{6653}$	${ }^{020}$		22			4.10															${ }^{034}$	${ }^{14,1}$																（owen		
${ }^{\text {cosen }}$			0.89	0.84	020			${ }_{8} .6$	40			${ }^{22}$	38	${ }^{37}$	${ }^{5}$	${ }^{67}$	${ }^{181}$	${ }^{62}$	${ }^{185}$	${ }^{30}$	0.21	${ }^{10}$	479	${ }^{109} 1$			${ }^{1000}$		000			${ }^{20}$	0.00	${ }^{30}$	${ }^{30}$	15000	${ }_{0}^{0.0}$	${ }^{1,52}$	${ }^{2065}$	33473				
	${ }^{22032}$		${ }^{0.89}$	0.84	${ }^{020}$		${ }^{26}$	${ }^{760}$	${ }^{376}$	440				${ }^{2}$											${ }_{0} 004$	${ }^{21.7}$																${ }_{\text {ONPN }}^{\text {OneN }}$		
隹		， 102	${ }_{0}^{0.6}$		${ }_{\text {coso }}^{0.30}$			${ }^{304}$				${ }^{151}$	${ }^{13}$		${ }^{36}$	${ }^{42}$	${ }^{154}$	${ }^{53}$	${ }^{134}$	${ }^{23}$	0.14	0	${ }^{1891}$	${ }^{250}$			${ }^{190}$		0.0				${ }_{0} 00$	0.00		${ }^{11120}$	002	0.85	6022	21856				
边		${ }^{120}$	${ }^{0.76}$	${ }^{0.16}$	${ }^{0.30}$		15	${ }^{7} 8$	${ }^{\frac{29}{85}}$	${ }^{820}$				${ }^{3}$											or	${ }^{45}$																		
Somat	H12000		${ }_{200}^{200}$		${ }^{0.0}$			${ }^{608}$	${ }^{135}$			${ }^{88}$	${ }^{1350}$	${ }^{1320}$	${ }^{15}$	${ }^{63}$	${ }^{16}$	${ }^{20}$	${ }^{65}$	$\stackrel{8}{8}$	0.0	${ }^{28}$	33200	${ }^{640} 0$			som		${ }^{123}$			${ }^{50}$	000	1520		850	000	003	28.9	N0058		cown		
		${ }^{885}$	${ }_{\substack { 200 \\ \begin{subarray}{c}{\text { 200 }{ 2 0 0 \\ \begin{subarray} { c } { \text { 200 } } }\end{subarray}}$	${ }^{269}$			${ }^{19}$	${ }_{\text {\％}}^{6}$	${ }^{128}$	660															0.16	${ }_{326}$																Sown		
			${ }^{1,09}$		（oso							\because	${ }^{20}$	${ }^{35}$	${ }^{13}$	${ }^{43}$	${ }^{93}$	${ }^{27}$	12	\bigcirc	0.0	${ }^{20}$	13000	3200			${ }^{1400}$		${ }^{0.05}$	100	${ }^{50}$	${ }^{40}$	0.0	${ }^{1800}$	700	5900	000	1	${ }^{36}$	${ }^{110}$		（in		
${ }^{\text {cosemen }}$		185	${ }_{\substack{109 \\ 0.4}}^{\substack{10}}$	$0_{\substack{2.5 \\ 0.0}}^{\text {a }}$	${ }_{\text {coion }}^{0.00}$		${ }^{23}$	${ }_{\substack{700 \\ \hline 600}}^{\text {cos }}$	${ }_{1}^{140}$	${ }^{\frac{5}{350}} \mathbf{3}$				${ }_{\substack{365 \\ 120}}$																												（onew		
${ }^{\text {ligenen }}$		${ }^{17175}$	${ }^{0.14}$	0.09	${ }_{\text {－}}^{0.20}$			${ }^{200}$	100			${ }^{9}$	30	$1{ }^{15}$	${ }^{13}$	${ }^{51}$	${ }^{120}$	${ }^{35}$	${ }^{86}$	T	0.10	${ }^{20}$	${ }^{2000}$	1900			80		${ }^{0.17}$	100	50	${ }^{30}$	0.02	${ }^{1400}$	${ }^{20}$	7100	0.00	，	4	${ }^{130}$		（incm		
${ }^{1302032 a t}$		${ }^{17175}$			${ }^{0.20}$		${ }^{20}$			${ }^{330}$				${ }^{120}$											${ }^{0.07}$	${ }^{370}$																Sown		
		${ }_{\substack{130 \\ 120}}^{\substack{\text { a }}}$	0.8	0.0	${ }^{0.30}$			${ }^{7} 9$	220			${ }^{120}$	10		${ }^{18}$	${ }^{63}$	170	${ }^{5.1}$	${ }^{115}$	11	0.10	20	s10．	50.0			50		0.05	${ }^{100}$	50	2	0.02	900	20	9400	000	0.5	${ }^{6}$	10				
		${ }_{\substack{1385 \\ 1855}}^{1 .}$	${ }_{\substack{089 \\ 0.7}}^{0 .}$	$\stackrel{\text { OO2 }}{\substack{\text { O．}}}$	${ }^{\text {0．30 }} 0$	${ }^{29}$	${ }^{18}$	${ }^{7}$	${ }_{\substack{20 \\ 20}}$	830		${ }_{10}$	10	${ }_{6}^{12}$	${ }^{28}$	${ }^{68}$	${ }_{185}$	${ }^{63}$	${ }^{135}$	${ }^{23}$	0.10	${ }^{20}$					${ }_{500}$		${ }_{0}^{0.05}$	${ }^{100}$	50	20	${ }_{0} 0.2$	300	${ }^{20}$	$\xrightarrow{\substack{\text { gato } \\ 1000}}$	000	0.5	12	${ }^{20}$		（in		
																							${ }^{300}$	${ }^{300}$	001	${ }^{100}$		，														（in		
		${ }_{\substack { 1555 \\ \begin{subarray}{c}{135{ 1 5 5 5 \\ \begin{subarray} { c } { 1 3 5 } }\end{subarray}}^{\substack{\text { a }}}$	${ }^{0.7}$	O．04	－		14	${ }^{\frac{7270}{7.76}}$	${ }_{\substack{288 \\ 30}}$	${ }_{730}$		181	${ }^{11}$	${ }^{84}$	${ }^{34}$	${ }^{43}$	${ }^{189}$	${ }^{62}$	${ }^{140}$	${ }^{27}$	0.14	0							0.00	${ }_{30}$			000	${ }_{150}$	${ }^{10}$	${ }^{11570}$	${ }^{001}$	046	${ }^{1265}$	${ }^{20084}$				
		1335	0.6	030	0，30		${ }^{19}$	${ }^{7} 78$	${ }^{31}$	8.10				7									${ }^{3396}$	${ }^{31.1}$												${ }^{11240}$						（onew		
			${ }_{\substack{086 \\ 0.88}}$	${ }_{0}^{0.49}$	020			${ }^{1785}$	${ }_{\substack{193 \\ 198}}$			${ }^{120}$	${ }_{60}$	88	${ }^{24}$	${ }^{49}$	${ }^{110}$	${ }^{28}$	${ }^{85}$	11	0.10	40					${ }^{200}$		${ }^{0.24}$	${ }^{20}$	${ }^{30}$	170	${ }_{0}^{0.3}$	${ }_{1500}$	${ }^{30}$	1000	000	${ }_{0}^{0.1}$	${ }^{9}$	${ }_{100}$				
	边						20			${ }_{4}{ }^{10}$													17000	30.0	0.15	${ }^{3} 90$																$\xrightarrow{\text { OnNe }}$		
	colez	${ }^{\text {dis0 }}$	${ }^{27}$	${ }_{4737}^{47}$	${ }^{\text {O．20 }}$			${ }^{210}$	${ }_{135}^{135}$			${ }^{84}$	1100	${ }^{1560}$	12	${ }^{44}$	${ }^{39}$	${ }^{25}$	${ }^{68}$	5	0.10	30	2100.	8000			3000		${ }_{0}^{0.05}$	100	${ }^{30}$	10	${ }^{0.03}$	${ }^{1000}$	${ }^{40}$	5600	000	${ }^{0.1}$	${ }^{35}$	10		（in		
		${ }^{155}$	${ }^{27}$	${ }^{4737}$	${ }^{0.30}$		${ }^{27}$	${ }^{120}$	${ }^{188}$	${ }^{350}$				${ }^{1170}$											0.05	${ }^{290}$																		
	19022	120	${ }^{3.5}$	${ }^{47733^{4}}$	${ }^{0.00}$			${ }_{\text {\％}}^{1,08}$	${ }^{10} 10$			${ }^{16}$	50	${ }^{8.80}$	11	${ }_{47}$	70	${ }^{21}$	${ }^{6}$	${ }^{5}$	0.10	40					${ }^{200}$		${ }_{0}^{0.05}$	80	30	10	${ }_{0}^{003}$	${ }_{1300}$	${ }^{40}$	4500	0.00	\bigcirc	${ }^{26}$	${ }^{92}$				
	边																						17000	1000	O．11	${ }^{240}$																		
隹	退2022		292	${ }^{2943}$	0，30			${ }^{655}$	${ }^{87}$			${ }^{\circ}$	${ }^{30}$	s00	$\stackrel{8}{8}$	${ }_{4}^{4.1}$	${ }^{53}$	${ }^{17}$	${ }^{45}$	4	0.10	${ }^{20}$	12000	4200			${ }_{150}$		0.05	${ }^{20}$	${ }^{30}$	10	${ }_{0}^{0.3}$	110	${ }^{\circ}$	3700	000	－	${ }^{20}$			cown		
	－		${ }^{202}$	${ }_{\text {20，}}^{2.88}$	${ }^{0.0} 0$		${ }^{26}$	${ }_{7}^{7.05}$	${ }^{\frac{90}{10} 0}$	${ }^{360}$		${ }^{10}$	\because	${ }^{513}$	${ }^{19}$	${ }^{43}$	${ }^{125}$	${ }^{37}$	${ }^{2}$	\bigcirc	0.10	${ }^{20}$					1800		${ }^{0.13}$	100	${ }^{30}$	${ }^{140}$	${ }^{0.03}$	${ }_{1200}$	10	${ }^{7400}$	000	02	${ }^{46}$	${ }^{120}$				
${ }^{\text {Inema }}$	${ }_{\text {a }}^{12032}$																						7000	${ }^{1400}$	00.0	${ }^{330}$																		
		${ }^{1255}$	${ }_{\substack{095 \\ 0.95}}$	${ }_{\substack{166 \\ 1.65}}^{\text {ien }}$	${ }^{\frac{0}{020}} \mathbf{0}$		${ }^{26}$	${ }^{7} 7$	${ }_{\substack{185 \\ 185}}$	${ }^{800}$				${ }^{214}$																														
		145	068	091	0.0			${ }^{273}$	${ }^{268}$			${ }_{12}$	${ }^{35}$	${ }^{114}$	${ }^{36}$	46	${ }_{152}$	${ }^{4.3}$	${ }^{137}$	${ }^{13}$	0.16	1.	${ }^{1418}$	${ }^{122}$			${ }^{100}$		${ }_{0}^{0.0}$	50		${ }^{40}$	0.0	${ }^{930}$		11220	0.0	${ }^{0.4}$	¢6\％	${ }^{21169}$				
		${ }_{\text {coitico }}^{\substack{160}}$	${ }_{0}^{0.75}$	${ }_{0}^{0.12}$	${ }_{0}^{0.10}$	${ }^{26}$	2	${ }_{7}^{7,85}$	${ }^{205}$	300		${ }^{130}$	10	${ }^{113}$	${ }^{28}$	${ }^{41}$	${ }^{145}$	${ }_{4}{ }^{5}$	110	${ }^{21}$	0.10	${ }^{20}$	300				50		${ }^{0.05}$	100	${ }_{30}$	10	${ }_{0}^{0.3}$	${ }_{500}$	10	${ }^{0100}$	0.00	0.	${ }^{55}$	180				
			0.75				11			${ }^{930}$													\％ow	．	0.0	${ }^{110}$																		
（1asersa		${ }_{\substack{745 \\ 745}}$	0.8		0.0			${ }^{200}$	${ }^{245}$			${ }^{130}$	so	${ }_{10}^{10}$	${ }^{28}$	${ }^{53}$	${ }^{145}$	${ }^{39}$	${ }^{10}$	${ }^{17}$	020	20	8300	${ }^{2000}$			${ }^{20}$		007	100	${ }^{30}$	10	${ }_{0}^{0.03}$	200	4	${ }^{8200}$	0.00	02	${ }^{62}$	${ }^{180}$				
${ }^{\text {che }}$		${ }_{\text {lis }}^{185}$	0.74	0.56	${ }^{020}$			780	${ }^{34}$			190	${ }^{20}$	${ }^{20}$	${ }^{63}$	${ }^{64}$	${ }^{140}$	40	${ }^{165}$	${ }^{24}$	020	${ }^{20}$	2200	${ }^{12000}$			${ }_{1600}$		${ }^{005}$	${ }^{200}$	30	110	${ }^{0.3}$	200	10	${ }^{3350}$	0.0	04	${ }^{52}$	${ }^{220}$		$\xrightarrow{\text { ONWN }}$		
		${ }^{1859}$	${ }^{0.84}$	0.56	${ }^{0.20}$	${ }^{33}$	${ }^{25}$	200	${ }^{322}$	220				${ }^{373}$											0.0	${ }^{60}$																		
			0.7					${ }^{200}$				${ }^{120}$	150	${ }^{200}$	${ }^{23}$	${ }^{52}$	${ }^{120}$	${ }^{36}$	${ }^{105}$	，	${ }^{020}$	${ }^{20}$	000	2000			${ }_{1500}$		${ }^{0.05}$	100	${ }^{30}$	10	0.03	${ }^{11100}$	10	8870	0.00	02	${ }_{455}$	${ }^{160}$				
隹		${ }^{100}$	${ }_{0}^{0.78}$		${ }^{0.020}$		${ }^{30}$	${ }^{1720}$	${ }_{20}^{170}$	${ }^{360}$			${ }^{78}$	${ }_{\substack{245 \\ 235}}$	24	42	${ }^{130}$	${ }^{36}$	${ }^{104}$	1						${ }^{0}$			${ }^{0.05}$		10		00			${ }^{\text {B67 }}$	00	${ }^{021}$	（123	， 24				
${ }^{\text {cosezan }}$		${ }^{150}$	${ }_{0} 078$		${ }^{020}$	${ }^{24}$	${ }^{20}$	${ }_{7}^{700}$		480					4			${ }^{6}$					7295	${ }^{1390}$																				
${ }^{\text {ciene }}$			${ }^{0.75}$					${ }^{185}$	${ }^{248}$			14	${ }^{20}$	${ }^{45}$	${ }^{29}$	${ }^{45}$	${ }^{16,5}$	${ }^{48}$	${ }^{122}$	${ }^{18}$	0.12	1.0	${ }^{3116}$	447			${ }^{200}$		${ }^{0.04}$	${ }^{100}$	10	${ }^{\circ}$	${ }^{0.3}$	939	10	${ }_{\text {1017 }}$	001	047	${ }^{\text {sose }}$	1867		SNeN		
		${ }^{12}$	${ }^{0.75}$				14		${ }^{235}$	${ }_{650}$				${ }_{45}^{45}$											．0．	102																		
	coseme	${ }_{\text {cose }}^{12}$	${ }^{0.75}$	0.2	0．0 0.0 0.0 0			${ }^{*}$					10		3	${ }^{3}$	（100	${ }^{3}$	15	2	0.10	20	2000	200	001	80	${ }^{50}$		Ous	20	${ }^{\circ}$	10	ous	100	10		000	0.	\cdots	20				
	$\underbrace{\text { amata }}$	${ }^{185}$	${ }^{0.75}$	0.12	－		19	${ }_{7}^{8,10} 7$	${ }_{\substack{279 \\ 305}}^{\substack{\text { 20，}}}$	${ }^{750}$		160	20	${ }_{\substack{16 \\ 12}}^{12}$	${ }^{34}$	4.	190	6	${ }^{160}$	${ }^{24}$	020	20				\cdots	50		0.05	100	${ }^{30}$	10	0.08	100	10	${ }^{12500}$	0.0	0.3	${ }^{12}$	${ }^{20}$				
		${ }^{810}$	${ }^{0.70}$		－	${ }^{27}$	${ }^{23}$	${ }^{2} .10$	${ }^{313}$	${ }^{3.0}$													3300	${ }^{420}$																				
	隹		${ }^{\text {O23 }}$		（0，00			${ }^{220}$	135			${ }^{8}$	${ }^{1300}$	${ }^{200}$	17	${ }^{6}$	${ }^{100}$	${ }^{20}$	${ }^{18}$	${ }^{\circ}$	020	40	2300	8300			200		${ }^{0.05}$	${ }^{100}$	30	${ }^{20}$	${ }^{0.03}$	${ }^{1400}$	${ }^{\circ}$	${ }^{6400}$	0.00	${ }^{0.1}$	${ }^{33}$	${ }^{120}$				
					－0．10		${ }^{27}$	600	${ }_{1}^{184}$	${ }^{220}$				${ }^{2000}$											023	${ }^{33}$																		
	${ }_{\text {cosem }}$	${ }_{\substack{1255 \\ 185}}^{150}$	${ }_{\text {coid }}^{0.0}$	${ }_{0} .9$	${ }_{0}^{0.10}$			${ }^{200}$	${ }^{136}$			210	10	${ }^{20}$	${ }^{49}$	${ }^{66}$	215	${ }^{67}$	${ }^{185}$	${ }^{30}$	020	20	350	${ }_{410}$			500		${ }^{0.05}$	100	30	${ }^{20}$	${ }^{0.03}$	${ }^{1000}$	10	15000	000	${ }^{0.7}$	8	${ }^{30}$				
	，	${ }_{\text {，}}^{185}$	${ }_{\substack{0,76 \\ 0.76}}^{0 .}$		${ }^{0.10} 0$		${ }^{19}$	${ }_{1} 10$		56															00	${ }^{90}$																		
	（0isam	${ }^{1.5050}$	${ }_{\substack{\text { geges } \\ \text { geso }}}^{\substack{\text { ges }}}$		${ }^{0.020}{ }_{0}^{020}$			${ }^{2} 8$	${ }^{30}$			210	${ }^{20}$	${ }^{13}$	${ }^{46}$	${ }_{50}$	210	${ }^{2}$	${ }^{180}$	${ }^{31}$	020	20	200	${ }^{290}$			500		0.05	100	30	10	${ }_{0} 03$	600	10	17600	000	0.8	${ }^{82}$	${ }^{20}$		$\xrightarrow{\text { Onsen }}$		
	253		${ }_{\text {cose }}^{\substack{\text { ge9 } \\ 0.7}}$		（oid	${ }^{24}$	${ }^{16}$	${ }^{1788}$	${ }_{3}^{388}$	${ }^{720}$		${ }^{180}$	${ }^{19}$	${ }_{\substack{16 \\ 14}}^{1}$	，	${ }^{60}$	190	${ }^{6.5}$	${ }^{157}$	${ }^{28}$	0.10	1.0					50		${ }_{0}^{0.05}$	30	30	10	0.03	200	10	${ }_{\substack{18,500 \\ 18000}}$	000	${ }^{0.7}$	${ }^{14}$	${ }^{268}$				
																							3300	400	0.0	${ }_{4}^{47}$																		
							2	${ }_{718}$	${ }^{36}$	500																																		

come	Somp		coicce				(eict ${ }_{\text {comp }}$	${ }^{\text {pH }}$	$\underbrace{\substack{\text { ccm }}}_{\text {Ecm }}$				$\underset{\substack{\text { mos } \\ \text { mos }}}{\text { rsis }}$		(uxbuly	Some	${ }_{\substack{\text { Patassum } \\ \text { (mat) }}}^{\substack{\text { a }}}$	${ }_{\text {and }}^{\substack{\text { ancum } \\ \text { (mat) }}}$	Menememe				Sump	\pm	(omp		Ammota		chind				(on						$\begin{array}{\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|} \substack{\text { acoso } \\ \text { cmatu }} \\ \hline \end{array}$	(tan	(eat		${ }_{\substack{\text { Sata }}}^{\text {gouce }}$
					Mv	${ }^{\text {na }}$	20.00% \%10	${ }_{\substack{6,5 \\ 80}}^{\substack{\text { c, }}}$	${ }_{30}$		${ }^{\text {n® }}$	${ }^{85,10}$	${ }^{\text {na }}$	10	${ }_{50}$	${ }_{15}$	${ }^{\text {na }}$	1000	${ }^{\text {na }}$	${ }^{\text {na }}$	${ }^{175}$	${ }^{1,2}$	${ }_{400}$	${ }^{500}$	${ }_{\text {co }}^{50}$		${ }^{20}$	${ }^{200}$	5		${ }^{371}$	${ }^{1.4}$	${ }^{20}$			8							
	${ }^{2080}$	(730	${ }_{1,8}$		(0.30																			${ }^{30075}$	${ }^{1887} 1$	0.16	${ }^{4.4}$																Nomen
, 10,		${ }^{1200}$	${ }^{1,188}$		(0.30		${ }^{20}$	${ }^{\frac{720}{720}}$	${ }_{2}^{215}$		330		${ }^{123}$	${ }^{766}$	2000	${ }^{20}$	${ }^{57}$	150	${ }^{36}$	$\stackrel{\square}{9}$	12	0.10	17					3300		0.10	${ }^{40}$	${ }^{30}$	${ }^{\circ}$	0.03	${ }^{1200}$	${ }^{20}$	${ }^{820}$	0.00	$0^{0.2}$	${ }^{53}$	${ }^{161}$		
${ }^{\text {Premen }}$			${ }^{\frac{1}{102}}$			${ }^{33}$	${ }^{26}$	76			400				${ }^{80}$									15964	478												8800						
12002A	cose	${ }_{\text {a }}^{\text {820 }}$	0.9					${ }^{7} 7$	${ }^{36}$				${ }^{227}$	${ }^{0}$	${ }_{5}$	59	${ }^{68}$	${ }^{180}$	${ }^{51}$	${ }^{213}$	${ }^{22}$	020	10	639	157.0			100		0.05	${ }^{80}$	${ }^{30}$	10	${ }_{0}^{0.3}$	${ }^{900}$	10	${ }^{17600}$	000	0.	${ }^{6}$	${ }_{36}$		Onsw
			${ }^{\text {a,70 }}$		(o.00		${ }^{25}$	${ }_{70}{ }_{7}$	${ }_{\substack{36 \\ 204}}$		2.0		${ }^{120}$	310	${ }_{\substack{62 \\ 30}}$	${ }^{26}$	${ }^{43}$	${ }^{93}$	${ }^{30}$	${ }_{92}$	${ }^{15}$	0.10	${ }^{23}$				${ }_{350}$	${ }^{2000}$		${ }_{0}^{0.05}$	${ }_{50}$	${ }_{30}$	10	${ }^{003}$	${ }_{1200}$	${ }^{\circ}$	7600	000	${ }^{02}$	${ }^{36}$	${ }_{134}$		
		${ }_{\substack{1730}}^{1780}$	${ }^{0.90}$		(0,00																			10370	${ }^{1970}$	000	${ }^{400}$																
(10)			${ }^{320}$		0.10		15	${ }^{750}$	${ }^{\text {c }}$		8.10		π	${ }^{1330}$	${ }_{\substack{380 \\ 180}}$	17	${ }_{42}$	${ }_{4}{ }^{3}$	14	${ }_{88}$	6	020	${ }^{15}$					${ }^{330}$		0.05	${ }^{2}$	30	10	0.03	1000	80	${ }^{8800}$	000	-	17	9		(incone
		隹 1700					${ }^{24}$	${ }^{200}$	${ }^{92}$		200				${ }^{29}$									2020	811.0																		(inco
(1302A	,		${ }^{\text {oso }}$		(on			${ }^{7} 78$					${ }^{115}$	${ }^{198}$	${ }^{232}$	${ }^{19}$	${ }^{50}$	${ }^{130}$	${ }^{39}$	97	12	0.10	12	8000	${ }_{1880}$	${ }^{018}$	2	${ }^{1200}$		0.05	${ }^{30}$	30	10	${ }^{0.03}$	${ }^{1200}$	10	8000	0.00	0.1	${ }^{49}$	${ }^{132}$		
					${ }_{0} 0.30$		${ }^{27}$	${ }_{720}$	${ }^{189}$		530		9	${ }^{76}$	${ }^{799}$	14	${ }^{60}$	${ }^{120}$	${ }^{27}$	${ }_{8} 8$	-	0.10	19					${ }^{230}$		${ }_{0}^{0.05}$	${ }_{50}$	${ }_{30}$	${ }_{50}$	${ }^{0.08}$	${ }^{1400}$	8	8800	000	${ }^{0.1}$	${ }^{41}$	${ }^{127}$		
${ }^{\text {Brasera }}$					-	${ }^{3}$	${ }_{30}$		${ }^{126}$		${ }_{640}$													13322	${ }_{4095}$																		
,	7022006	${ }_{\substack{1855 \\ \hline 105}}^{180}$	${ }^{0.00}$		0			${ }^{700}$	${ }^{24}$				${ }^{186}$	4	${ }_{8}$	22	${ }^{69}$	${ }^{170}$	${ }^{4.1}$	${ }^{120}$	10	0.10	10	${ }^{2757}$	${ }^{23,6}$			1000		${ }^{0.05}$	${ }^{0}$	30	140	${ }_{0}^{0.03}$	${ }^{17200}$	10	\%800	000	02	${ }^{8}$	${ }^{180}$		
${ }^{\text {Brasona }}$			0.72				${ }^{29}$	720	${ }^{26}$		200															0.10	${ }^{209}$																
			0.68					${ }^{137}$	\%				${ }^{18}$	${ }^{32}$	${ }^{3}$	${ }^{18}$	${ }^{56}$	${ }^{150}$	${ }^{39}$	110	${ }^{8}$	020	${ }^{10}$	3500	${ }^{1300}$			${ }^{500}$		${ }^{0.05}$	${ }^{30}$	${ }^{30}$	${ }^{6}$	${ }^{0.03}$	${ }^{1200}$	${ }^{20}$	2000	${ }^{0.00}$	0.1	${ }^{54}$	162		
(10aseat					0.10		16	${ }^{730}$	${ }_{182}^{182}$		2.0															${ }_{0}^{0.3}$	4.7																
	${ }^{\frac{20}{20382000}}$	${ }^{205}$	${ }_{\text {O, }}^{0.68}$		${ }_{\text {O20 }}^{0.00}$		15	${ }_{\substack{7,700}}^{\substack{7,0}}$	${ }_{\text {cor }}^{\substack{292 \\ 292}}$				184	,	${ }^{\circ}$	${ }^{33}$	${ }^{67}$	${ }^{180}$	${ }^{62}$	${ }^{134}$	${ }^{25}$	0.10	10					50		${ }^{0.05}$	\cdots	30	10	${ }^{003}$	100	20	11700	000	0.4	${ }^{6}$	${ }^{22}$		
		${ }_{\substack{1800}}^{1800}$			${ }^{0.10} 0$			${ }^{737}$	${ }^{19}$				${ }^{105}$	916	1480	${ }^{17}$	${ }^{56}$	${ }^{130}$	${ }^{28}$	${ }^{85}$	10	${ }^{0.13}$	30	${ }^{2300}$	5190			300		${ }^{0.05}$	70	${ }^{30}$	${ }^{\circ}$	${ }^{0.03}$	${ }^{200}$	${ }^{\circ}$	2000	${ }^{000}$	${ }^{0.1}$	${ }^{4}$	${ }^{139}$		
(1asase			1,2		${ }_{0}^{0.10} 0$	${ }^{\frac{26}{22}}$	${ }^{\frac{25}{26}}$	${ }_{\text {coise }}^{\substack{730}}$	20		${ }_{\text {coiz }}^{\substack{8,20 \\ 750}}$				${ }_{\substack{205 \\ 205}}$																												
-		${ }_{\text {945 }}^{985}$						${ }^{752}$	${ }^{388}$				${ }^{200}$	${ }^{18}$	${ }^{106}$	40	${ }^{63}$	${ }^{230}$	${ }^{62}$	112	${ }^{23}$	020	${ }^{23}$	${ }^{331 .}$	${ }^{10,3}$			${ }^{1300}$		${ }^{0.05}$	40	30	10	${ }^{001}$	${ }^{1200}$	10	1200	00	0.3	${ }^{82}$	${ }^{275}$		$\frac{\text { Onew }}{\text { ONRW }}$
		${ }_{\text {a }}^{295}$	0.72		0.10		${ }^{26}$	${ }^{7} 5$	361																	${ }_{0}^{0.01}$	${ }^{226}$																
	2032307				0.10			${ }^{73}$					${ }^{89}$	70	1000	17	48	${ }_{0} 9$	${ }^{20}$	10	5	0.12	${ }^{32}$	18800	6050			${ }^{1000}$		0.11	110	30	100	00	110	100	\%800	000	0.1	${ }^{32}$	${ }_{14}$		${ }_{\text {onem }}^{\text {Onew }}$
,			0.9		${ }^{0.10} 0$	3	${ }^{26}$	${ }^{730}$	\%		960		${ }_{86}$	${ }^{\text {as8 }}$	${ }_{\text {cos }}^{\substack{109}}$	${ }^{13}$	${ }^{57}$	${ }^{87}$	${ }^{21}$	${ }^{10}$	5	0.12	${ }^{24}$					${ }^{2700}$		${ }_{0}^{0.08}$	50	30	${ }^{0}$	${ }_{0} 0$	11.00	30	8800	0.00	${ }_{0}^{0.1}$	${ }^{33}$	${ }^{111}$		
(insior																								12451	${ }^{36,3}$	${ }_{0}^{0.13}$	${ }^{3.7}$																Solen
(indion		${ }_{\substack{120 \\ 880}}^{\substack{120}}$	0.95	0.00	${ }_{\text {O }}^{0.00}$		${ }^{26}$	${ }_{700}^{700}$	${ }^{127}$		450		${ }^{127}$	${ }^{6}$	¢00	${ }^{17}$	${ }^{6} 7$	${ }_{180}$	${ }^{42}$	${ }^{17}$	7	0.15	14					${ }^{20}$		0.05	${ }_{30}$	30	${ }^{40}$	${ }_{0} 00$	${ }^{1330}$	10	5000	000	0.	${ }^{6}$	${ }^{1 / 3}$		
					0.10			${ }_{746}$	${ }^{195}$				${ }^{120}$	119	${ }^{255}$	${ }^{16}$	${ }^{63}$	${ }^{180}$	${ }^{37}$	${ }^{108}$	${ }^{8}$	0.14	24	${ }_{\text {m7.7 }}$	${ }_{1876}^{1876}$			${ }^{200}$		0.0	${ }^{50}$	30	110	001	${ }^{1300}$	3	${ }^{8900}$	0.00	02	5	16		Onen
(10)							${ }^{20}$	${ }^{63}$	${ }^{18}{ }^{182}$		800		${ }^{121}$	${ }^{131}$	${ }^{275}$	${ }^{21}$	${ }_{4.8}$	130	${ }^{43}$	102	${ }^{15}$	0.12	14					${ }_{100}^{140}$		0.06	30	30	∞	001	${ }_{800}$	${ }^{20}$	${ }^{840}$	\cdots	02	${ }^{64}$	${ }^{164}$		
2024			O2						215		1020				${ }^{20}$									\ldots	\%	000	${ }^{34,7}$																
limeser					\%		2				-												10								40	30	10	001		10		0.00					(inco

 \qquad

	Sample	Physical										Cations				Anions				Nutrients \& Biological					Trace Elements										Flow		${ }_{\text {Data }}^{\substack{\text { Daurce }}}$
		Time		$\begin{array}{\|c\|c\|c\|c\|c\|c\|c\|} \hline \text { Tomp } \\ \text { Tepo } \\ \hline \end{array}$	pH	$\begin{array}{\|c\|} \hline \mathrm{EC} \\ \begin{array}{c} (\mu \mathrm{Slcm} \\ \hline \end{array} \\ \hline \end{array}$	$\begin{gathered} \text { Do } \\ \text { (mglL) } \end{gathered}$	$\begin{array}{\|c\|c\|c\|c\|} \hline \text { sat } \\ \text { sat } \end{array}$	$\begin{gathered} \text { Tos } \\ (\mathrm{mglL}) \end{gathered}$	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Tss } \\ (\mathrm{mg}(L) \end{array} \\ \hline \end{array}$	$\begin{array}{c\|} \hline \text { Turbidity } \\ \text { (NTU) } \end{array}$	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Sodium } \\ \text { (mg/L) } \end{array} \\ \hline \end{array}$	$\begin{aligned} & \text { Potassium } \\ & (\mathrm{mg} / \mathrm{L}) \end{aligned}$	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { calcicium } \\ (\text { mglLL } \end{array} \\ \hline \end{array}$	$\begin{gathered} \text { Magnesium } \\ (\mathrm{mg} / \mathrm{L}) \end{gathered}$	$\begin{array}{\|c} \hline \begin{array}{c} \text { Bicarbonate } \\ \text { as HCO3 } \\ (\mathrm{mg} / \mathrm{L}) \end{array} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { chloride } \\ (\text { mg/L }) \end{array}$	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Fluoride } \\ (\mathrm{mg} L \mathrm{~L} \end{array} \\ \hline \end{array}$	$\underset{\substack{\text { Sulphate } \\(\mathrm{mg} L \mathrm{~L}}}{ }$	$\begin{array}{\|l\|l\|} (\text { Heg } \end{array}$	$\begin{array}{\|c\|c\|} \hline(\operatorname{Trg}) \\ (1) \end{array}$	$\underset{(\mu \mathrm{g} / \mathrm{L})}{ }$	$\begin{array}{\|c\|c\|} \substack{\text { Nitrate } \\ \text { as } \\ \left(\mathrm{sig} \mathrm{O}_{3}\right.} \end{array}$	$\begin{array}{\|l\|l\|c\|c\|c\|c\|c\|} \text { (1g(L) } \end{array}$	$\begin{array}{\|l\|l} \text { Arsenic } \\ (\mu g l L) \end{array}$	$\left\lvert\, \begin{aligned} & \text { Boron } \\ & (\text { (ugLL) } \end{aligned}\right.$	$\begin{array}{\|c\|} \hline \text { Cadmium } \\ (\mu \mathrm{g} / \mathrm{L}) \end{array}$	$\underset{(\mu \mathrm{g} / \mathrm{L})}{\text { Chromium }}$		$\left.\begin{array}{\|l\|l\|} \hline \text { Iron } \\ (\text { (gLL) } \end{array}\right)$	$\left.\left\lvert\, \begin{array}{c} \text { Lead } \\ \text { (egLL } \end{array}\right.\right)$	$\begin{gathered} \text { Mercury } \\ (\text { gagLL } \end{gathered}$	$\left.\begin{array}{\|c\|c\|} \hline \text { Nickel } \\ (\mu g L L) \end{array} \right\rvert\,$	$\begin{array}{\|l\|l\|} \substack{\text { ginc } \\ \text { gal }} \end{array}$	Level	Velocity	
		MTV	${ }^{\text {na }}$	0.80 \%il	6.5.8.0	${ }^{320}$	112	${ }^{85-110}$	${ }_{\text {na }}$	10	50	${ }^{115}$	na	1000	na	na	175	1,2	400	500	50	${ }^{20}$	700	5	113	${ }^{370}$	0.2	50	1.4	200	3.4	0.6	11	8	na	$n \mathrm{na}$	
Utopia	250512005			${ }^{12}$	7.2	${ }^{233}$	${ }^{11.30}$	${ }_{103}^{103}$	154 136	$\stackrel{9}{10}$		${ }^{28}$	4	12 11	${ }_{4}^{6}$	91 91	${ }_{2}^{22}$	0.15 0.1	<10	70 100	<50	<10			<1	<100	${ }^{0.1}$	<1	<	165 1	<	<0.1	<1	<10	${ }_{\text {Low-mod }}^{\text {Mod }}$	Mod	$\stackrel{\text { RH }}{\text { RH }}$
Uutopia	${ }^{5411042000} 7$		29.8	${ }_{19.8}^{12}$	${ }_{7}^{7.9}$	${ }_{228}^{223}$	${ }^{8.08}$	${ }_{8}^{132}$	${ }^{136}$	${ }_{12}^{10}$		${ }_{37}^{29}$	${ }_{6}$	${ }_{22}$	${ }_{7}$	${ }^{9150}$	${ }_{23}^{21}$	$\stackrel{0.12}{0 .}$	$\stackrel{1}{<1}$	680	${ }^{34}$	18	${ }^{4} 44^{*}$	<1	<1	20	$\stackrel{\sim}{<1}$	-	<2	460	<1	${ }^{<0.5}$	${ }^{2}$	<1			$\stackrel{\text { RH }}{\text { RH }}$
Utopia	201111964	2359			7.7	310			174			${ }^{47}$		19	9	156	40	0.2	2				55														
Utopia	20221966	2359			7.4	288			161			${ }^{35}$		${ }^{20}$	7	140	30	0.1																			DNRW
Utopia	61101966 110881988 1	${ }^{2359} 1510$			$\stackrel{8}{76}$	${ }^{270}$			162 170 17			39 40 40		14 20 20	$\stackrel{9}{6}$	136 137	32 ${ }_{28}$	0.15	1																		DNRW DNRW
Utopia	80661970	1307			7.7	290			173			${ }^{38}$		${ }^{24}$	5	154	30	0.15																			DNRW
Utopia	240411971	1310		19	8	390			212			32		40	9	195	${ }^{35}$	0.1																			DNRW
Utopia	$25081 / 971$	1445		17	7.8	320			180			32		20	15	159	${ }^{35}$	0.1																			
Utopia	25111/1971	1000		${ }^{24}$	8	360			102			44		34	4	178	36	0.2																			DNRW
Utopia	${ }_{\text {10, }}^{101051972}$	800 130		18	8	270			167			40		17	8	146	30	0.25																			DNRW
Utopopia	141041973	${ }_{1730}$		${ }_{23}^{18}$	8.2	310			187	13		32	5	27	8	163	70	0.2								20											${ }_{\text {DNRW }}$
Utopia	111081973	1200		17	8.1	200			122			21	5	15	5	87	20																				DNRW
Utopia	5121973	1100		27	${ }^{8.3}$	270			161	20		24	5	${ }^{23}$	7	131	26	0.16																			DNRW
Utopia	270311974	1030		27	7.8	355			203			40		25	8	164	32	0.13																			DNRW
Utopia	${ }_{\text {26061974 }}^{26091974}$	${ }_{1}^{1215}$		15 17 17	7.7	300 335			178 199	42 54		34 36 3	4	21 21	7	139 149	31 34	0.13 0.27																			DNRW DNRW
Utopia	161121974	1730		${ }^{27}$	7.5	330			171	9		${ }^{35}$	5	20	8	158	14	$\stackrel{0.16}{0.1}$																			${ }^{\text {DNRW }}$
Utopia	81041975	1000		21.5																																	DNRW
Utopia	${ }_{\text {L }}^{51771975}$	1055 1300		${ }_{26}^{16}$	${ }^{8} 8$	262 311			145 165	33 11		27 32	$\stackrel{3}{4}$	16 16	${ }_{7}$	145 140	${ }_{22}^{22}$	0.1 0.2																			DNRW DNRW
Utopia	31061976	1350		16	8.1	430			239			${ }^{42}$	4	35	9	186	40	0.2	5				${ }_{5}$														DNRW
Utopia	141091976	${ }^{1231}$		16	8.3	375			211	5		43	4	28	8	167	37	0.2					55														DNRW
Utopia	${ }^{1411219976}$	1632		${ }^{29}$	8.2	360			198	11		${ }^{28}$	6	${ }^{34}$	8	165	${ }^{26}$	0.4	2				${ }^{331}$														DNRW
$\begin{aligned} & \text { Utopia } \\ & \hline \text { Utopia } \end{aligned}$	${ }_{2}^{20104197977}$	${ }_{937}^{1347}$		22 24 24	${ }_{8.2}^{8.2}$	${ }^{385}$ 325			${ }_{181}^{212}$	7		39 35	4	28 21	${ }_{8}^{8}$	153 150	36 28	0.1	5				193 168														DNRW DNRW
Utopia	111041978	1305		77	8	280			164	15		30	4	19	7	142	26	0.1	2				${ }_{8} 8$														DNRW
Utopia	2411019978	1154		${ }^{21}$																																	
Utopia	1111119880 18121980	${ }^{1505} 1200$		29 29	${ }_{7}^{7.8}$	${ }^{330}$			172 170 1			${ }_{3}^{34}$	4	18 19	8	145 148 1	-24	0.1 0.1 0.1	1				138 55 5														DNRW DNRW
Utopia	41021981	1440		18	7.6	78			77	500		8	4	5	2	24	3	0.1	6				7724														
Utopia	40221981	1440			7.4	90			62	500		8	4	6	2	38	4	0.1	4				1379														DNRW
Utopia Utopia	5021981 802021981	945 725 7		18	7.5 7.3	${ }^{117}$			75 83 8	500 100		${ }_{9}^{10}$	5 4	${ }_{8}^{8}$	${ }_{2}^{2}$	${ }_{4}^{47}$	6	0.1 0.1 0.1	4 13 1				1931 1931														SNRW
Utopia	24033/1981	1755			8.1	285			144	10	16	${ }^{24}$	5	21	7	${ }_{133}$	20	0.1	1																		DNRW
Utopia	24033/1981	1755		27																																	DNRW
Utopia	${ }^{40661981}$	1010		16	${ }_{8}^{7.3}$	${ }^{86}$			${ }_{1}^{58}$	200 10	680 10	${ }^{8}$	4	${ }_{5}^{5}$	${ }_{8}$	26 155 1	31	${ }_{0}^{0.1}$	2				1103														${ }_{\text {DNRW }}$
Utopia	10111/1981	915		${ }^{24}$	${ }_{8}^{8.5}$	${ }_{360}$			${ }_{200}$	10		${ }_{33}$	4	${ }_{24}^{25}$	8	${ }_{150}$	${ }_{27}$	0.2	${ }_{13}$				276														${ }^{\text {ONRWW }}$
Utopia	251031/1982	850		22	8	290			160	50	100	24	4	20	6	135	20	0.1	4				276														DNRW
Utopia	12081982 31111982	1130 1545		14	${ }^{8.1}$	${ }^{300}$			170	9	${ }^{2}$	${ }^{35}$	${ }^{5}$	19	7	140	${ }^{27}$	${ }^{0.1}$	3				110														DNRW
Utopia	161021983	1730		28																																	${ }^{\text {DNRW }}$
Utopia	151/219983	800		24	8.1	320			190	25	72	${ }^{31}$	4	24	7	145	28	0.1	${ }^{3} .3$				138														DNRW
Utopia	${ }^{2403031984}$	1045		${ }_{2}^{26}$	7.3	290			${ }_{220}^{220}$	5	3	${ }^{37}$	4	${ }^{28}$	9	175 150	${ }_{36}^{33}$	0.1	7							30											
Utopia	231061984 $18 / 1 / 1984$	1210 1140 1		${ }_{20}^{12}$	7.8 8.3	330 480			${ }_{200}^{200}$	5 5 5		41 56	3 5	25 31 31	8 10	150 200	36 55	0.1 0.1 0	2.5 4.5				${ }^{138}$			10											DNRW DNRW
Utopia	131041985	1345		${ }^{23}$	7.5	350			200	10	3	41		${ }^{23}$	7	165	${ }^{36}$	0.1								20											DNRW
Utopia	${ }^{50771985}$	${ }^{1425}$			8.1	340			180	${ }^{5}$	${ }^{6}$	37	3	20	7	150	${ }^{33}$	0.1																			DNRW
Utupia	${ }^{181701985}$	${ }^{1330} 1714$		22 30	7	${ }^{90}$			177	330 5	100 5	${ }^{93}$	5	8 19	$\stackrel{2}{7}$	50 140	$\stackrel{8}{26}$	0.1 0.2	2				${ }_{331}^{138}$			${ }_{20}^{10}$											ONRN
Utopia	$18071 / 1986$	1440		16	8.4	${ }^{238}$			160	25	9	32	3	19	7	130	26	0.1																			DNRW
Utopia	1717019986	1643		${ }_{28}^{25}$	8	${ }^{301}$			160	10 2080	${ }^{13}$	${ }^{32}$	3	19	7	140	${ }^{27}$	0.1					${ }_{1690}^{692}$														DNRW
Utopia	${ }^{990119887}$	${ }^{1830}{ }_{930}$		${ }_{28}^{28}$	7.7	${ }^{152} \times 18$			95 160	2460 10	100 7	${ }_{32}^{11}$	5	$\begin{array}{r}13 \\ \hline 20 \\ \hline\end{array}$	${ }_{6}$	72 140	$\stackrel{7}{26}$	0.1 0.1	2.6				1324			20											
Utopia	17107/1987	1530		11	8.1	314			150	19	9	31	3	17	6	125	22	0.1																			DNRW
Utopia	6/111987 12021088	1720 1645		${ }_{21}^{21}$	7.3	${ }_{142}^{273}$			150 97	${ }_{730}^{44}$	$\begin{array}{r}34 \\ \hline 100 \\ \hline\end{array}$	$\stackrel{29}{12}$	5	17	${ }_{4}$	120 69	$\stackrel{22}{9}$	0.2 0.1					52			10											DNRW ONRW
Utopia	1710519988	1452		18	7.5	250			130	48	${ }_{38}$	26	3	16	5	115	21	0.1					${ }_{5} 24$														${ }^{\text {DNRWW }}$
Utopia	261091988	1430		${ }^{24}$	8.1	274			150	12	6	29	4	18	7	125	${ }^{25}$	0.1																			DNRW
Utopia	(120119899	${ }_{852}^{1437}$		27	${ }_{7}^{7.1}$	${ }_{3}^{175}$			89 150	125 81	100 80 8	10 24	6	13 19	${ }_{6}$	73 105	${ }^{9}$	0.1																			DNRW
Utopia	20911989	1613			7.9	${ }^{434}$			250	10	11	${ }_{46}^{24}$	3	31	10	180	${ }_{54}^{24}$	0.1	${ }_{5}$							50											DNRW
Utopia	311211989	1440		30	8.5	405			${ }^{230}$	76	59	${ }^{43}$	4	${ }^{28}$	8	155	${ }^{48}$	0.2	4				331			100			0.02								DNRW
Utopia	${ }_{\text {2 }}^{240319990}$	${ }^{1115}$		${ }_{11}^{22}$	8.1 8. 8	${ }^{320} 4$			$\begin{array}{r}179 \\ \hline 250\end{array}$	47	45	33 51	4	$\stackrel{20}{31}$		$\begin{array}{r}133 \\ 182 \\ \hline 1\end{array}$							166 386			30 30 20											
Utopia	131071990 151111990	1145 1380		${ }_{26}^{11}$	${ }^{8.2}$	${ }_{498}^{498}$			260 270	2	32	51 58 58	4	31 31 31	11 11	182 200	46	0.16 0.16	${ }^{7}{ }^{7}$				386			20 40			0.03								DNRW DNRW
Utopia	230319991	915		22	7.8	380			217	4	5	47	5	24	8	167	44	0.19								30			0.03								DNRW
Utopia	308819991	1405		8	8	303			176	16	4	${ }^{37}$	3	19	7	141	33	0.13	2.8							20			0.04								DNRW
Uutopia	${ }_{129119991}^{29192}$	1340 1003		27 17	${ }_{7}^{7.5}$	${ }_{302}^{294}$			182 158	${ }_{11}^{4}$	${ }_{3}^{3}$	${ }_{33}^{41}$	${ }_{3}^{4}$	17 19	8	143 135	32 26	0.16 0.14	0.6										0.03								DNRW ONRW
Utopia	12081992	1120		12	8.3	${ }^{240}$			151	11	1	${ }_{3}$	2	16	7	124	25	$\stackrel{0.13}{0.13}$	0.7				55														DNRW
Utopia	212121992	1405		26	8.1	310			167	9	5	${ }^{34}$	4	17	7	${ }^{136}$	${ }^{25}$	0.12	0.3				${ }^{221}$						0.01								DNRW
Utopia	${ }_{\text {210 }}^{2410319993}$	1015 915		21.1 14.2	7.7	${ }_{284}^{249}$			153	${ }_{23}^{11}$	7	37 30	${ }_{3}^{4}$	14 15 15	7	121 115	26 20	0.14 0.12	0.6				55 ${ }_{28} 8$						0.02								DNRW ONRW
Utopia	$24111 / 1993$	1455			7.6	190			110	230	100	15	4	13	4	79	19	0.1	2				938			100			0.05								DNRW
Utopia	${ }^{2411111993}$	1455		24.6	${ }^{7} 7.75$	163																															DNRW
Utopia	161121993	1300			${ }^{7.65}$	165			${ }^{99}$	290	100	${ }^{15}$	4	11	4	76	${ }^{12}$	0.1	2				1048 110 10			100			${ }_{0}^{0.05}$								
Utopia	${ }^{1310019994} 3$	${ }^{943} 130$		${ }^{15,7}$	${ }^{7.9}$	${ }_{278}^{294}$			168 147 1	8	${ }_{3}^{4}$	33 33	4	19 15	6	134 126	${ }^{28}$	$\stackrel{0.11}{0.11}$	${ }_{0}^{0.6}$		${ }^{20}$	17	110						0.01								DNRW DNRW
Utopia	231091994	1420		16.2	7.8	294			155	${ }^{3}$		${ }^{34}$	4	16	7	134	26	0.12			27	20							0.02								DNRW
Utopia	$30111 / 1994$ 111011995	${ }_{1220}^{920}$		24.3 27.4	${ }_{7}^{7.79}$	${ }^{312}$			170 110	19 400	9.8 100	31 18 18	${ }_{5}^{4}$	20 12	9	150 76	22 14 14	0.14 0.2	${ }_{2}$		73 260 20	150	149 1434			$\stackrel{0}{100}$			0								DNRW DNRW
Utopia	1010211995	919		25.1	7.18	95	6.21		65	1220	200	,	4	7	2	42	7	0.11	1.29		487	30	1131			0			0								DNRW
Utopia	90311995	1539			7.58	185			114	124	200	18	4	13	4	85	17	0.1	1.8		191	49	414			0			0.01								DNRW

Water Quality Data Summary

BOLD MTV-
MTV- - minimum trigaer value
Sample
RHR R Rver Heath Report
DNR

Table A2
Upper Dawson Catchment - URS Surat Water Analytical Results

Location	Sample ID	$\begin{gathered} \text { Date } \\ \text { Sampled } \end{gathered}$	Analyte	Physico-Chemical Parameters				Metals (Total)									Nutrients				Major lons										Alkalinity			
			$\begin{gathered} \text { Sample } \\ \text { Type } \end{gathered}$	$\begin{gathered} \text { Biochemical } \\ \text { Oxygen } \\ \text { Demand } \end{gathered}$	$\left\|\begin{array}{c}\text { Chemical } \\ \text { Oxxyen } \\ \text { Demand }\end{array}\right\|$	$\begin{aligned} & \text { otatal } \begin{array}{c} \text { Togan } \\ \text { Caroron } \end{array} \end{aligned}$	Suspended Solids (SS)	Arsenic	Bron	cadmur	Chromium	Copper	Iron	Lead	Nickel	Zinc	($\begin{gathered}\text { Nitrate and } \\ \text { Nitite } \\ \text { as }\end{gathered}$	$\begin{array}{c\|c} \hline \text { Total } \\ \text { His } & \text { Kitlatal } \\ \text { Nitrogen as } \\ \mathrm{N} \end{array}$	$\begin{array}{\|c} \text { Total } \\ \text { Phosphorus } \\ \text { as } \mathrm{P} \end{array}$	s	Cal	Chloride	Fluoride	Magnesium	Potassium	Sodium	Suphate	($\begin{gathered}\text { Total } \\ \text { Arions }\end{gathered}$	${ }_{\substack{\text { Total } \\ \text { cations }}}$	(lanic	$\begin{array}{\|c} \text { Hydroxide } \\ \text { Alkainity as } \\ \mathrm{CaCOO}^{2} \end{array}$	$\begin{gathered} \text { Carbonate } \\ \text { Alkafintys } \\ \text { Caco3 } \end{gathered}$		$\begin{array}{\|l\|l\|} \hline \text { ATotal } \\ \begin{array}{c} \text { Akinity } \\ \text { cais } \\ \mathrm{CaCO}_{3} \end{array} \end{array}$
			Units	mgl	mgl	mg/	mgl	mgl	mg/	mg/	mg/	mgl	mgl	mgl	mg/	mg/	mgl	mg/	mgl	mgl	mg/	mg L	mg/	mg/	mg/	mg/	mg L	meq/	meal	\%	mg/	mg/	mg/	mgl
			Lor	2	5	1	1	0.001	0.1	0.0001	0.001	0.001	0.05	0.001	0.001	0.005	0.01	0.1	0.01	0.1	1		0.1	,		1		0.01	0.01	0.01	1	1		
			MTV	na	${ }^{\text {na }}$	${ }^{\text {na }}$	10	0.0240 .013	0.37	${ }^{0.0002}$	0.05	0.0014	0.2	0.0034	0.011	${ }^{0.008}$	${ }^{\text {na }}$	${ }^{\text {na }}$	0.05	${ }_{0} 0.5$	1000	175	0.1	na	${ }^{\text {na }}$	${ }^{115}$	400	174	${ }^{\text {na }}$	${ }^{\text {na }}$	4	$\stackrel{\text { na }}{\text { c }}$	${ }^{\text {na }}$	${ }^{\text {na }}$
D002 0002	${ }_{\text {D002 } 0550308}$	5032008 50302008	${ }^{\text {PS }}$		${ }^{31}$	8	152 146	0.002	<0.1	0.0002	0.004	0.005		0.004	0.004	0.016	0.141	1	0.2	1.1	${ }^{12}$	8	${ }^{0.1}$	4	6	${ }^{20}$	2	1.74	1.9		$\stackrel{ }{ }{ }^{1}$	$\stackrel{4}{ }$	${ }^{73}$	${ }^{73}$
D002		${ }^{5 / 332008} 130512088$	${ }_{\text {PS }}^{\text {P }}$	<	1	.	${ }^{146}$	<0.001	80.05	<0.0001	<0.001	<0.001	0.67	<0.001	<0.001	<0.005	<0.01	0.4	0.02	0.4	12 19	25	0.1	4	${ }^{5}$	22	$\stackrel{2}{31}$	2.93	2.97	-			-	
D004	D004-0503038	50322008	Ps	-	${ }^{47}$	10	152	0.002	<0.1	0.0001	0.006	0.008		0.007	0.008	0.031	0.174	0.9	0.19	1.1	18	16	${ }^{0.1}$	5	6	${ }^{28}$	2	2.54	2.68	.	${ }^{1}$	<1	102	102
${ }^{0} 004$	D004_05030308CHK	${ }^{50332008}$	${ }^{\text {LD }}$			${ }^{10}$																												
D004	QC02_051308	50322008	FD		49	<1	290	0.003	<0.1	0.0018	0.009	0.008		0.007	0.008	0.04	0.149	1.4	0.19	1.6	16	15	0.1	4	5	${ }^{28}$	2	2.51	2.52				102	102
D004	D0041305008	130522008	Ps	49	2	-	8	<0.001	0.05	20.0001	<0.001	<0.001	0.4	<0.001	80.001	<0.005	<0.01	0.1	0.03	0.1	27	${ }^{35}$	<0.1	9	4		${ }^{43}$	3.94	4.02	1.05	-	-		
D004	D004_13050088CHK	130522008	LD	-	2	-							-				0.012				28	-	-	-	4		49			-	-	-	-	
D005	D005 0500308	50322008	PS		${ }^{44}$	<1	270	0.002	0.1	0.0007	0.003	0.009		0.005	0.005	0.028	0.28	0.8	0.21	1.1	16	9	0.1	3	6	${ }^{20}$	2	1.93	2.05		<1	<1	${ }^{82}$	${ }^{82}$
D005	D005 1310508	130522008	Ps	<5	7		5	<0.001	0.08	<0.000	<0.001	<0.001	0.23	<0.001	0.001	${ }^{2} 0.005$	<0.01	0.8	0.05	0.8	35	19	0.2	6	6		${ }^{33}$	3.69	${ }^{3.83}$	1.82				
D007	D007_050308	50322008	PS		54	<1	74	0.002	<0.1	<0.0001	0.003	0.007		0.003	0.004	0.02	<0.01	1.8	0.56	1.8	${ }^{13}$	-	0.1	2	9	${ }^{20}$	2	1.84	1.95		${ }^{1}$	<1	78	${ }^{78}$
D007	D007_1305508	${ }^{1305512008}$	Ps	${ }^{28}$	9	-	119	0.002	0.05	<0.000	0.002	0.002	2.91	0.001	0.002	<0.005	0.012	1.2	0.22	1.2	24	14	0.4	5	9		25	2.88	2.92			-		
D007	D007_13050508CHK	130512008	LD	-	-	-													0.2			14	0.3	\cdot	-					.	.	-		
0009	D0090500308	50322008	Ps		49	<1	214	0.004	<0.1	0.0002	0.005	0.01		0.006	0.007	0.034	0.353	1.7	0.42	2.1	${ }^{12}$	6	0.1	2	8	${ }^{23}$	${ }^{3}$	1.89	2		<1	<1	${ }^{83}$	${ }^{83}$
D009	D009_1300508	130522008	Ps	16	7		122	0.002	0.05	<0.000	0.005	0.007	9.62	0.005	0.006	0.025	0.177	1.4	0.37	1.6	17	9	0.2	4	7		26	2.23	2.41					
D009	D009 - 13050508CHK	130522008	LD	14																														
0010	D010_050308	50322008	Ps	-	${ }^{42}$	<1	260	0.002	<0.1	0.0002	0.005	0.007		0.006	0.005	0.025	0.182	${ }^{1.3}$	0.17	1.5	${ }^{13}$	16	0.2	3	6	${ }^{35}$	2	${ }^{2.53}$	2.63	-	${ }^{<1}$	${ }^{<1}$	102	102
0010	D0100005030308CHK	5032008 13052088	${ }_{\text {LD }}^{\text {L }}$		${ }^{42}$																	15 39	0.2								<1	<1	102	
D010	D010130508	${ }^{1310520088}$	${ }_{\text {Ps }}$	<5	${ }^{3}$	<1	${ }^{6}$	$\stackrel{<0.001}{0.002}$	0.05 00.1 0	<0.0001	$\stackrel{<0.001}{<0.001}$	${ }^{<0.001}$	0.28	${ }_{0}^{<0.001}$	${ }^{<0.001}$	<0.005 <0.005	${ }_{0}^{20.01}$	${ }_{0}^{0.3}$	${ }_{0}^{<0.01}$	$\stackrel{0.3}{1}$	${ }^{28}$	${ }^{39}$	0.2 0.1	10	${ }_{8}^{5}$	17	${ }^{49}$	4.34 1.74	${ }^{4.45}$	1.18	<1	<1	${ }^{84}$	${ }^{84}$
D011	D011-130508	13052008	PS	8	7	.	${ }^{21}$	0.001	0.05	0.0005	<0.001	0.003	0.81	-0.001	0.001	-0.005	<0.01	0.7	0.09	0.7	${ }^{21}$	<1	0.1	4	7		16	2.02	2.22					
0012	D012140508	140512008	Ps	45	10	-	13	<0.001	<0.05	0.0001	<0.001	0.003	0.21	<0.001	0.002	<0.005	<0.01	0.9	0.07	0.9	26	12	0.2	7	8		${ }^{26}$	3.09	${ }^{3.2}$	1.69	-	-	-	
D012	D012 141050508CK	140522008															<0.01				25		0.1	7	7		25							

notes
MTV- minimum trigge ralue
BoLD
greater than MTV
PS - Primary Sample
FD - Field Dupiciate Sample

REPORT
 GLNG CSG Surface Water -
 Aquatic Weeds

Table of Contents

1 Introduction 1
2 Background 2
2.1 Available Literature on Weeds and Associated Water 2
2.2 State and National Weed Classification 3
3 Information Sources 4
4 Results 5
4.1 Historical and Current Aquatic Weed Distribution 5
4.2 Potential Distribution 6
4.3 Dispersal Mechanisms and Habitat Preferences 7
5 Discussion 11
6 Limitations 12
7 References 13
Appendices
Appendix A Aquatic Weeds Distributions

Project Manager:

$\begin{array}{ll}\text { Date: } & 21 \text { January } 2009 \\ \text { Reference: } & \text { Appendix G - Aquatic Weeds } \\ \text { Status: } & \text { Final }\end{array}$
Status: Final

Santos Ltd (Santos) is undertaking an expansion of its coal seam gas (CSG) operations in Queensland with a view to exporting extracted methane to international markets. The Gladstone Liquid Natural Gas (GLNG) project involves the expansion of gas fields across the northern Condamine-Balonne, Upper Dawson River and CometBrown River catchments. Extracted gas will then be piped to an export facility to be developed on Curtis Island, Gladstone.

A by-product from CSG operations is extracted groundwater, termed associated water. Santos is considering a range of options for the management of associated water, one of which includes discharge to local water bodies (discharge to grade). Santos engaged URS Australia Pty Ltd (URS) to undertake a detailed study into the potential adverse affects on aquatic ecosystems should this management option be utilized.

One of the areas of concern highlighted at an inter-departmental risk assessment workshop is the potential for aquatic weed infestation due to the introduction of associated water to previously ephemeral streamlines.

This report provides a review of existing and potential aquatic weeds in the Maranoa-Balonne catchment, upper Dawson River catchment, and Comet River catchment. A qualitative assessment of the risk of increased weed infestation due to the discharge of associated water is made.

2.1 Available Literature on Weeds and Associated Water

Bergquist et al. (2007) recently reported an investigation of non-native species richness in CSG fields compared with control sites and found increased richness associated with combined primary disturbances (including the development of well pads, roads, pipelines, dams and discharges) and combined "secondary disturbances" (i.e. subplots established adjacent to primary disturbance sites). Statistical comparisons are made between control sites and discharge areas that indicate non-native species richness is higher in the latter. However, it is probable that this is an incorrect conclusion since control sites include areas which are not drainage lines and which are shown to have significantly different native and non-native species richness and soil chemistry.

Nevertheless, Stearns et al. (2005) using data from the same experimental arrangement as Bergquist et al. (2007) did compare the vegetation in one control gully with vegetation in another gully subject to associated water discharge. They found that there was a significant difference in both native species richness (lower) and non-native species richness (higher) compared with the control. No significant differences were found between salt tolerant species between the gullies suggesting that primary reasons for the observed difference in species richness might be disturbance associated with CSG production or the application of water. Although Stearns et al. (2005) suggest their results are not conclusive, there is certainly some evidence that vegetation in gullies subjected to associated water are prone to non-native vegetation invasion.

As water is a limiting resource in vegetation population establishment, the addition of water into formerly dry streams has been noted to have the potential to alter species composition and cover, and to maintain source populations for exotic species (Bergquist et al., 2006).

Both of the above studies were completed in the Powder River Basin, Wyoming USA. The watercourses studied are largely ephemeral and land uses are similar to the GLNG project catchments in central QLD. Limited data suggests that the streams are possibly less incised and shallower than streams in Queensland.

Disturbed sites in the Powder River Basin study also demonstrated significantly greater soil salinity than control sites. These differences in soil salinity could result in changes in vegetation composition and an increase in nonnative plants. Recent studies of streamlines receiving associated water discharge at Fairview (URS unpub, 2008) revealed similar differences in soil salinity and sodium concentrations upstream and downstream of associated water discharge points. However, concentrations of other major cations including calcium, magnesium, and potassium found at Fairview, both at control and receiving sites, are substantially lower than found in Wyoming.

Repeated application of sodic associated water for irrigation has been found to lead to the accumulation of sodium and salt in the soil profile and lead to degradation in the soil structure particularly for fine grain soils (Ganjegunte et al., 2005 and 2008). The effects of degradation include increased surface crusting, reduced infiltration and reduced hydraulic conductivity (Park and O'Conner, 1980 cited in Ganjegunte et al., 2005).

Theoretically, the discharge of associated waters with high sodium absorption ratio (SAR) could potentially impact the integrity of surface soils in the beds and banks of stream. However, the effects of leaching during floods could be a mitigating factor.

If localised areas of increased salinity and soil SAR are created then reduced permeability and increased pH may result in long-term affects on vegetation, including the death of riparian vegetation (State of Montana, 2002). This could potentially create additional habitat for the establishment of hardier weed species, though this is likely to apply only to terrestrial species.

The available literature tends to focus on the spread of noxious species associated with field and pipeline construction activities, rather than through discharge of associated water to grade. Long distance transport of weeds via drilling equipment and vehicles, soil disturbance due to bore, pipeline and road construction, and the creation of preferential distribution pathways through roads and pipelines are all mechanisms of concern.

2.2 State and National Weed Classification

Under the Land Protection (Pest and Stock Route Management) Act 2002 there are three classes of declared plants:

- Class 1: "not commonly present or established in the State; and has the potential to cause an adverse economic, environmental or social impact in the State..."; and
- Class 2 or 3: "is established in the State; and is causing, or has the potential to cause, an adverse economic, environmental or social impact in the State...".

Class 2 and 3 pests are differentiated based on the significants of the impact or potential impact, the area affected or likely to be affected, and the likely or extant spread of the plant.

Landholders are required by law to keep their land free of Class 1 pests, are required to try and keep land free of Class 2 pests.

Weeds may also be classified as Weeds of National Significance (WONS) under the National Weeds Strategy ${ }^{1}$,(NWS). The NWS was endorsed in 1998 by Australian governments to provide a strategic approach to weed management including the prevention of new problems, reduction in existing impacts, and provision of a framework and capacity for ongoing management within Australia.

Twenty WONs were identified through an evaluation process considering invasiveness, impacts, potential for spread and socio-economic and environmental values ${ }^{2}$.

[^26]
Section 3

To ascertain the current and potential distribution of aquatic weeds across the catchments encompassing the GLNG field development, a web-based search of key Australian weed databases was undertaken:

- Weeds Australia (http://www.weeds.org.au/). Provides information and distribution (potential and current) maps of aquatic weed species by NRM region.
- Department of Primary Industries and Fisheries (DPIF):
- Annual pest distribution maps
(http://www.dpi.qld.gov.au/cps/rde/dpi/hs.xsl/4790 9824 ENA HTML.htm). DPIF produces grid-based annual distribution maps for known pest species. Predictive maps are also generated from modelling programs indicating where weeds are likely to occur, based on preferred climatic conditions. Annual surveys were carried out, with data report from 2003- to 2007. A grid framework is utilised and the distribution and density of each weed is rated by survey participants (local government, DPI\&F officers and others with local knowledge). Class 1 and 2 pests are rated on a $16.67 \mathrm{~km}^{2}$ grid, and Class 3 pests on a 50 km 2 grid. Species are assessed based on the occurrence (presence/absence/unknown), distribution (localised/widespread) and density (occasional/common/abundant).
- Predictive weed maps (http://www.dpi.qld.gov.au/cps/rde/dpi/hs.xsl/4790 9838 ENA HTML.htm): Predictive models have been developed using CLIMEX and CLIMATE programs to estimate potential weed distributions across Queensland. Global climate data sets are used which include distribution in the country of origin as well as any naturalised distribution. The models do not include soil preferences or other ecological parameters.
- Department of the Environment, Water, Heritage and the Arts, Weeds of National Significance, (http://www.weeds.gov.au/index.html). Provides information on weeds classified as Weeds of National Significance (WONS).

The following organisations were then contacted to confirm which, if any, aquatic weeds were known to have established in the region:

- Central Highlands Regional Council: Susan Walters, Rural Lands Officer, Springsure,
- DPIF Biosecurity: Graham Hardwick, Principal Land Protection Officer, Invasive Plants and Animals; and Duncan Swan, Senior Land Projection Officer

The findings from reviews and discussions are discussed in Section 4.1.

4.1 Historical and Current Aquatic Weed Distribution

Five aquatic weeds and one terrestrial weed (with a preference for floodplain and riparian environments) were found to have previously been identified in one or more areas either in, or in the vicinity of the GLNG field development. These include one Class 1 (Alligator Weed), four Class 2 (Hymenachne, Salvinia, Water Lettuce and Water Hyacinth), and one undeclared (Lippia) species.

It should be noted that the predicted associated water volumes for discharge are insignificant compared with natural flood events, and the addition of associated water to streams is unlikely to impact on the flood plain environment. Therefore it is unlikely that dispersal of terrestrial weeds such as Parthenium, which is transported by floodwaters but does not establish in the riparian environment, will be increased.

Consultation with the abovementioned authorities indicated the following:

- Although not an aquatic weed, Lippia (Phyla canescens) is known to exist in the Condamine-Balonne region and is prevalent in flood plain environments.
- Hymenachne amplexicaulis has been recorded in the Comet-Brown River catchment in tributaries draining into the lower Dawson River.
- There are no known aquatic weed species recorded to date in the Upper Dawson.
- In the Condamine catchment the following aquatic weeds have been recorded: Hymenachne (Hymenachne amplexicaulis) at Thallon and Chinchilla, Salvinia (Salvinia spp.) at Miles, Water Hyacinth (Eichhornia crassipes) at Meandarra, and Water Lettuce (Pistia stratiotes) Dumaresq River (Texas, Border Rivers catchment).

Review of the DPIF distribution maps supports the above. In addition the following should be noted:

- The most prevalent weed in the region, Lippia, is not classified as an aquatic weed. However, it has been detected extensively across the Condamine-Balonne, Upper Dawson and Comet-Brown catchments. It is well adapted to floodplain and riparian environments with heavy clay soils, and can be dispersed by floodwater.
- There appear to be limited detections of aquatic weeds in the Upper Dawson catchment.
- Outbreaks in the Comet River catchment have generally been in the vicinity of Emerald and to the east of the catchment (Lippia, Salvinia), with the exception of the presence of Hymenache in southern Arcadia.
- Salvinia and Water Hyacinth outbreaks have occurred at locations more than 100 km east and south east of Roma.
- Alligator Weed was detected in the vicinity and to the south of Roma in 2005, but has not been detected since.

A search of the Weeds Australia Database for Water Plants by NRM region returned 20 species for MaranoaBalonne and 21 species for Fitzroy. However, with the exception of Water Lettuce, none of these weeds are listed as having current distribution in the GLNG field area. Some are shown as potential distribution (nine species), but actual distributions were geographically far removed. For the remainder of these weeds, the current and potential distribution areas fall well outside the areas of concern for the GLNG field. The maps generated in this database are very coarse, covering the whole of Australia. It is therefore considered appropriate to focus on the more detailed information provided by DPIF.Table 4-1 provides a summary of

Section 4

Results

potential and existing aquatic weeds across the GLNG field area. The distribution of each species from 20062007, based on DPI mapping, is presented in Appendix A.

Table 4-1 Aquatic Weed Mapping and Distribution

Common Name	Scientific Name	Distribution ${ }^{1}$			Years Mapped
		Roma	Upper Dawson	Comet	
Alligator Weed	Alternanthera philoxeroides	Occasional/Localised occurrences detected in Roma and to the south in 2005. Not detected since	Not detected	Not detected	$\begin{aligned} & 2003 \text { to } \\ & 2007 \end{aligned}$
Hymenachne	Hymenachne amplexicaulis	Not detected	Not detected	Occasional/Localised, Emerald, southern Arcadia 2005-2007. Outbreaks recorded at Thallon and Chinchilla (east of Comet catchment)	$\begin{aligned} & 2003 \text { to } \\ & 2007 \end{aligned}$
Lippia	Phyla canescens	Occasional/Localised across much of Condamine-Balone catchment around Roma in 2007. Well established in Condamine, Border Rivers, Maranoa-Balonne and Warrego-Paroo catchments	Occasional/Localised around much of Upper Dawson catchment in 2007	Occasional/Localised around Emerald to the east in 2007	2007
Salvinia	Salvinia species	Common localised, detected at Miles (approx. 140km due east of Roma) 2005-2007	Not detected	Occasional/Localised due east and north east of Comet catchment 2003-2007	$\begin{aligned} & 2003 \text { to } \\ & 2007 \end{aligned}$
Water Lettuce	Pistia stratiotes	Occasional/Localised due east of Roma. Outbreak to the south of Roma at NSW border.	Not detected	Occasional/localised in 2006 approx. 100km to the east of the Comet River	$\begin{aligned} & 2003 \text { to } \\ & 2006 \end{aligned}$
Water Hyacinth	Eichhornia crassipes	Detected at Meandarra (approximately 140 km south east of Roma), Occasional/Localised detected in Roma and to the south 2003-2006	Not detected	Not detected	$\begin{aligned} & 2003 \text { to } \\ & 2006 \end{aligned}$

NOTES

${ }^{1}$ From DPI distribution maps 2003-2007. Refers to Density/Distribution
${ }^{2}$ Weed of National Significance

4.2 Potential Distribution

As discussed in Section 3, DPIF produces predictive distribution maps for declared weed species. Models are used to predict the suitability of differing climates across Queensland for growth of each species (CLIMEX model). Climate suitability ranges from Unsuitable, Marginal, Suitable to Highly Suitable. Predictive maps have been generated for a limited number of aquatic weed species in the GLNG project area:

- Alligator Weed - Marginal for all, area of Suitable to west of Arcadia and upper Dawson River
- Water Lettuce - Suitable around Roma, becoming Highly Suitable extending to the north of Emerald
- Salvinia - Unsuitable around Roma, ranging from Marginal to Highly Suitable around Comet.
- Water Hyacinth - predominantly Suitable, ranging to Highly Suitable extending to far north of Comet
- Cabomba - Highly Suitable for whole region. However, it should be noted that Cabomba has only been detected in coastal regions of QLD and not in the vicinity of the field area.
- Water Milfoil (Myriophyllum spciatum)- high-very high suitability climate match, however has not been detected in the vicinity of the field area.

4.3 Dispersal Mechanisms and Habitat Preferences

Details of characteristics, dispersal mechanisms and habitat preferences for each species are presented in Table 4-2. Generally each species disperses downstream via flood events, and across catchments through human activities, bird and animal movement.

The primary potential impacts of discharging associated water to grade are associated with increased salinity, temperature, and pH , and increased or changed flow regimes. When considering the tolerance to these parameters of each identified aquatic weed species the following is noted:

- Alligator Weed and Salvinia are salinity tolerant.
- All species are able to survive in, or adjacent to continuously flowing water.

No information was available regarding pH tolerances.

Section 4

Results
Table 4-2 Aquatic Weed Characteristics

Common Name	Scientific Name	Description	Characteristics \& Impacts	Reproduction and Dispersal	Habitat preferences	QLD Declaration	WON ${ }^{2}$
Alligator Weed	Alternanthera philoxeroides	South American perennial plant. Hollow stems, dark green leaves arranged on opposite pairs along stem with distinct midrib, no leaf stalk, white paper-like ballshaped flowers carried on short stalks.	Restricts water flow, damages irrigation equipment, increases water loss, reduces water quality, creates favourable habitat for mosquitoes, hinders recreational activities, replaces native plans, causes death of native submerged water plants and fish.	Flowers midsummer to March, but viable seed not recorded in Australia. Spreads through vegetative reproduction. Movement between river catchments most commonly due to human activities and animals. Regrowth occurs quickly from stems or underground rhizomes. Spread downstream when fragmented (by floods, or mechanical/chemical control).	Can tolerate 10\% sea-strength salinity or up to 30% salinity in flowing brackish water, optimal growth in fresh water with high nutrient level. Temperature affects growth, with peak growth occurring in summer. Can establish on land and survive extremely dry periods. Stems lose leaves in winter, severe frost kills stems but regrowth occurs quickly	Class 1	Yes
Hymenachn e	Hymenachne amplexicaulis	Robust rhizomatous perennial grass, up to 2.5 m high. Erect and pithy stems, leaf blades $10-45 \mathrm{~cm}$ long and 3 cm wide. Spike-like cylindrical flower heads $20-40 \mathrm{~cm}$ long.	Originally from South/Central America. Released in Queensland in 1988 as ponded pasture for cattle. Infestations can affect drains, lagoons, wetlands, creeks and rivers, interfere with irrigation, infrastructure and aquatic habitats. Can increase flooding by reducing capacity of drainage channels, physical barrier for aquatic/semi-aquatic species	Seed dispersal by water movement (flooding), mud attached to animals and migratory aquatic birds. Seeds require contact with moist-water-logged soil for 48 hours before germination can take place. Seed also survives in water and germinates when water levels recede during the dry season. In QLD generally flowers between April and June, triggered when day length decreases to less than 12 hours. Hymenachne reproduces from both seed and broken stem fragments. It produces large numbers of viable seeds, germinates easily (graziers have reported good germination by throwing seeds into ponds). Can spread easily with stem fragments (minimum two nodes) planted in mud/shallow water.	Thrives best on clay soils that are inundated during the wet season rains but dry out to some extent in the dry season (subsoil must remain moist). Can only withstand short periods of drought. Can withstand up to 40 weeks flooding by growing above floodwaters. Flourishes in sediment and nutrient-rich water, does not tolerate brackish water or shade. Found mainly in low-lying areas along the edges of permanent water.	Class 2	Yes
Lippia	Phyla canescens	Summer-growing broadleaf perennial herb with thick, woody taproot which enables it to establish and persist in	Serious environmental and pastoral weed in Murray-Darling river system, poses serious threat to protected wetland areas,	Grows vegetatively, spread by floodwater, seed dispersal, vehicle, birds/livestock. Spread appears to be related to flood events. Also capable of	Well adapted to floodplain environments, prefers heavy clay soils.	Not declared	No

Results
Section 4

Common Name	Scientific Name	Description	Characteristics \& Impacts	Reproduction and Dispersal	Habitat preferences	QLD Declaration	WON ${ }^{2}$
		poorly structures soils common to the riparian areas and floodplains of the MDB. Leaves occur in pairs at stem nodes, $1-3 \mathrm{~cm}$ long, blunt serrated edge towards tip tapering to short stem, greyish green stems and leaves; white, cream, pinkish or pale lilac small tubular flowers, founded $1-1.5 \mathrm{~mm}$ fruits	dense carpet-like spread prevents growth of other riparian vegetation resulting in soil erosion that decreases bank stability and degrades overall waterway health, aggressive weed which outcompetes pasture	spreading on high grounds and in areas not affected by floodwaters. Drought and frost tolerant. Can survive long periods of inundation. Readily establishes on bare ground.			
Salvinia	Salvinia species	Free-floating, mat-forming perennial, small spongy paired green leaves, leaf surfaces covered with long, stiff water-repellent hairs, as plant matures leaves thicken and fold mid-rib, young leaves oval, about 12 mm across and lie flat on water, roots trail from each pair of young leaves.	Found in isolated water bodies from North QLD to NSW border, west to Mt Isa. Often survives for a short time after being stranded by receding waters. Can completely cover wetlands and lakes, excluding fish and invertebrates but haven for mosquitoes. Collects debris during flooding, increases water loss, degrades water quality, recreational impacts, damages irrigation equipment.	Native to south-eastern Brazil, first reported in Australia near Sydney in 1952 and in QLD from 1953. Does not produce fertile spores, believed to be sterile hybrid. Reproduces by fragmentation, little growth in winter. Under optimal conditions can double in volume in 2-3 days. Dispersed in floodwaters and through human activities (including boats). It has been intentionally spread throughout the world as an ornamental pond/aquarium plant.	Nutrient rich, slow moving streams or still ponds, high temperatures $\left(20-30^{\circ} \mathrm{C}\right.$, can survive up to $43^{\circ} \mathrm{C}$), can survive being frozen but little growth in winter. In nutrient rich water with optimal temperature capable of doubling in area in <5days. Can survive salinities up to one tenth sea water (approx 3.5 ppt).	Class 2	Yes
Water Lettuce	Pistia stratiotes	Free-floating aquatic weed. Spongy perennial, fan-shaped leaves covered with hairs. Fibrous roots up to 80 cm long, small green flowers.	Forms dense mats covering rivers and dams. Restricts water flow and increases loss, interferes with irrigation/stock watering, can damage wildlife habitat, promote mosquito breeding. Impacts swimming, recreation and fishing.	Originally from Asia, now naturalised in NT. Spread by vegetative reproduction and seeds.	Prefers stationary/slow-moving streams, frost sensitive, can tolerate polluted water. Can survive long periods in damp situations.	Class 2	
Water Hyacinth	Eichhornia crassipes	Floating waterweed with a fibrous root system. Round, dark green leaves up to 5 cm diameter. Spongy bulbous	Forms dense mats that causes waterway obstruction, depleted oxygen, habitat destruction, increased water loss, harbours	Grows from seed and through vegetative reproduction. Seeds, dispersed by water, may germinate within days or may remain dormant for	Prefers fresh, static or slow-flowing nutrient rich water. Tolerates annual temperature of approx. 21 to $27^{\circ} \mathrm{C}$, estimated pH of 5.0 to 7.5 . Leaves	Class 2	No

Prepared for Santos Ltd, 21 January 2009
J:IJOBSI43270896IReport|Final Report\Appendix G - Review of Aquatic Weeds\Appendix G - Aquatic Weeds.doc

GLNG CSG SURFACE WATER - AQUATIC WEEDS

Section 4		Results					
Common Name	Scientific Name	Description	Characteristics \& Impacts	Reproduction and Dispersal	Habitat preferences	QLD Declaration	WON ${ }^{2}$
		leaf stalks, light purple flowers with darker blue/purple and yellow centre.	mosquitoes, health and safety risk, interference with irrigation/stock watering, damage to structures. Biological control has been effective in some regions, particularly in tropical areas. Particularly important it is prevented from entering MurrayDarling Basin (MDB).	up to 15 or more years. Mainly increases in density by daughter plants produced on stolons. Flowering during summer. Stolons can be broken off and drift in water or by wind movement to form new colonies. Infestations can break up into 'rafts' that drift with winds and currents. Seeds/stolons also dispersed by birds, in mud/sediments, boats and discarded pond refuse.	are killed by frost, and plants cannot tolerate water temperatures $>34^{\circ} \mathrm{C}$.		

[^27]
Discussion

A prima facie case for increased weed distribution due to 1) CSG development disturbance of land, and 2) the discharge of water into dry environments has been made overseas.

There is limited information available regarding the distribution of aquatic weeds across the GLNG project field area. Nevertheless, it appears that there are few weed species observed at present.

- Aquatic weeds are not known to be currently established in the Upper Dawson Catchment.
- Aquatic weed species are more prevalent in the Comet River and Upper Balonne River catchments but are generally located away from the proposed field development areas.
- An exception is the terrestrial weed, Lippia, which is found across all catchments and can establish in riparian environments.

A wide variety of dispersal mechanisms are currently available. This suggests the introduction of associated water discharge to streamlines is unlikely to be the primary mechanism facilitating distribution of aquatic weeds. Increased vehicle and machinery movement associated with the construction of the gas field and pipeline is more likely to increase dispersal opportunities but these activities are carefully managed to avoid weed spread.

Flowing water is a primary mechanism of dispersal but normally associated with the large natural seasonal floods in the region. Since associated water volumes are insignificant compared with these natural events it appears unlikely that discharge of associated water will increase the likelihood of dispersal of aquatic weeds, or of terrestrial weeds that establish in the flood plain environment. It is important that any discharges do not significantly alter the frequency of flooding, and are kept at a level that avoids erosion in channel.

The introduction of water to previously ephemeral streams may create a favourable habitat for the establishment of aquatic weed species and provide opportunities for changes in species composition. However, the chemistry of associated water is likely to preclude significant weed or native plant growth if untreated.

It is also apparent that there is limited macrophyte growth instream at the present time despite high temperatures and nutrient concentrations. It is likely that the natural turbidity of waters in the area acts to limit the growth of instream vegetation by reducing light availability and trapping nutrients on clay particles.

The current limited distribution of weed species is the most important barrier to infestation in the region. Together with the low light environment instream, it appears unlikely that weed infestations will be significantly altered by associated water discharges.

Section 6

Limitations

URS Australia Pty Ltd (URS) has prepared this report in accordance with the usual care and thoroughness of the consulting profession for the use of Santos Ltd and only those third parties who have been authorised in writing by URS to rely on the report. It is based on generally accepted practices and standards at the time it was prepared. No other warranty, expressed or implied, is made as to the professional advice included in this report. It is prepared in accordance with the scope of work and for the purpose outlined in the Proposal dated 12 October 2007.

The methodology adopted and sources of information used by URS are outlined in this report. URS has made no independent verification of this information beyond the agreed scope of works and URS assumes no responsibility for any inaccuracies or omissions. No indications were found during our investigations that information contained in this report as provided to URS was false.

This report was prepared between October 2007 and January 2009 and is based on the conditions encountered and information reviewed at the time of preparation. URS disclaims responsibility for any changes that may have occurred after this time.

This report should be read in full. No responsibility is accepted for use of any part of this report in any other context or for any other purpose or by third parties. This report does not purport to give legal advice. Legal advice can only be given by qualified legal practitioners.

The State of Queensland (Department of Primary Industries and Fisheries), Weeds, http://www.dpi.qld.gov.au/cps/rde/dpi/hs.xsl/4790 8331 ENA HTML.htm, viewed 22 August 2008

Australian Weeds Committee, Weeds Australia, http://www.weeds.org.au/, viewed 22 August 2008
Department of Environment, Water, Heritage and the Arts, Weeds in Australia, 23 June 2008, viewed 22 August 2008

Department of Primary Industries (DPI) (28 May 2008) Annual pest distribution maps (http://www.dpi.qld.gov.au/cps/rde/dpi/hs.xsl/4790 9824 ENA HTML.htm)

Department of the Environment, Heritage and the Arts (15 Sep 2008), Weeds in Australia, http://www.weeds.gov.au/index.html, viewed 19 Sep 2008.

Duke, James, A. (1983) Handbook of Energy Crops. Unpub. Eichornia crassipes (Mart.) Solms Pontederiaceae Waterhyacinth, (http://www.hort.purdue.edu/newcrop/duke energy/Eichornia crassipes.html viewed 1 October 08

Bergquist, E., Evangelista, P., Stohlgren, T.J., Alley, N., (2007), Invasive species and coal bed methane development in the Powder River Basin, Wyoming, Environmental Monitoring and Assessment, Springer Netherlands, Vol 128:381-394

Ganjegunte GK, Vance GF and King LA (2005). Soil Chemical Changes Resulting from Irrigation with Water CoProduced with Coalbed Natural Gas, J. Environ. Qual. 34:2217-2227

Ganjegunte GK, King LA and Vance GF (2008). Cumulative Soil Chemistry Changes from Land Application of Saline-Sodic Waters, J. Environ. Qual. 37:S-128-S-138
U.S Department of the Interior \& State of Montana, (December 23, 2002) Final Statewide Oil \& Gas Environmental Impact Statement and Proposed Amendment of the Powder River and Billings and Resource Management Plans, http://www.deq.state.mt.us/CoalBedMethane/FinalEIS/Volume\ I/01\ Front-Matter.pdf
\qquad

ALLIGATOR WEED

(Alternanthera philoxeroides)

QUEENSLAND DISTRIBUTION 2007

SALVINIA

(Salvinia molesta)
QUEENSLAND DISTRIBUTION 2007

LIPPIA

(Phyla canescens)
QUEENSLAND DISTRIBUTION 2007

WATER HYACINTH DISTRIBUTION 2006
 QUEENSLAND

WATER LETTUCE DISTRIBUTION 2006 QUEENSLAND

HYMENACHNE

(Hymennache amplexicaulis)

QUEENSLAND DISTRIBUTION 2007

REPORT

Potential for Erosion Arising from GLNG Associated Water Discharges

Project Manager:

Date:	21 January 2009
Reference:	43270896
Status:	FINAL

POTENTIAL FOR EROSION ARISING FROM GLNG ASSOCIATED

Table of Contents

1 Introduction 1
1.1 Aim 1
1.2 Approach 1
2 Results 2
2.1 Upper Dawson River Catchment 2
2.1.1 Case 1 - Discharge to Hutton Creek. 2
2.1.2 Case 2 - Discharge to Dawson River. 2
2.2 Roma-Condamine River Catchment. 3
2.2.1 Case 1 - Concentrated Discharge to Bungil Creek 3
2.2.2 Case 2 - Distributed Discharge to Three Streams 3
2.3 Comet River Catchment 5
3 Discussion and Conclusion 6
4 Limitations 7

Tables \& Figures

Tables

Table 3-1 Estimated Velocities and Depths 6
Table 3-2 Estimated velocities and depths under flood conditions 6
Figures
Figure 2-1 Cross Section of Hutton Creek at Fairview 2
Figure 2-2 Cross Section of Dawson River at Utopia Downs 3
Figure 2-3 Cross Section of Bungil Creek at Tabers 4
Figure 2-4 Cross Section of Yuleba Creek at Forestry Station 4
Figure 2-5 Cross Section of Brown River at Brown Lake 5

1.1 Aim

URS undertook a desktop analysis to assess the potential for erosion arising from discharge of associated water into streamlines of the Upper Dawson, the Condamine-Balonne, and the Comet-Brown River catchments.

The aim of the analysis was to utilise existing data and approximate methods to conservatively quantify average flow velocities that could then be compared to velocities that initiate erosion in the sandy - clay and silt soils typical of these catchments ($\sim 0.3-0.5 \mathrm{~m} / \mathrm{s}$).

1.2 Approach

Two methods were used to assess velocities and depths of flow in each stream. For each method it was assumed that the discharge of associated water occurs when there is no other flow in channel. The peak field discharge has been assumed unless otherwise specified (i.e. in some cases the associated water is assumed to be split between different streams). No infiltration or transmission losses are assumed.

Stream Gauging Data

Limited stream cross-sections and rating curve data are available from stream gauging stations in the catchments.

Cross-sectional and discharge information was sourced from stream gauging stations and used to estimate flow velocities and depths. Field visits indicate that these sites have similar cross-sections to other points along the streams. However, they will have different discharge characteristics than other parts of the stream due to downstream hydraulic controls (e.g. weirs, natural bars).

Cross sections at the following sites were taken to assess any potential local scouring:

- Two sites in the Upper Dawson River Catchment: Dawson River at Utopia Downs (130324A) and Hutton Creek at Fairview (130342A);
- Two sites in the Condamine-Balonne Catchment: Bungil Creek at Tabers (422210) and Yuleba (422219A) at Forestry Station.
- One site in the Comet River Catchment: Brown River at Lake Brown (130502B).

Hydraulic Calculations

Manning's equation (*) was independently used to estimate depths and velocities assuming a conservative roughness coefficient, bed slope equivalent to average catchment slope, and cross-section as per the relevant gauging station.

$$
\begin{equation*}
V=\frac{1}{n} R^{2 / 3} S^{-1 / 2} \tag{*}
\end{equation*}
$$

Where $\mathrm{V}=$ velocity, n is a roughness coefficient, $\mathrm{R}=$ hydraulic radius and $\mathrm{S}=$ slope of the water surface.
For the purposes of this study a conservative roughness coefficient was utilised for all sites $(\mathrm{n}=0.025)$ and the slope of the water surface was assumed to be equal to the average slope of the surrounding topography. Hydraulic radius was calculated from the cross-sections from the relevant gauging stations assuming these to be representative of an arbitrary point in the catchment.

Section 2

Results

2.1 Upper Dawson River Catchment

The assumed maximum peak associated water discharge is $52.5 \mathrm{ML} /$ day.

2.1.1 Case 1 - Discharge to Hutton Creek

It is assumed all discharge passes through the Hutton Creek at the Fairview gauging station. Figure 2-1 shows the water level for peak discharge in this cross-section. The flow is maintained within the thalweg with an average velocity $0.015 \mathrm{~m} / \mathrm{s}$.

Figure 2-1 Cross Section of Hutton Creek at Fairview
Application of Manning's Equation provides an estimated average velocity $=0.031 \mathrm{~m} / \mathrm{s}$.

2.1.2 Case 2 - Discharge to Dawson River

It is assumed that all flow travels down the Dawson River to Utopia without losses. Figure 2-2 shows that flow is maintained within the thalweg, and from the rating curve an average velocity of $0.167 \mathrm{~m} / \mathrm{s}$ is estimated.
Use of Manning's Equation provides an estimated velocity $=0.0005 \mathrm{~m} / \mathrm{s}$.

Figure 2-2 Cross Section of Dawson River at Utopia Downs

2.2 Roma-Condamine River Catchment

The peak associated water generation rate is estimated to be $20.0 \mathrm{ML} / \mathrm{d}$.

2.2.1 Case 1 - Concentrated Discharge to Bungil Creek

Bungil Creek is significantly disturbed and has demonstrated elevated salinity compared with other streams in the region. It is assumed in this scenario that the full field generation of associated water is concentrated and discharged down Bungil Creek. Thus the assumed discharge to the creek is $20 \mathrm{ML} /$ day.

Figure $2-3$ shows that flow is maintained within the thalweg, and from the rating curve an average velocity of $0.078 \mathrm{~m} / \mathrm{s}$ is estimated.

Use of Manning's Equation provides an estimated velocity $=0.0006 \mathrm{~m} / \mathrm{s}$.

2.2.2 Case 2 - Distributed Discharge to Three Streams

An alternative is that water is concentrated from each portion of the Roma Field and discharged to three local streams. Assuming that water is generated uniformly across the field it is assumed that each of the three major streams will receive approximately 33% of the peak discharge rate. That is, $6 \mathrm{ML} /$ day.

Figure $2-4$ shows that flow is maintained within the thalweg, and from the rating curve an average velocity of $0.008 \mathrm{~m} / \mathrm{s}$ is estimated.

Use of Manning's Equation provides an estimated velocity $=0.002 \mathrm{~m} / \mathrm{s}$.

Figure 2-3 Cross Section of Bungil Creek at Tabers

Figure 2-4 Cross Section of Yuleba Creek at Forestry Station

2.3 Comet River Catchment

Maximum associated water production in Arcadia is estimated to be $27.4 \mathrm{ML} / \mathrm{d}$.
It is assumed in this scenario that the water is generated evenly across the entire catchment and that discharge is concentrated and discharged to three points, one in the upper catchment (discussed below), one near Rolleston and the other near Emerald.

The most recent rating curve for the site Brown River at Lake Brown was used to determine the water level in the cross section at 30% of the peak discharge. Figure $2-5$ shows that the discharge is maintained within the thalweg and it is estimated that the average velocity is $0.006 \mathrm{~m} / \mathrm{s}$.

Figure 2-5 Cross Section of Brown River at Brown Lake
Application of Manning's Equation provides an alternative estimate of mean velocity as $0.008 \mathrm{~m} / \mathrm{s}$.

Section 3
 Discussion and Conclusion

Velocities of associated water flows are typically less than $0.1 \mathrm{~m} / \mathrm{s}$ except in the case of the Dawson River at Utopia where $0.19 \mathrm{~m} / \mathrm{s}$ was estimated (Table 3-1). Compared with the estimated velocity for inception of erosion ($0.3-0.5 \mathrm{~m} / \mathrm{s}$) all of these velocities are small.

Table 3-1 Estimated Velocities and Depths

Catchment	Site Name	Site No	Discharge (ML/day)	Gauge Height $\mathbf{(m)}$	Area (m2)	Velocity $\mathbf{(m / s)}$	Mannings Velocity (m/s)
Upper Dawson	Hutton at Fairview	130342 A	52.5	0.45	40.29	0.015	0.031
	Dawson at Utopia	130324 A	52.5	0.9	3.63	0.167	0.0005
	Bungil at Tabors	444210 A	20	0.71	2.94	0.078	0.0006
	Yuleba at Forest	422219 A	6	1.2	8.94	0.008	0.002
Comet-Brown	Brown at Lake Brown	130502 B	8.22	0.58	15.73	0.006	0.008

Data in Table 3-1 was compared to average velocities under flooding conditions. The highest gauge data was obtained from the NRW WaterShed site to calculate the velocities (Table 3-2) under flood conditions.

Table 3-2 Estimated velocities and depths under flood conditions

Catchment	Site Name	Site No	Discharge (ML/day)	Gauge Height $\mathbf{(m)}$	Area $\mathbf{(m 2)}$	Flood flow velocities (m/s)
Upper Dawson	Hutton at Fairview	130342 A	45,606	9.70	79.9	2.98
	Dawson at Utopia	130324 A	87,696	12.82	553.2	0.86
	Bungil at Tabors	444210 A	72,817	7.87	470.7	1.79
	Yuleba at Forest	422219 A	29,516	9.92	1182.0	0.62
Comet-Brown	Brown at Lake Brown	130502 B	31,505	7.53	114.5	3.25

The flood flow velocities shown in Table 3-2 are well above the estimated velocity for inception of erosion (0.3$0.5 \mathrm{~m} / \mathrm{s})$. Compared to the discharge under flood conditions, additional discharges of associated water are minimum. It is also noted that most of these streams are ephemeral and the flood behaviour is rapid and large. The small proportion of the stream channel occupied by associated water discharges is unlikely to significantly reduce flood carrying capacity and hence unlikely to alter the frequency of flood events and associated erosion.

It is concluded that there is little risk of any additional scouring and erosion occurring as a result of associated water discharges.

URS Australia Pty Ltd (URS) has prepared this report in accordance with the usual care and thoroughness of the consulting profession for the use of Santos and only those third parties who have been authorised in writing by URS to rely on the report. It is based on generally accepted practices and standards at the time it was prepared. No other warranty, expressed or implied, is made as to the professional advice included in this report. It is prepared in accordance with the scope of work and for the purpose outlined in the Proposal dated 12 October 2007.

The methodology adopted and sources of information used by URS are outlined in this report. URS has made no independent verification of this information beyond the agreed scope of works and URS assumes no responsibility for any inaccuracies or omissions. No indications were found during our investigations that information contained in this report as provided to URS was false.

This report was prepared between October 2007 and January 2009 and is based on the conditions encountered and information reviewed at the time of preparation. URS disclaims responsibility for any changes that may have occurred after this time.

This report should be read in full. No responsibility is accepted for use of any part of this report in any other context or for any other purpose or by third parties. This report does not purport to give legal advice. Legal advice can only be given by qualified legal practitioners.

GLNG GAS FIELD DEVELOPMENT - ASSOCIATED WATER DISCHARGE STUDY	
Modelling of Flows, Temperature and Salinity Upper Dawson River	Appendix I

REPORT

Hydrologic Modelling of Dawson River Catchment

Project Manager:

	URS Australia Pty Ltd Level 6, 1 Southbank Boulevard Southbank
VIC 3006	
Penny Flukes	Australia
Senior Environmental	Tel: 61386997500 Scientist
	Fax: 6138697550

Project Director:

सule

David Fuller
Senior Principal Water and Catchments

Table of Contents

1 Introduction 1
2 Modelling Objectives 3
3 Flow Modelling 4
3.1 Background 4
3.2 Model Assumptions 4
3.2.1 Subcatchment Delineation 4
3.2.2 Network Creation 5
3.2.3 Flow Routing 5
3.2.4 Simulations 6
3.3 Model Calibration 6
3.3.1 Objective Function 6
3.3.2 Calibration Tools. 7
3.3.3 Calibration Period 7
3.4 Results and Interpretation 7
4 Temperature Modelling 13
4.1 Background 13
4.2 Modelling 13
4.2.1 Modelling Objectives 14
4.2.2 Model Data 14
4.2.3 Model Assumptions 15
4.3 Results and Interpretation 15
5 Salinity Modelling 19
5.1 Background 19
5.2 Modelling 19
5.2.1 Model Objectives 19
5.2.2 Model Data 19
5.2.3 Model Assumptions 20
6 Associated Water Management Scenarios 22
6.1 Background 22
6.2 Scenarios 22
6.3 Modelling 23
6.3.1 Model Parameters 23

Table of Contents

6.3.2 Model Data 24
6.4 Model Development and Parameters 26
6.5 Results and Interpretation 29
6.5.1 Scenario 1 - Additional Direct Discharge to Grade 32
6.5.2 Scenario 2 - Central Treatment Plant 33
6.5.3 Scenario 3 - Additional Future Production to Irrigation 34
6.5.4 Scenario 4 - Additional Direct Discharge to Grade at Taroom 35
7 Conclusions 36
8 Limitations 37

Tables, Figures \& Appendices

Tables (within report)
Table 3-1 Summary of Final AWBM Calibration Parameters 9
Table 3-2 Summary of Routing Parameters 9
Table 4-1 Summary of Model Parameters 15
Table 4-2 Temperature Model Scenarios 16
Table 6-1 Discharge (ML/d) for Fairview Development Scenarios 25
Table 6-2 Salt Input (mg/L) for Fairview Options 26
Table 6-3 Dawson Salinity Model Parameters 29
Table 6-4 Summary of Scenarios - Mixed Stream Salt Concentrations (mg/L) 30
Tables (within appendices)
Table A-1 Definition of AWBM parameters and their default values
Table C-1 Seasonal Salinity Model Parameters
Table C-2 Ramp Salinity Model Parameters
Table C-3 Flow Flux Salinity Model Parameters
Figures (within report)
Figure 1-1 Major Streams in the Dawson River Catchment 2
Figure 3-1 Subcatchment Delineation and Stream Gauge Locations 4
Figure 3-2 E2 Subcatchment Network 5
Figure 3-3 Hydrograph of E2 Modelled (Blue) and Observed (Red) Runoff 1980 to 2004 10
Figure 3-4 Hydrograph of E2 Modelled (Blue) and Observed (Red) Runoff 1989 to 1992 11
Figure 3-5 Scatter Plot of E2 Modelled and Observed Runoff 1980 to 2004 12
Figure 4-1 Length of Temperature Plume in Hutton Creek 17
Figure 5-1 Trialled Salinity Modelling Sophistications at Utopia 20
Figure 6-1 Future Predicted Associated Water Production in Fairview 24
Figure 6-2 Utopia Downs Salinity Model - 1997 to 2007 27
Figure 6-3 Utopia Downs Salinity Model - 1975 to 2007 27
Figure 6-4 Taroom Salinity Model - 1993 to 2007 28
Figure 6-5 Taroom Salinity Model - 1980 to 2007 28
Figure 6-6 Summary of Scenarios - Mixed Salt Concentration in Dawson River 31
Figure 6-7 Scenario 1 - Mixed Stream salinity Concentration - Future Projected Production 32

Tables, Figures \& Appendices

Figure 6-8 Scenario 2 - Mixed Stream Salt Concentration - Future Projected Production.............................. 33
Figure 6-9 Scenario 3 - Mixed Stream Salt Concentration - Future Projected Production.............................. 34
Figure 6-10 Scenario 1 - Mixed Stream Salt Concentration - Future Projected Production.............................. 35

Figures (within appendices)
Figure A-1 Australian Water Balance Model (AWBM)
Figure B-1 Historic Stream Temperatures at Hutton Creek
Figure C-1 (blue) and Observed Salinity (red) at Comet River

Appendices

A Flow Model Development
B Temperature Model Development
C Salinity Model Development

Introduction

Section 1

Associated water is typically a by-product of Coal Seam Gas (CSG) development and its management is an integral aspect of the Gladstone Liquid Natural Gas (GLNG) project. Santos is considering a range of water management options including evaporation, stock watering, discharge to grade, treatment, injection, irrigation, and beneficial reuse. However, the focus of this report is on discharge to grade and potential changes in hydrology, salinity and temperature that may arise instream under a range of scenarios. This information will be used within an ecological risk assessment framework to assess risks to environmental values identified in the study area.

Study Area

The area of study includes three catchments: Upper Dawson River, Comet River, and minor tributaries of the Upper Balonne River in Condamine-Culgoa. The Upper Dawson River and Comet River catchments drain to the Fitzroy Basin and ultimately to the Great Barrier Reef Lagoon. The Balonne River is part of the Murray-Darling Basin ultimately discharging via Lake Alexandrina to the Gulf of St Vincent in South Australia.

The catchments are in various states of CSG production, appraisal or development.
This report focuses on the Upper Dawson River catchment from its headwaters to Taroom (Error! Reference source not found.).

Modelling Approach

Hydrologic modelling is needed to assess the impacts of discharges on the local and regional environment. The model will be used to assess impacts of CSG production on flow regime, temperature and salinity concentration.

Various options are available to model the hydrology and water quality of the catchment. The two main candidates considered were IQQM (Integrated Quantity and Quality Model) and E2 both of which are utilised in Queensland. E2 was chosen as the main modelling platform for flow and salinity. Due to E2 salinity modelling limitations, an empirical algorithm was ultimately developed to model salinity. Likewise, E2 does not provide the capability to model temperature. For temperature modelling, the US EPA's QUAL2K model was chosen.

Report Structure

The report presents the calibration of hydrologic and salinity models in the first two chapters. Various associated water management scenarios are then formulated and modelled. Results are presented in the final chapter.

Figure 1-1 Major Streams in the Dawson River Catchment

Modelling Objectives

The modelling objectives are:

- Develop calibrated models of flow, temperature and salinity;
- Create a flow model that is consistent with models currently used in Queensland (IQQM and E2) to enable later assessment of regional effects;
- Investigate alternative associated water discharge options;
- Identify the range, frequency, and extent of flow, temperature and salinity impacts from discharge of associated water to grade; and
- Provide information to support ecological risk assessment.

3.1 Background

The basic architecture of the E2 modelling framework consists of a subcatchment-node-link system, as described in Appendix A. Alternative water balance models can be selected for use within E2. For this project the Australian Water Balance Model (AWBM) was selected as the rainfall-runoff model since it is widely used and was originally developed in Queensland. A daily time step was utilised for modelling. The AWBM model utilises eight model parameters representing three conceptual water stores with area representation, surface and baseflow recession constants, and a baseflow index. Further explanation of the AWBM model and its parameters are provided in Appendix A.

3.2 Model Assumptions

3.2.1 Subcatchment Delineation

The model structure is based on key subcatchments to allow broad scale assessment of water management options. The Dawson River catchment ($15,541 \mathrm{sq} \mathrm{km}$) was subdivided into 22 subcatchments based on major stream confluences and particular areas of interest, such as stream gauge locations. A node exists at the outlet of each subcatchment. Additional inputs or outputs can be applied at each node. The 22 delineated subcatchments (the nodes are not shown to improve legibility) along with the stream gauges are presented below in Figure 3-1.

Figure 3-1 Subcatchment Delineation and Stream Gauge Locations

3.2.2 Network Creation

A GIS shapefile was used to represent the subcatchments, and the stream network was drawn in manually within E2. While catchment area is calculated within E2 for the purpose of runoff generation, there is no explicit spatial representation of the stream network. The E2 flow path network is shown in Figure 3-2.

Figure 3-2 E2 Subcatchment Network

3.2.3 Flow Routing

The Dawson catchment is a large catchment ($15,541 \mathrm{sq} \mathrm{km}$). Runoff from the furthermost reaches can take considerable time before it is recorded at the Taroom outlet on Dawson River. E2 offers several routing methods to delay the flow through the links. These range from simple lag flow where flow is delayed with no change to the shape, to more sophisticated routing methods which can smooth the flow of the hydrograph accounting for catchment and reach storage effects. In the development of the Dawson River catchment, two methods of routing were selected: General Lag and Laurenson non-linear routing.

General Lag works by transposing the hydrograph by a length of time with no other changes in shape occurring. The required input for general lag is solely the amount of time in days to transpose the hydrograph.

Laurenson non-linear routing is more sophisticated and requires the input of two factors;

$$
\mathrm{S}(\mathrm{Q})=\mathrm{K} \times \mathrm{Q}^{\mathrm{m}}
$$

Where:
$\mathrm{K}=$ a dimensional empirical factor which acts as a storage delay parameter. Although K is empirical factor it should be thought of as a storage delay and thus in seconds; and
$\mathrm{m}=\mathrm{a}$ dimensionless empirical exponent, measure of the non-linearity of the model.

3.2.4 Simulations

E2 has the ability to have multiple model simulations active at any one time. This allows for easy comparison to be made between the modelled and observed data. For each location where observed data was available, a separate model was constructed in order to compare E2 modelled results with observed flow measurements. At the approximate location in the E2 model of the observation gauge, the observed flow data was assigned to an outlet node of a subcatchment.

3.3 Model Calibration

Since there is limited surface flow data for many locations, and the project operates across multiple scales, it is expected that modelling will need to progress from broad calibration to more accurate calibration over time. For initial calibration, the same AWBM parameters were applied across many of the subcatchments. The main reason for this was a lack of information that could inform separate parameterisation as well as to reduce the potential degrees of freedom during calibration.

A separate model was created using the same AWBM parameters throughout the entire catchment. This model did not produce results sufficiently representative of the gauge data. Therefore, variation in the AWBM parameters is considered necessary in a catchment the size of the Dawson River catchment.

3.3.1 Objective Function

The selection of an appropriate objective function is an important part in validating the model performance. The choice of function is dependent on the model's application. In this case the end purpose of the model is to estimate in-stream salinity levels. These levels are dependent on stream flow and consequently comparison of actual and modelled stream flow is of greatest importance. Boughton (2005) notes that in the common case of water yield analysis, the most common validation of model performance is a comparison of calculated and actual monthly totals of runoff. Early studies used the coefficient of determination $\left(r^{2}\right)$ as a measure of agreement. However, it is becoming increasingly common to now use the Nash-Sutcliffe coefficient of efficiency (CE) where CE is:

$$
C E=1-\sum_{t=1}^{T}\left(Q_{0}^{t}-Q_{m}^{t}\right)^{2} / \sum_{t=1}^{T}\left(Q_{0}^{t}-\overline{Q_{0}}\right)^{2}
$$

Where:
$\mathrm{T}=$ total time modelled
$Q_{0}^{t}=$ Observed flow at time t;
$Q_{m}^{t}=$ Modelled flow at time t; and
$\overline{Q_{0}}=$ Mean observed flow.
The value of CE lies between 1.0 (a perfect fit) and $-\infty$ where a value of less than 0 would indicate that the mean value of the observed time series would have been a better predictor than the model (Krause, Boyle and Blase,

Flow Modelling

Section 3
2005). A model producing a CE value over 0.7 is considered a reasonable representation of the physical world on a daily time step. Calibration in E2 gives values for both r^{2} and CE; these are the only efficiency criteria calculated.

3.3.2 Calibration Tools

E2 contains a calibration tool for flow and constituents based on either subcatchments or links. As explained in Appendix A, the iterative calibration process is clunky and cumbersome given the number of links and nodes, each with 8 adjustable AWBM parameters. After an initial run, the automatic calibration was not sufficiently quick or accurate enough. Therefore, further calibration was accomplished using manual adjustment and regional application of AWBM parameters across the catchment.

The Rainfall Runoff Library (RRL) was also considered and trialled for model calibration but determined too simplistic for a study area as large as the Dawson catchment (see Appendix A for further explanation).

3.3.3 Calibration Period

As described in the data compilation section of Appendix A, rainfall input files from 1975 to 2006 were developed representing 32 years of data, which were available for the calibration process. A strategic method was developed for the calibration of the E2 model. Initial attempts at calibration were focused on ensuring accuracy of the lowest flow events as the model was primarily designed to model salinity, which is at its highest concentration during low flow events. Once a satisfactory level of calibration was achieved the calibration turned to ensuring that the high flow peaks, the total yearly runoff and the shape of the hydrograph were well represented.

The AWBM contains storages that are initially empty when the model starts. A warm up period is often required during calibration or validation so that the stores can reach a representative value. This can be done in one of two ways. One method is to exclude the warm up period from the objective function calibration and validation periods; this is not possible in E2 but can be done in RRL. Another way is to ensure the model calibration and validation period follows a period of low or zero precipitation so that it can be assumed that moisture stores are empty.

While calibrating the model over the entire range of data available is the only way to optimise the results, little indication of the models robustness can be gauged (i.e. how well it performs outside of the calibration period). It was initially intended to exclude some of the available data from the calibration period to allow for a period of model validation; however, due to the difficulties in calibrating the model it was decided to include as much of the data as possible in the calibration period.

3.4 Results and Interpretation

For meaningful modelling of salinity, a well calibrated runoff model is required. A model producing a CE value over 0.7 is considered a reasonable representation and was the target when calibrating E2. A structured modelling approach was undertaken where the headwater subcatchments with stream gauges were modelled first. Once these areas were satisfactorily calibrated, the subcatchments upstream of the next gauging station were calibrated. This was repeated down the catchment, until all subcatchments upstream of the final gauge on Dawson River were calibrated. Thereby a model was developed with four sets of AWBM parameters;

- Subcatchments upstream and immediately downstream of Juandah Creek;
- Subcatchments upstream of Hutton Creek at Fairview;
- Between Hutton Creek at Fairview and Dawson River at Utopia Downs; and

Flow Modelling

- Between Utopia Downs and Taroom on the Dawson River.

The largest difficulty encountered in the refinement of the E2 model was ensuring that small rainfall events were not causing excessive runoff. This was deemed a high priority due to the ephemeral nature of the streams in the Dawson River catchment for much of the year. To reduce the noise associated with these smaller rainfall events, it was required to set the capacity of the three stores in the AWBM model at or near the maximum advisable levels. Larger than typical AWBM soil capacity parameters were used to simulate catchment storages such as pools of standing water. This assumption was confirmed following consultation with URS employees familiar with the Dawson catchment. These storages retard small rainfall events resulting in little to no runoff being recorded on the downstream gauging stations. However, larger rainfall events inundate the pools and significant runoff is measured at the stream gauge stations.

Increasing the storage capacities to better reflect the ephemeral nature of the streams resulted in difficulty matching peaks in high rainfall events and producing the total aggregated runoff being generated by the catchment. As has been mentioned previously, AWBM has three parameters intended to determine the rate at which the base flow store is depleted: BFI, $\mathrm{K}_{\text {base }}$ and $\mathrm{K}_{\text {surf. }}$. To ensure that flow remained in the system and that large runoff events were being captured, the parameters were set such that little of store is depleted over time (except through evaporation). Initially these parameters were set to null, however they were increased to between 0.4 and 0.5 to smooth the shape of the falling limb of the hydrograph.

The third challenge faced by the modelling team was matching the timing of the peaks of runoff events as well as the recession curve following the event. Initially it was attempted to calibrate the routing on a subcatchment-by-subcatchment basis, allocating a value based on the probable length of the stream within the reach. It was found that the routing times were typically short, with routing times ranging between 12 and 24 hours. This arises from the fine delineation of the subcatchments. Two routing regimes adopted. For the subcatchments upstream of Hutton Creek a simple lagged flow equivalent to 0.5 days was found to best represent the data. For all the catchments downstream of Hutton Creek the more sophisticated Laurenson non-linear routing was adopted. Initially some variability in the parameters was trialled for catchments upstream and downstream of Utopia Downs, however after much trialling a single set of parameters were applied with a delay of 1.5 days (129600 seconds), and a measure of the non-linearity of 0.8 (as recommended in Australian Rainfall and Runoff).

A summary of the calibrated AWBM parameters used in the final calibration are presented in Table 3-1 and the calibrated routing values are presented in Table 3-2.

Flow Modelling
Section 3
Table 3-1 Summary of Final AWBM Calibration Parameters

Subcatchments Parameters In the region of Juandah Creek Upstream of Hutton Creek Between Hutton Creek and Utopia Downs	Between Utopia Downs and Taroom			
	0.134	0.134	0.134	0.134
	0.433	0.433	0.433	0.433
BFI	0.4	0	0.35	0
C1	30	50	50	35
C2	70	125	170	120
C3	150	200	250	250
Kbase	1	0	1	0
Ksurf	0.3	0.5	0.45	0.4

Table 3-2 Summary of Routing Parameters

			Subcatchments		
Lag Flow	Subcatchments Upstream of Hutton Creek	Laurenson Parameters	In the region of Juandah Creek	Between Hutton Creek and Utopia Downs	Between Utopia Downs and Taroom
Time		K (seconds)	129600	129600	129600
(Days)	0.5	m	0.8	0.8	0.8

The end result of the calibration was a thoroughly developed model producing a Nash-Sutcliff criterion of 0.72, with a net volume difference of 3.75% between the E2 model and the observed runoff over 26 years of observed flow available at Taroom on the Dawson River. Hydrographs and a scatter plot displaying the observed and E2 modelled runoff at the Taroom gauging station are shown in Figure 3-3, Figure 3-4 and Figure $3-5$ for the periods 1980 to 2004 and 1989 to 1992 (to more clearly illustrate the models general performance) respectively.

Overall the results produced in E2 are fairly representative to those observed at the stream gauge stations. The cease to flow, low and medium flow events mirror observed behaviour. The rising and falling limbs, peak, and timing of modelled hydrographs match observed records. Many of the largest high flow peaks have not been successfully matched. These events could be attained; however, it resulted in poorer calibration of the low flow events by introducing significant noise. It was felt that as the flow model was built with a desire to model salinity, which is critical in low flow events, that matching cease to flow and low flow events were a higher priority. It is believed that the lack of peaks is due to the averaging of the rainfall data over multiple gauges and the necessity of using gauges outside of the subcatchment. The result of these necessities has resulted in input files with much of the peakiness removed from the data making it impossible to perfectly match the observed records. Further, all input data was on a daily time step, which reduces the ability to model flash floods which occur over a much shorter time step (minutes to hours).

The E2 flow model was confirmed by an external independent peer reviewer (Appendix A).

Flow Modelling

Figure 3-3 Hydrograph of E2 Modelled (Blue) and Observed (Red) Runoff 1980 to 2004

Flow Modelling

Figure 3-4 Hydrograph of E2 Modelled (Blue) and Observed (Red) Runoff 1989 to 1992

Figure 3-5 Scatter Plot of E2 Modelled and Observed Runoff 1980 to 2004

Temperature Modelling

Section 4

4.1 Background

Associated water is typically a by-product of Coal Seam Gas (CSG) development and its management is an integral aspect of the Gladstone Liquid Natural Gas (GLNG) project. Associated water discharge to natural streamlines (typically unnamed drainage lines and depressions) and downstream receiving waters (named creeks and rivers) may have benefits. For example, increases in flow may assist environmental flows and improve water supply security. Other impacts may include introducing unseasonal flow regimes, reducing habitat availability, increasing surface water salinity, or changing temperature regimes. To reduce the salinity concentration of their associated water, Santos plans to install a desalination plant adjacent to a tributary of Hutton Creek. The plant will use reverse osmosis to desalinate associated water from Coal Seam Gas production. At 75\% efficiency, the plant is designed to deliver $4.5 \mathrm{ML} /$ day of permeate to the tributary on construction. The brine stream will be injected to the Timbury Hills Formation.

The temperature of associated water is in the range $24-43 \mathrm{C}$. The permeate is expected to be discharged at a temperature of $40^{\circ} \mathrm{C}$ to a point on the tributary approximately 6 km upstream of Hutton Creek. The point of entry to Hutton Creek is a long pool which itself is approximately 6 km upstream of the confluence of Hutton Creek and the Dawson River.

In and around the confluence of these two streams there is strong evidence for a regional groundwater discharge. Flows in the Dawson River are permanent perhaps 4 or 5 km upstream of the confluence. Similarly in Hutton Creek flows are thought to be permanent approximately 4 km upstream of the confluence.

The purpose of this modelling report is to estimate the likely distance downstream before water temperatures become indistinguishable from background.

A range of scenarios are considered to quantify the degree of uncertainty in the results.

4.2 Modelling

Water temperatures were modelled in the Dawson River using QUAL2K, a one-dimensional river and stream quality model produced by the United States of America's Environmental Protection Agency (USA EPA). The program achieves a high level of sophistication, and capacity to model stream quality by considering the many variables that affect water quality in river streams. For the calculation of heat dissipation from a thermal input into a stream, the heat budget and temperature are modelled using known or interpolated meteorological data.

QUAL2K simulates water quality by varying;

- Stream background flow, temperature, and water quality;
- Point and diffuse pollutant source inputs (volume, temperature and quality);
- Reach conditions, including width, slope and roughness;
- Air and dew point temperature;
- Wind speed; and
- Cloud and shade cover.

Temperature Modelling

4.2.1 Modelling Objectives

To gauge the year round temperature impacts on the Dawson River, six river flow scenarios were developed under two seasonal conditions:

Wet Season (November to March)

- Ephemeral (cease to flow) stream conditions, discharge at source;
- Spring flow, pipe and discharge into spring flows along the Dawson River;
- Wet season base flow, discharge at source;

Dry Season (April to October)

- Ephemeral (cease to flow) stream conditions, discharge at source;
- Spring flow, pipe and discharge into springs; and
- Dry season base flow, discharge at source;

During large runoff events the associated water would be diluted to a level indistinguishable from natural flow, therefore it was decided to only model the cease to flow and base flow conditions. In addition to the six weather scenarios, two pollutant flow rates under two temperature states were investigated;

Current Production Levels

- Direct discharge - $4.5 \mathrm{ML} / \mathrm{d}$ discharged at $40^{\circ} \mathrm{C}$;
- Store and release $-4.5 \mathrm{ML} / \mathrm{d}$ discharged at $5^{\circ} \mathrm{C}$ above background water temperature;

Future Production Levels

- Direct discharge - 19.5ML/d discharged at $40^{\circ} \mathrm{C}$; and
- Store and release - $19.5 \mathrm{ML} / \mathrm{d}$ discharged at $5^{\circ} \mathrm{C}$ above background water temperature

These scenarios were developed to represent the current production with direct discharge, and current production levels with the discharge being stored and cooled prior to release into Hutton Creek. Further scenarios representing a $15 \mathrm{ML} /$ d increase in production under both direct discharge to grade and store and release conditions were developed.

4.2.2 Model Data

Model parameters are described in Appendix B and summarized in Table 4-1.

Temperature Modelling
Table 4-1 Summary of Model Parameters

				Night 12am to 5am		Morning to Midday 5am to 1pm		Midday to Evening 1pm to 12am		
	Flow State	Flow (ML/d)	Water Temp	Air Temp	Dew Temp	Air Temp	Dew Temp	Air Temp	Dew Temp	Wind Speed (m / s)
Wet Season	Ephemeral	0	27	17.7	17	25.2	15.6	30.9	13.5	2.8
	Spring Flow	17.28	22.1	17.7	17	25.2	15.6	30.9	13.5	2.8
	Base Flow	50	27	17.7	17	25.2	15.6	30.9	13.5	2.8
Dry Season	Ephemeral	0	17	7.5	7.5	16	8.4	23.1	5.9	2.6
	Spring Flow	17.28	22.1	7.5	7.5	16	8.4	23.1	5.9	2.6
	Base Flow	25	17	7.5	7.5	16	8.4	23.1	5.9	2.6

4.2.3 Model Assumptions

In the development of the model, the following assumptions about climatic conditions and stream interactions were made:

- Immediate mixing of the pollutant into the main body of Dawson River, assuming complete flow and temperature mixing at the point of injection;
- The associated water temperature was assumed to be a constant $40^{\circ} \mathrm{C}$, unvarying throughout the day or year. Similarly, in the store and release scenarios, associated water is discharged at exactly $5^{\circ} \mathrm{C}$ over the Hutton Creek background levels; and
- Spring waters flowed at a constant discharge and temperature; therefore no seasonality in these parameters was used in the model.

4.3 Results and Interpretation

As was previously mentioned, the QUAL2K models were run for both varying climatic data and varying associated water discharges and temperatures. In all, 24 scenarios were developed, each with a combination of the aforementioned climatic and associated water parameters. These parameters as well as the mixed stream conditions are presented in Table 4-2.

Temperature Modelling
Table 4-2 Temperature Model Scenarios

Season	Scenario	Santos Discharge (ML/d)	Hutton Creek Flow (ML/d)	Mixed Flow (ML/d)	Santos Discharge Temperature	Hutton Creek Temperature	Mixed Temperature
Wet Season	1	4.5	0	4.5	40	27	40.0
	2	4.5	50	54.5	40	27	28.1
	3	19.5	0	19.5	40	27	40.0
	4	19.5	50	69.5	40	27	30.6
	5	4.5	0	4.5	32	27	32.0
	6	4.5	50	54.5	32	27	27.4
	7	19.5	0	19.5	32	27	32.0
	8	19.5	50	69.5	32	27	28.4
Dry Season	9	4.5	0	4.5	40	17	40.0
	10	4.5	25	29.5	40	17	20.5
	11	19.5	0	19.5	40	17	40.0
	12	19.5	25	44.5	40	17	27.1
	13	4.5	0	4.5	22	17	22.0
	14	4.5	25	29.5	22	17	17.8
	15	19.5	0	19.5	22	17	22.0
	16	19.5	25	44.5	22	17	19.2
Wet Season Spring Flow	17	4.5	17.3	21.78	40	22	25.7
	18	19.5	17.3	36.78	40	22	31.5
	19	4.5	17.3	21.78	27	22	23.0
	20	19.5	17.3	36.78	27	22	24.7
Dry Season Spring Flow	21	4.5	17.3	21.78	40	22	25.7
	22	19.5	17.3	36.78	40	22	31.5
	23	4.5	17.3	21.78	27	22	23.0
	24	19.5	17.3	36.78	27	22	24.7

By applying the above scenarios to the QUAL2K mode, the magnitude and length of the heat plume were calculated. The results of all simulations are shown in Figure 4-1. It was decided to not measure the length of the plume until complete normalisation as this took considerably longer due to the nature of regression curves. For Scenarios 1 to 16 , the length of the plume was recorded until the temperature normalised at one of two states. These were 0.5 and $1.0^{\circ} \mathrm{C}$ above the background temperature. These states were selected as they represent the level of natural daily fluctuation of the water temperature in Hutton Creek.

For Scenarios 17 to 24 (the spring flow models), the plume length was recorded until the temperature was normalised to the spring flow temperature $\left(22.1^{\circ} \mathrm{C}\right)$ or the background temperature of Hutton Creek, whichever was higher.

Temperature Modelling

Figure 4-1 Length of Temperature Plume in Hutton Creek
As can be seen from Figure 4-1, very few scenarios could be considered acceptable. Typically, using the same associated water conditions, the plume length during the wet season was found to be notably less than the dry season equivalent. This is due to both the greater base flows and the notably higher background temperature of the stream during the wet season.

Six (non-spring flow) scenarios produce a plume with a change in temperature of $1.0^{\circ} \mathrm{C}$ above the background temperature with a plume length of less than 1.5 km . These scenarios were $1,2,5,6,13$, and 14 . All of these scenarios involve the discharge of a maximum of 4.5 ML per day. The minimum plume produced under the increased production models was in excess of 3.1 km . Only one set of associated water parameters provides satisfactory results independent on seasonality and the conditions in Hutton Creek. These parameters are current discharge levels ($4.5 \mathrm{ML} / \mathrm{d}$) stored and released at $5^{\circ} \mathrm{C}$ higher than background temperatures. These parameters are used in scenarios 5, 6, 13 and 14 .

Generally the spring flow scenarios were found to perform far better then the discharge at source scenarios, particularly when the plume is measured till normalisation with the spring flow temperature. Under this criterion all except one of the scenarios were found to have effectively normalised within the first 2 km from the associated water being introduced to the stream.

Despite cooling the associated water to $5^{\circ} \mathrm{C}$ higher than background, a release of $19.5 \mathrm{ML} / \mathrm{d}$ is likely to cause a rise in temperature in the stream for several km when discharged at the source. To reduce the plume length two

Temperature Modelling

options are feasible, increase the detention time before release thus allowing the temperature to further drop, the alternative being piping the associated water and discharging at a location with a suitable spring flow or higher flow.

Salinity Modelling

5.1 Background

Associated water is produced as a necessary by-product of Coal Seam Gas (CSG) production. Associated water has a moderate salinity ${ }^{1}$. The discharge of this associated water into nearby streams prompted the creation of a model to evaluate potential impacts of this elevated salt concentration. Salinity modelling was intended to represent the current conditions, as well as the discharge associated with additional wells to begin pumping in the future, and various management scenarios as described in Section 6.2.

The original plan was to model salinity in conjunction with flow using E2; however, many limitations rendered E2 unfit for this purpose (Appendix C). These limitations prompted URS to develop a simple empirical algorithm to produce representative salinity modelling results.

5.2 Modelling

5.2.1 Model Objectives

The above-mentioned limitations within E2 prompted URS to build a simple algorithm in Excel to produce representative salinity modelling results. The objectives of the algorithm were:

- To apply a simple algorithm consistently across Fairview, Roma, and Arcadia study locations;
- To produce conservative salinities (equal to or minimally higher than observed), attempting to replicate pulses or surges when salinity may be particularly of concern;
- To duplicate current conditions whilst also accommodating additional discharge and salinity from CSG production wells and treatment plants;
- To span the date extent of available flow data, thus extrapolating unknown salt concentrations; and
- To produce a user-friendly interface to evaluate various water management scenarios as described in Section 6.3.

5.2.2 Model Data

The basic salinity model was created based on stream flow and observed salinities. Where available, observed flow data was sourced from the Department of Natural Resources and Water (NRW) stream gauges for the extent of record. In areas with no stream gauges, E2 modelled flows were used. In Fairview, flow data was used from two gauges: Dawson River at Taroom (1980-2007) and Dawson River at Utopia (1975-2007). Continuous electrical conductivity data was sourced at the same two gauges for the extent of record (1993-2007 at Taroom and 1997-2007 at Utopia) with additional NRW water quality spot data over a longer time period. All collected electrical conductivity data was compared to modelled salinities to refine the empirical models, which span the time extent of the flow record.
${ }^{1}$ Salinity is typically measured as TDS or indirectly using electrical conductivity (EC) measured at a standard temperature (typically $25^{\circ} \mathrm{C}$). A linear relationship exists between EC (measured in $\mu \mathrm{S} / \mathrm{cm}$) and TDS (mg / L) for the range of salinities discussed in this report.

Salinity Modelling

Section 5

5.2.3 Model Assumptions

An empirical algorithm was developed to replicate observed salt concentration trends. The model is based on a minimum and maximum salt concentration with fluctuation based on flow levels. This is similar to the high flow/low flow concentration model embedded in E2 with additional flexibility to account for the transition between high and low flow salinities.

When the flow is zero, the salt concentration is assumed to be zero. When flow equals or exceeds a selected high flow, the model resets to the minimum salt concentration. Salinity is expected to decrease in high flow and increase in low flow. The amount of daily incremental change in salinity was determined based on the rates of increase and decrease of observed salinity such that the final algorithm best fits the observed salinity curve.

Figure 5-1 Trialled Salinity Modelling Sophistications at Utopia
Starting with a simple algorithm, three different modelling sophistications were trialled including (1) introduction of seasonality, (2) a ramp from a first maximum concentration to a second peak concentration, and (3) salinity responsive to flow flux. The modelling sophistications are described in Appendix C. Comparison of the three modelling sophistications resulted in selection of the ramp approach being used for all salinity model simulations. The ramp approach sufficiently captures the seasonal surges between March and June at Utopia,

Salinity Modelling

and the difference in salinity prediction from the flow flux approach was negligible and the complication was deemed unnecessary and less defensible.

When additional discharge and salinity was introduced from CSG production wells and treatment plants, proportional mixing was assumed to preserve the mass balance. Results of salinity modelling are presented in the next section.

6.1 Background

Santos proposes to manage associated water from the Fairview Project Area in accordance with the EPA operational policy (Anon., 2007) whilst recognising the current volumes, quality, and impact of the existing associated water discharge. Associated water discharge has occurred at the site over the last 14 years. Santos Group of companies commenced operatorship of the site in 2005.

Santos recognises that water is a precious commodity and essential for the well being of the local community both now and into the future. After carefully considering the levels of existing and proposed development within the Fairview Project Area, the imperatives of the international gas industry, and the desires of the local community, Santos has proposed a mix of associated water management options.

It is recognised that the proposed options need to be reviewed within an adaptive management framework that takes into account government initiatives in regional water management and development, changing economics of the gas and water markets, opportunities for regional development, and improved knowledge and science underpinning the extraction and use of associated water. Santos is committed to this regular review as part of its planning processes.

Significant volumes of associated water will be generated over the development life of the Fairview Project Area. Management options include injection, onsite reuse, stock watering, irrigation, desalination and discharge, and direct discharge.

6.2 Scenarios

To explore the boundaries of any potential impacts of associated water discharge, it is necessary to define modelling scenarios. It is prudent to explore the potential for different points and quantities of discharge within each field as this will provide improved decision making and option analysis. Results can also feed back directly into the overall risk analysis.

It was determined useful to consider three points on each associated water production curve (minimum predicted water production and maximum predicted water production) for each modelling run. The three points identified are $1 / 3$ peak production, $2 / 3$ peak production and peak production. That is, for each point on the curve we will assume a constant flow from the CSG field over the full modelling period and compare the results with a no discharge scenario. This means that six different flows ($1 / 3$ min peak, $2 / 3$ min peak, $3 / 3$ min peak, $1 / 3 \mathrm{max}$ peak, $2 / 3$ max peak, and $3 / 3$ max peak) will be combined with existing flows to assess the impacts for each scenario identified.

In Fairview, the following four scenarios were considered, after consultation with Santos:

- Option 1: Existing discharge to grade + desalination at Pony Hills + additional untreated discharge to grade;
- Option 2: Existing discharge to grade + desalination at Pony Hills + additional desalination at Central Treatment Plant;
- Option 3: Existing discharge to grade + desalination at Pony Hills only (all other water assumed to irrigation)
- Option 4: Piping discharge to catchment outlet at Taroom, with existing discharge to grade + desalination at Pony Hills + additional untreated discharge to grade;

Associated Water Management Scenarios

Section 6

6.3 Modelling

6.3.1 Model Parameters

Flow weighted salt concentration was calculated for the various scenarios from the following equation.

$$
C_{\text {mixed }}=\frac{Q_{1} \times C_{1}+Q_{2} \times C_{2}+Q_{3} \times c_{3}+Q_{4} \times c_{4}}{Q_{1}+Q_{2}+Q_{3}+Q_{4}}
$$

Where $\mathrm{Q}_{1} / \mathrm{c}_{1}=$ observed flow / modelled salinity in Dawson River at Taroom;
$\mathrm{Q}_{2} / \mathrm{C}_{2}=$ direct discharge to grade from CSG well production / salinity of direct discharge;
$\mathrm{Q}_{3} / \mathrm{C}_{3}=$ discharge from Pony Hills desalination / salinity of desalination discharge; and
$\mathrm{Q}_{4} / \mathrm{c}_{4}=$ varies by scenario as additional direct discharge (Option 1), discharge from Central Treatment Plant (Option 2), or piped to Taroom (Option 4) / associated salinity of each option.

In Option 3, irrigation is a direct removal of CSG discharge, which occurs on the plateau where associated water is generated; it is expected that there is zero runoff.

Modelled salt concentration was based on the ramp salinity Model, as described in Section 5.2.3, and detailed below.

If $Q_{t}=0$

$$
c_{t}=0
$$

If $Q_{t}>Q_{H I G H}$
$c_{t}=c_{\text {MIN }}$
If $Q_{t}>Q_{t-1}$ (rising limb)
$c_{t}=c_{t-1}-c_{\text {DECREASE }}$
If $Q_{t}<Q_{t-1} A N D c_{t}<c_{R A M P}$
$c_{t}=c_{t-1}+c_{I B R}$
If $Q_{t}<Q_{t-1} A N D c_{t}>c_{R A M P}$
$c_{t}=c_{t-1}+c_{\text {IAR }}$
Where $\mathrm{Q}_{\mathrm{t}}=$ Flow at timestep t ;
$\mathrm{Q}_{\text {HIGH }}=$ high flow trigger parameter;
$c_{t}=$ salt concentration at timestep t;
$\mathrm{C}_{\text {MIN }}=$ minimum salt concentration;
$\mathrm{C}_{\text {RAMP }}=$ salt concentration at which the rate of increase changes;
$\mathrm{C}_{\text {DECREASE }}=$ rate of salt concentration decrease;
$\mathrm{C}_{\text {IBR }}=$ rate of salt concentration increase below ramp (IBR); and
$\mathrm{C}_{\mathrm{IAR}}=$ rate of salt concentration increase above ramp (IAR).

Associated Water Management Scenarios

6.3.2 Model Data

Discharge input was extracted from the Fairview minimum and maximum associated water production curves at the peak levels as well as $1 / 3$ and $2 / 3$ of peak levels. The peak of the maximum associated water production curve is $52.5 \mathrm{ML} / \mathrm{d}$, resulting in $1 / 3$ peak of $17.5 \mathrm{ML} / \mathrm{d}$ and $2 / 3$ peak of $35 \mathrm{ML} / \mathrm{d}$. Similarly, the peak of the minimum associated water production curve is $27.5 \mathrm{ML} / \mathrm{d}$, resulting in $1 / 3$ peak of $9.2 \mathrm{ML} / \mathrm{d}$ and $2 / 3$ peak of 18.3 ML/d.

Figure 6-1 Future Predicted Associated Water Production in Fairview
In all scenarios, direct discharge was estimated at $4.5 \mathrm{ML} / \mathrm{d}$, Pony Hills desalination discharge was estimated at 4.5 ML/d, and the remaining portion was calculated as the difference between those two fixed discharges and the target discharge levels (three points along the water production curves). The remaining portion was discharged to grade in Option 1, discharged from the Central Treatment Plant in Option 2, and piped to Taroom in Option 4. In Option 3 (irrigation), no additional water was discharged to Dawson River.

The model was developed to always include a direct discharge of $4.5 \mathrm{ML} / \mathrm{d}$. The Fairview production field is located upstream of the Hutton Creek gauging station, the most upstream observed record. Therefore, between 1994 and 2007, the potential exists to double count associated water discharge, as the portion routed to Dawson River is inherently included in stream gauge flow measurements. To avoid duplication of flow, associated water from CSG production was deducted from the gauge flow measurements during this time period.

Of the associated water discharged in the treated scenarios, the discharge volume was reduced by 25% of the input volume. This assumption corresponds to the expected losses from the desalination treatment process as brine.

Associated water is sampled regularly from each production well and analysed for a number of water quality parameters. Based on comprehensive sampling from 56 producing wells in the Fairview project area over the

Associated Water Management Scenarios

Section 6
period 2005 to 2007, the average Electrical Conductivity (EC) of CSG associated water was $1,998 \mu \mathrm{~S} / \mathrm{cm}$ (TDS $1,338 \mathrm{mg} / \mathrm{L}$. EC was estimated at $500 \mu \mathrm{~S} / \mathrm{cm}$ (TDS $335 \mathrm{mg} / \mathrm{L}$) for Pony Hills permeate discharge, $340 \mu \mathrm{~S} / \mathrm{cm}$ ($228 \mathrm{mg} / \mathrm{L}$) for Central Treatment Plant permeate, and $0 \mu \mathrm{~S} / \mathrm{cm}$ introduced to the stream from irrigation.

Table 6-1 Discharge (ML/d) for Fairview Development Scenarios

Scenario	Predicted Production	Direct Discharge	Pony Hills	Additional Discharge to Grade	Central Treatment Plant	Irrigation	Piping	Discharged to Dawson River

Option 1: Existing discharge to grade + desalination at Pony Hills + additional untreated discharge to grade

1.1	$17.5(1 / 3 \mathrm{max})$	4.5	4.5	7.0	-	-	-	16
1.2	$35(2 / 3 \mathrm{max})$	4.5	4.5	24.5	-	-	-	33.5
1.3	$52.5(3 / 3 \mathrm{max})$	4.5	4.5	42.0	-	-	-	51
1.4	$9.2(1 / 3 \mathrm{~min})$	4.5	3.5	0	-	-	-	8
1.5	$18.3(2 / 3 \mathrm{~min})$	4.5	4.5	7.8	-	-	-	16.8
1.6	$27.5(3 / 3 \mathrm{~min})$	4.5	4.5	17.0	-	-	-	26

Option 2: Existing discharge to grade + desalination at Pony Hills + additional desalination at Central Treatment Plant

2.1	17.5	4.5	4.5	-	5.3	-	-	14.3
2.2	35	4.5	4.5	-	18.4	-	-	27.4
2.3	52.5	4.5	4.5	-	31.5	-	-	40.5
2.4	9.2	4.5	3.5	-	0	-	-	8
2.5	18.3	4.5	4.5	-	5.9	-	-	14.9
2.6	27.5	4.5	4.5	-	12.8	-	-	21.8

Option 3: Existing discharge to grade + desalination at Pony Hills only (all other water assumed to irrigation)

3.1	17.5	4.5	4.5	-	-	0	-	9
3.2	35	4.5	4.5	-	-	0	-	9
3.3	52.5	4.5	4.5	-	-	0	-	9
3.4	9.2	4.5	3.5	-	-	0	-	8
3.5	18.3	4.5	4.5	-	-	0	-	9
3.6	27.5	4.5	4.5	-	-	0	-	9

Option 4: Piping discharge to Taroom - discharge to grade + desalination at Pony Hills								
4.1	17.5	4.5	4.5	-	-	-	7.0	16
4.2	35	4.5	4.5	-	-	-	24.5	33.5
4.3	52.5	4.5	4.5	-	-	-	42.0	51
4.4	9.2	4.5	3.5	-	-	-	0	8
4.5	18.3	4.5	4.5	-	-	-	7.8	16.8
4.6	27.5	4.5	4.5	-	-	-	17.0	26

Associated Water Management Scenarios

Table 6-2 Salt Input (mg / L) for Fairview Options

Option	Direct Discharge	Pony Hills	Additional Discharge to Grade	Central Treatment Plant	Irrigation	Piping
1	1339	335	1339	-	-	-
2	1339	335	-	228	-	-
3	1339	335	-	-	0	-
4	1339	335	-	-	-	1339

6.4 Model Development and Parameters

To assess the impact of associated water discharge to the Dawson River system, two salinity models were developed to simulate the natural condition of the river at their respective locations. Two models were created to represent two possible locations for point source input of associated water: Utopia Downs and Taroom on the Dawson River.

At the Utopia Downs gauging station, 10 years of continuous (with gaps) EC data has been collected between 1997 and 2007. The salinity model was calibrated to best fit the observed records. The stream flow, calibrated salinity model, and observed continuous and spot records are shown in Figure 6-2 and

Figure 6-3. The salinity model is conservative overall, tending to overestimate the salinity in the system. This was necessary to allow the model to reach the peaks in the observed records. The salinity model was applied over the available date range of flow data from 1975 to 2007 to extend the period over which the scenarios can be assessed.

Similarly, 14 years of continuous (with gaps) EC data has been collected between 1993 and 2007 at the Taroom gauging station on the Dawson River. The salinity model was developed between 1993 and 2007 using the observed continuous EC record, then checked against spot records dating back to 1981. The calibrated salinity model successfully matches the rises and falls as well as the seasonal peaks between April and June. The stream flow, calibrated salinity model, and the observed continuous and spot records are shown in Figure 6-4 and

Figure 6-5. Typically, the model is conservative, tending to overestimate the salinity in the system. This was necessary to allow the model to reach the peaks in the observed records. The salinity model was applied over the available date range of flow data from 1980 to 2007 to extend the period over which the scenarios can be assessed.

Associated Water Management Scenarios

Figure 6-2 Utopia Downs Salinity Model - 1997 to 2007

Figure 6-3 Utopia Downs Salinity Model - 1975 to 2007

Associated Water Management Scenarios
Section 6

Figure 6-4 Taroom Salinity Model - 1993 to 2007

Figure 6-5 Taroom Salinity Model - 1980 to 2007

Associated Water Management Scenarios

The parameters used in the salinity model for Utopia and Taroom are presented in Table 6-3 below.
Table 6-3 Dawson Salinity Model Parameters

salinity Ramp Model Parameter	Scenarios $\mathbf{1 , 2 , 3}$ (Utopia)	Scenario (Taroom)	Units
High Flow salinity Reset to Minimum Concentration	100	2000	ML / d
Max Concentration	375	300	mg / L
Minimum Concentration	80	80	mg / L
Ramp Change Concentration	200	215	mg / L
Flow Decreases - salinity Increase - Below salinity Ramp by:	10	7	mg / L per day
Flow Decreases - salinity Increase - Above salinity Ramp by:	2	3	mg / L per day
Flow Increase - salinity Decrease by:	1.5	5	mg / L per day

6.5 Results and Interpretation

To assess the environmental impacts on the Dawson River as a result of future associated water production, 24 models were developed in accordance with the scenarios and parameters defined in Table 6-1. A statistical overview of the modelled results of each scenario is presented in Table 6-4 and graphically in Figure 6-6. The results show:

- Minimum salt concentration of the mixed stream (during large runoff events);
- Average salt concentration;
- Maximum salt concentration (typically the concentration of the associated water);
- $\quad 25 \%$ of days the mixed stream salt concentration is equal to or less than Lower Quartile;
- 50% of days the mixed stream salt concentration is equal to or less than Median;
- 75% of days the mixed stream salt concentration is equal to or less than Upper Quartile; and
- $95^{\text {th }}$ Percentile representing the value that 95% of the stream salt records are below.

Associated Water Management Scenarios

Section 6

Table 6-4 Summary of Scenarios - Mixed Stream Salt Concentrations (mg/L)

The Dawson River at Utopia Downs and Taroom has been observed to be ephemeral under certain times of the year. Further, the base flow within the stream is often very low, in the order of a few ML/day. During periods of no flow, the only flow in the stream is the associated water discharge, thereby resulting in a salt concentration in the system equal to that of the production water. This has been found to skew the average and quartiles towards higher salt concentration.

[^28]Associated Water Management Scenarios

Figure 6-6 Summary of Scenarios - Mixed Salt Concentration in Dawson River

Associated Water Management Scenarios

Section 6

6.5.1 Scenario 1 - Additional Direct Discharge to Grade

Of the predicted discharge, all scenarios assume $4.5 \mathrm{ML} / \mathrm{d}$ will continue to be discharged to grade and $6.0 \mathrm{ML} / \mathrm{d}$ will be directed to Pony Hills Desalination Plant. A 25% volume reduction is anticipated due to treatment; thus output from Pony Hills is $4.5 \mathrm{ML} / \mathrm{d}$. The allocation of the remainder of produced associated water varies by scenario. In Scenario 1, the remaining associated water is discharged to grade untreated at Utopia Downs. For each scenario, a figure displays the current conditions and the range of predicted salt concentrations based on future CSG production. Figure 6-7 shows the Utopia salinity model representing natural stream conditions, in addition to the salinity model based on minimum ($9.2 \mathrm{ML} / \mathrm{d}$) and maximum ($52.5 \mathrm{ML} / \mathrm{d}$) predicted future production.

Figure 6-7 Scenario 1 - Mixed Stream salinity Concentration - Future Projected Production

Associated Water Management Scenarios

Section 6

6.5.2 Scenario 2 - Central Treatment Plant

Scenario 2 represents treating any additional discharge at a new central treatment plant. The additional discharge is equal to the predicted production minus the $4.5 \mathrm{ML} / \mathrm{d}$ already discharged to grade and $6.0 \mathrm{ML} / \mathrm{d}$ directed to Pony Hills Treatment Plant. Figure 6-8 shows the Utopia salinity model (natural stream conditions), in addition to the minimum ($9.2 \mathrm{ML} / \mathrm{d}$) and the maximum ($52.5 \mathrm{ML} / \mathrm{d}$) predicted future production. This represents the current and likely range of future production within Fairview. Of interest is that, as more associated water is being produced, the mixed stream salt concentration tends to match natural stream conditions. This is due to the significantly reduced salt concentration of water treated at the Central Treatment Plant ($228 \mathrm{mg} / \mathrm{L}$ as compared to $1339 \mathrm{mg} / \mathrm{L}$ of water that is directly discharged). As the ratio of treated to untreated water becomes greater, the mixed stream salt concentration tends towards the treated concentration, and therefore natural background levels.

Figure 6-8 Scenario 2 - Mixed Stream Salt Concentration - Future Projected Production

Associated Water Management Scenarios

Section 6

6.5.3 Scenario 3 - Additional Future Production to Irrigation

Scenario 3 represents directing additional discharge to irrigation. The additional discharge is equal to the predicted production minus the $4.5 \mathrm{ML} / \mathrm{d}$ already discharged to grade and $6.0 \mathrm{ML} / \mathrm{d}$ directed to Pony Hills Treatment Plant. Figure 6-9 shows the Utopia salinity model (natural stream conditions), in addition to the minimum ($9.2 \mathrm{ML} / \mathrm{d}$) and the maximum ($52.5 \mathrm{ML} / \mathrm{d}$) predicted future production. This represents the current and likely range of future production within Fairfield. As no additional flow is being released into the Dawson River at Utopia Downs, the modelled scenarios overlap. The increase in salt concentration is representative of 4.5 ML per day being discharged directly to grade and a further 4.5 ML per day being discharged from the Pony Hills treatment plant.

Figure 6-9 Scenario 3 - Mixed Stream Salt Concentration - Future Projected Production

Associated Water Management Scenarios

Section 6

6.5.4 Scenario 4 - Additional Direct Discharge to Grade at Taroom

Scenario 4 represents piping untreated associated water to Taroom for discharge. The additional discharge is equal to the predicted production minus the $4.5 \mathrm{ML} / \mathrm{d}$ already discharged to grade and $6.0 \mathrm{ML} / \mathrm{d}$ directed to Pony Hills Treatment Plant. Piped water is untreated and remains at the salt concentration of associated water as it is produced and therefore behaves similarly to Scenario 1. The primary difference is that water is discharged at Taroom in Scenario 4 and to Utopia Downs in Scenario 1. Figure 6-10 shows the Taroom salinity model (natural stream conditions), in addition to the minimum (9.2 ML per day) and the maximum (52.5 ML per day) future production. This represents the current and likely range of future production within Fairfield.

Figure 6-10 Scenario 1 - Mixed Stream Salt Concentration - Future Projected Production

Conclusions

Flows

A rainfall-runoff model has been developed for the Upper Dawson River catchment (and Fairview Field) within the limits of the available data. The model is representative of the observed stream gauging records and allows prediction of the most important flow regimes (zero, low and medium flows) required to assess changes in salinity and flow arising from potential discharges of associated water. Many of the high flow events have not been successfully matched. Attempts to model these peak flows further lead to poor fits in the lower flows. It is likely that the reason for this inability to balance high and low flow modelling is associated with poor representation of rainfalls across the catchment due to limited gauge records. However, impacts of regional groundwater discharges into the Dawson River may also have an some effect on the model parameterisation.

An independent development of the model in an alternative modelling package found similar modelling limitations and confirmed the work performed by URS.

Under-estimates of peak flows will generally produce conservative estimates of dilution (and hence higher salinities under flood events) than would be observed in reality.

Salinity

Modelling shows that discharge of untreated associated water to streams around Fairview or to the Dawson River at Taroom will increase the salinity once the assimilative capacity is exceeded. The spring inflows at Dawson's Bend provide significant "freshwater" inflows especially from the bed of the River.

For the Pony Hills Treatment Plant, permeate discharge treated up to $500 \mathrm{uS} / \mathrm{cm}$ will be assimilated into the existing flow regime downstream of the springs at Dawson's Bend, with a very high certainty of achieving the regional water quality objectives for the river at that point. However, as volumes of associated water discharge increase under the proposed Central Water Treatment Plant the assimilative capacity of the stream is exceeded unless higher levels of desalinisation are adopted.

Temperature

Modelling of instream temperatures also shows the persistence of a temperature effect downstream is related to the volumes of discharge and the relative temperature of the discharge compared with the ambient environment.

Under low flow scenarios and temperature maintained within $+5^{\circ} \mathrm{C}$ of ambient conditions the persistence of a $1^{\circ} \mathrm{C}$ temperature difference would be at worst case 2.5 km downstream, but most scenarios indicate that temperatures will equalise within 1 km . Where associated water is released at $\sim 40^{\circ} \mathrm{C}$, the distance required before temperatures return to within $1^{\circ} \mathrm{C}$ of ambient are up to 10 km in dry season and 5 km in wet season.

Under high flow scenarios and temperature maintained within $+5^{\circ} \mathrm{C}$ of ambient, the persistence of a $1^{\circ} \mathrm{C}$ temperature difference instream would be at worst case 12.5 km in dry season and $\sim 9 \mathrm{~km}$ in wet season.

The significant spring flows entering the Dawson River circa Dawson's Bend also offer significant ameliorating effect on temperatures. Modelling suggests that even if the water temperature of associated water is not reduced below $40^{\circ} \mathrm{C}$ when discharged, the spring flows will reduce the plume length to $\sim 1.5-2 \mathrm{~km}$. With temperatures of associated water maintained within $5^{\circ} \mathrm{C}$ of ambient the plume length is reduced to less than 1 km.

Results generated in this report will be considered as part of the overall risk assessment of discharging associated water to grade.

URS Australia Pty Ltd (URS) has prepared this report in accordance with the usual care and thoroughness of the consulting profession for the use of Santos and only those third parties who have been authorised in writing by URS to rely on the report. It is based on generally accepted practices and standards at the time it was prepared. No other warranty, expressed or implied, is made as to the professional advice included in this report. It is prepared in accordance with the scope of work and for the purpose outlined in the Proposal dated 12 October 2007.

The methodology adopted and sources of information used by URS are outlined in this report. URS has made no independent verification of this information beyond the agreed scope of works and URS assumes no responsibility for any inaccuracies or omissions. No indications were found during our investigations that information contained in this report as provided to URS was false.

This report was prepared between October 2007 and January 2009 and is based on the conditions encountered and information reviewed at the time of preparation. URS disclaims responsibility for any changes that may have occurred after this time.

This report should be read in full. No responsibility is accepted for use of any part of this report in any other context or for any other purpose or by third parties. This report does not purport to give legal advice. Legal advice can only be given by qualified legal practitioners.

Flow Model Development

E2 Background

The basic architecture of the E2 modelling framework consists of a subcatchment-node-link system based on two previous software packages, the Environmental Management Support System (EMSS) and the Integrated Quality and Quantity Model (IQQM). E2 allows for the generation of flow and materials in subcatchments and then onto a node where they are routed and possibly processed along a link.

Within E2 sub-catchments are broken up into 'functional units' that represent areas of similar behaviour or response. These can be various combinations of land use or cover such as forestry or grazing, management techniques or even position in the landscape such as ridge, floodplain, etc. Each FU can then have various models describing processes of runoff generation, constituent generation and filtering.

A.1.1 Australian Water Balance Model (AWBM)

The Australian Water Balance Model (AWBM) is a catchment water balance model capable of relating rainfall and evaporation to runoff on an hourly or daily time step. It has a total of eight parameters with the model containing three conceptual stores (C1-C3) with area representation (A1-A3 summing to 100% of the total area) plus surface and baseflow recession constants and a baseflow index. The relative sensitivity of each parameter can vary depending on the value of the others; however the model is generally most sensitive to the recession constants and baseflow index (Argent et al, 2007a). Figure A-1 shows a conceptual diagram of the model and Table A-1 details the AWBM parameters and their default settings.

Figure A-1 Australian Water Balance Model (AWBM)

Flow Model Development

Appendix A
Table A-1 Definition of AWBM parameters and their default values

Parameter	Definition	Units	Max	Min	Default value
Base flow index (BFI)	The ratio of baseflow to total flow in the stream flow	none	1.0	0	0.35
Daily surface flow recession constant (KS)	Determines the rate at which the surface flow runoff store is depleted	Day $^{-1}$	1.0	0	0.35
Daily base flow recession constant (BS)	Determines the rate at which the base flow store is depleted	Day $^{-1}$	1.0	0	0.95
A1	Partial area of surface store 1	None	1.0	0	0.134
A2	Partial area of surface store 2	None	1.0	0	0.433
C1	Capacity of surface store 1	mm	50	0	7
C1	Capacity of surface store 1	mm	200	0	50
C1	Capacity of surface store 1	mm	500	0	150

(Source: Based on Argent et al, 2007a)
The model works by calculating the water balance for each partial store independently of the others at the desired time step. The water balance is calculated as:

$$
\text { Store }_{n}=\text { Store }_{n}+\text { Rain }- \text { Evaporation (where } \mathrm{n}=1-3 \text {) }
$$

When the amount of moisture in the store exceeds its capacity, runoff occurs. Part of the runoff can then be used to recharge the baseflow. This is calculated as:

Baseflow recharge $=$ BFI \times Rainfall Excess
The remainder of the excess then becomes surface runoff. The baseflow store is then depleted at a rate of:
Baseflow depletion= $\left(1.0-\mathrm{K}_{\text {base }}\right) \times$ Baseflow store
(Where $\mathrm{K}_{\text {base }}$ is the daily baseflow recession constant)
In larger catchments flows often arrive from different areas at different times and it may be necessary to attenuate some flows. This is achieved in the model by a surface store whereby the discharge is controlled by the daily surface flow recession constant ($\mathrm{K}_{\text {surf }}$):

Surface flow routing $=\left(1.0-\mathrm{K}_{\text {surf }}\right) \times$ Surface store
Changing the values of the two recession constants allows the shape of the flood hydrograph to be altered. Higher values of both constants give slower recessions and hence longer falling limbs. Therefore they can be used to simulate different catchment conditions. The value of BFI also dictates how much of the rainfall excess is directed to either runoff or baseflow. This is important in allowing the model to capture different types of geology and catchment morphology.

Flow Model Development

A.1.2 Network Creation

E2 accepts a variety of spatial data to determine the catchment network and land use. Digital elevation models (DEM) can be used to automatically generate the subcatchment network required for the modelling process. However, Rob Argent (an E2 developer) advised against use of DEMs for this process since data preprocessing to connect gaps, identify stream flow direction, and fill pits can be extremely time intensive and could be especially problematic when dealing with the highly ephemeral nature of the stream network in the study area. For this reason, the use of GIS shape files was used to represent the subcatchments and the stream network was drawn in manually within E2. This means that while catchment area is calculated within E2 for the purpose of runoff generation, there is no explicit spatial representation of the stream network.

A. 2 Data Collation and Preparation

Construction of the E2 model required the following data:

- Subcatchments were delineated based on major stream confluences and areas of interest using ArcGIS. Subcatchments were first converted into a raster, then an ascii grid file for entry into E2, which recognizes its spatial reference. The stream network was manually drawn on top of the subcatchments using nonspatially referenced links and nodes.
- Functional units must be identified upon initial construction of the E2 model and cannot be altered thereafter. Functional units are typically based on land use and associated hydrologic behaviour. Based on land use data obtained from Queensland DNRW, the land is predominantly grazing. With no data to distinguish behavioural differences across the Dawson catchment, land use was determined to not be influential or required in model development. Therefore, the model uses only a single functional unit covering all areas.
- One of the challenges encountered in building the E2 model was loading the input rainfall files into the model. Initially the model was developed using SILO gridded rainfall data. Daily gridded rainfall files (0.25 degree cell size which is approximately $28 \mathrm{~km} \times 28 \mathrm{~km}$) were purchased from SILO through BOM. Daily files were available from April 1997 through mid-February 2008. URS utilized a 10 year calibration period from April 1997 through March 2007 with subsequent months providing a validation period. The publicly released version of E2 is unable to process the gridded files directly. Therefore URS created an automated process to convert all grids to Lambert Conformal Conic projection, then calculate zonal statistics (an area weighted average) over all cells within a given subcatchment to produce an input rainfall file for each subcatchment containing a time series of daily rainfall. The input rainfall file was in space delineated text (.sdt) format in the form 'year month day value'.

During the calibration of the Dawson River catchment model it was found that significant variations existed between the gridded rainfall input and observed discharge at the gauges, which prompted a more thorough investigation into the accuracy of the input rainfall data. A comparison was made between gridded rainfall data and point data from rainfall stations located within Dawson catchment. Despite both data sets being sourced from the Bureau of Meteorology, there were major differences in the quantities and distribution of rainfall. It was decided to construct a new E2 model replacing the gridded rainfall input with the point data rainfall.

A total of 48 gauges around Dawson catchment were used to generate a rainfall input file for each subcatchment. Rainfall gauge data was available for its entire operational life. Many of the gauges had records extending back to 1900 or even earlier. However, it was decided to model the time period from

Flow Model Development

Appendix A
January 1975 to December 2006. The decision to model over this time period was two fold, to maximise the number of data points available (most gauges did not become operational till mid-last century or later) and to ensure that modern measuring procedures were undertaken. Where multiple gauges were available within a single subcatchment, the rainfall observed at these gauges was averaged to produce a single rainfall input for the catchment. Where no gauges existed within the subcatchment, rainfall data from the nearest gauges were used. Where there were missing days for a given gauge, data was infilled from adjacent gauges.

The results from E2 were exported into Excel to compare (1) E2 model with point rainfall input, (2) E2 model with SILO rainfall input, and (3) E2 model with observed discharge at the lower Dawson River gauge. Basic findings were that with minimal preliminary calibration, hydrographs are generally better aligned with point rainfall input rather than SILO rainfall input, with the E2 model better matching the peaks and rise and fall. The overall conclusion is that the point rainfall data better reflects the discharge data at Dawson than the SILO gridded data. It was therefore decided to continue the modelling and calibration using the point rainfall data as inputs. However, there are still limitations in the quality of the hydrologic model due to the averaging of the rainfall data over multiple gauges, the necessity of using gauges outside of the subcatchment and due to many of the rainfall records being incomplete.

- A single evaporation input file was applied across the entire catchment based on the nearest recording station at Taroom with gaps filled by data from the next nearest stations.
- Continuous daily or hourly discharge data was available for four stream gauging stations in the Dawson catchment. The gauge names, IDs and years of data used in the development of the model are as follows:
- Dawson River at Taroom (130302A) - 1/1/1980 to 31/12/2006
- Dawson River at Utopia Downs (130324A) - 1/1/1975 to 31/12/2006
- Hutton Creek at Fairview (130342A) - 1/1/1975 to 29/9/1988
- Juandah Creek at Windamere (130344A) - 1/1/1975 to 31/12/2006

Some of this data was initially presented in an hourly time step and occasionally multiple daily spot times. The processing of this data into a daily timestep required specific VBA looping macros in Excel. Discharge data was used to calibrate the water balance model. Two of the gauges within the Dawson catchment was complete over the 32 years of rainfall input being applied, these were Dawson River at Utopia Downs and Juandah Creek at Windamere.

- Continuous daily or hourly EC data was also available from two NRW stream gauging stations. These included the two gauging stations located on the Dawson River (Utopia Downs and Taroom). Other various spot monitoring water quality samples from NRW and URS sampling were used in combination with the continuous data to the salinity model. EC values were converted into salt concentration (mg / L) as follows:

$$
\mathrm{EC}(\mu \mathrm{~S}) \times 0.67=\text { salinity }(\mathrm{mg} / \mathrm{L})
$$

(NRW fact sheet: Measuring salinity, 2007)
URS has also been engaged in a program of water quality monitoring within the study area for this and other related studies. This data will be used to further refine the models next year. Background EC levels were based on various borehole data in the study area.

A. 3 Model Calibration

A.3.1 E2 Calibration Tools

E2 contains a separate calibration tool that can be used to calibrate separate aspects of the model. Four types of calibration tool are available:

- Subcatchment flow - to calibrate the water balance models
- Link flow - to calibrate flow routing
- Subcatchment constituent - to calibrate constituent generation and filter models
- Link constituent - to calibrate the in-stream constituent models

Within the calibration process, the catchment may be cropped to allow calibration of sub areas such as groups of subcatchments. This is intended to allow different parts of the catchment to be calibrated separately based on the location of gauges, dams etc.

Unfortunately, the calibration tool within E2 is manually very intensive, requiring upwards of hundreds of parameters to be assigned before the automatic processors take over. For example, the Dawson River catchment with 44 subcatchments (22 main subcatchments plus the 22 small nodes necessary for discharge injection) with one functional unit and the 8 AWBM parameters would require 352 separate manual inputs ($44 \times 1 \times 8=352$). Further, after an initial run it was found that the automatic calibration was not sufficiently quick or accurate enough. A manual approach to calibration was taken for the final refinement of the E2 model.

A.3.2 Rainfall Runoff Library (RRL)

After an initial attempt to calibrate the water balance in E2 yielded poor results, research indicated that some additional software might provide a more detailed set of tools for calibration. The Rainfall Runoff Library (RRL), also available from the CRC for Catchment Hydrology as part of the catchment modelling toolkit (www.toolkit.net.au/rrl), was utilised. The software contains 5 different Rainfall-Runoff models (including the AWBM) along with 8 calibration optimisers and 10 objective functions. Unlike E2, the use of the calibration optimisers largely automates the process so that many calibration iterations can be run without the need to constantly input parameter values.

The model differs from E2 in that it is a lumped model (it has only a single surface) and therefore is not able to model spatial variation in catchment characteristics such as changes in rainfall or runoff characteristics, or able to account for lag. It is therefore most useful on smaller catchments without upstream inflows. Reference is often made in literature of the advantages of water balance model calibration in the RRL due to its advanced functionality (e.g. Xu and Argent, 2005).

Because RRL is a lumped model, it only requires a single rainfall file as well as an evaporation record and an observed flow record for calibration. Catchment area is also required. The rainfall file initially used was simply created by averaging the existing rainfall files. Because RRL only allows headwater catchments to be modelled (an observed flow cannot be assigned as an input to a subcatchment), its usefulness is limited to providing an initial starting point on which to begin further refinement.

The choice of calibration optimiser came down to the best performing one - the shuffled complex evolution (SCE-UA). The objective function was again the Nash-Sutcliffe coefficient of efficiency (CE). The initial results were far more promising than default parameters in E2. The combination of the calibration optimiser to run

Flow Model Development

Appendix A

several hundred iterations plus the ability to manually adjust the parameters with real-time results quickly enabled CE to be achieved on a daily time step.

Attempts to calibrate the Juandah Creek catchment using the RRL auto calibration feature yielded a CE result of 0.623 . However, typically the modelled runoff was found to be under predicting during large runoff events, missing many of the smaller events and introduced many false positives. Using RRL, the AWBM parameters were manual manipulated to calibrate the catchment using visual cues. This reduced the mathematical objective CE function to 0.609 . The rainfall-runoff model was improved such that cease to flow and low flow, the critical flow regimes for salinity modelling, better matched the observed records. Further, the high flows were better aligned, however little to no improvement could be achieved for medium level runoff events without introducing additional low flow noise. A comparison between the observed flow at Juandah Creek and the modelled flow is shown in Figure A-1.

Figure A-2 RRL Flow Calibration at Juandah Creek

Flow Model Development

Appendix A

Unfortunately, no other gauging station with Dawson River catchment could be considered a headwater. The gauge with the second least catchment area was Hutton Creek catchment consisting of approximately 2870 sq km and considerable routing, which resulted in the RRL model producing poor results. It was decided to abandon the RRL for any further calibration and instead use AWBM parameters for Juandah Creek as a starting point and do all the refinements in the more sophisticated model in E2.

A. 4 Quality Assurance of E2 Flow Modelling Package

Early in the model development significant discrepancies between observed and modelled flow in the Dawson catchment created uncertainty regarding the capabilities of the designed E2 models to replicate current conditions in the Dawson River catchment. Subconsultants from HydroTasmania were contracted to replicate the Dawson hydrologic model using Kisters Modelling Hydstra software which they've used extensively to model approximately 70 catchments around Tasmania.

The comparative exercise proved interesting and useful. First, it was observed that a key parameter in Hydstra model calibration is the upper limit on baseflow, while E2 does not provide a variable for adjusting or limiting baseflow, thus seemingly allowing for infinite groundwater storage. Secondly, Hydstra is able to apply seasonality on soil stores, whereas E2 parameters are limited to a single number, applied throughout the entire time series.

In a comparison between E2 and Hydstra models created with identical parameters, the models produced very similar results for a single subcatchment (same peaks, same capture of events, slightly different recession curves). However, when complexity was added in modelling the entire Dawson catchment (22 subcatchments), discrepancies became more apparent, suggesting that E2 fell short of accurately representing channel routing.

They came to the same conclusion, namely that the model can be calibrated well for individual events but the parameters remain event-specific; they also achieved similar degrees of model fit and obtained similar parameter values for the AWBM.

Both models severely underestimated flow volume for many events, which prompted a more thorough investigation of the input rainfall data. Even if the peaks could be matched with rising and falling limbs, it would be impossible to "create" additional volume. With dogged differences between rainfall and observed discharge at the Taroom gauge, it is difficult to fathom model replication of observed conditions.

It should be noted that both Dawson models were produced using SILO rainfall data which was later proved to be of questionable quality, showing surprising differences from the point rainfall data also sourced from BOM. E2 models were reconstructed using point rainfall gauge data, which resulted in a much better calibration. A Hydstra model utilising point rainfall gauge data was never built.

Temperature Model Development

B. 1 Model Data

Flow data collected from a stream gauge on Dawson River at Hutton Creek provided historic flow rates. The gauge at Hutton Creek has no facilities for recording water quality of the stream. Therefore it was necessary to source water quality data from a nearby stream gauging station. The closest gauge with a continuous record of stream temperature was found to be a gauge on Dawson River located at Taroom.

To ascertain the winter and summer water temperatures regimes, the available data was sorted by month, then amalgamated by season before being averaged. The data was graphed and the averages plotted. From investigation it was found that whilst fluctuation in water temperature existed during individual months, the seasonal temperatures remain largely constant. During wet season months the water temperature averaged $27^{\circ} \mathrm{C}$, whilst during the dry season the temperature variation was greater, averaging $17^{\circ} \mathrm{C}$.

Over the course of a day, the stream temperature was found to fluctuate on average by $1^{\circ} \mathrm{C}$. The historic stream temperature at Hutton Creek and the average wet and dry season temperatures are shown in Figure B-1.

Figure B-1 Historic Stream Temperatures at Hutton Creek
Unlike stream temperature, the flow rate in Hutton Creek was found to be highly variable. For most of the wet and dry season, Hutton Creek ceases to flow. Further, flow in the creek was found to be highly variable. As previously discussed, low flow (base flow) will be critical as less volume will result in less dilution of the mixed temperature stream.

To find the base flow in Hutton Creek, several steps were required. Initially the flow data was filtered by seasonality, then sorted by flow. The sorted and filtered data was plotted in a graph and presented in Figure B2. The axis of Figure B-2 has been reduced to highlight the transition between base flows and high flow/freshes. From inspection of Figure B-2 the wet season has an average base flow of 50ML/d, whilst the dry season has on average half the flow at $25 \mathrm{ML} / \mathrm{d}$.

Temperature Model Development

Figure B-2 Filtered and Sorted Historic Flow in Hutton Creek
In addition to stream flow and temperature data, QUAL2K requires the input of air and dew point temperature, wind speed, and other rate constants associated with temperature loss from the system. This data was taken, where available, from historic data recorded at the Injune post office weather station with Injune being the closest weather station to the Hutton Creek. The historic data was sourced from the Australian Bureau of Meteorology climate data online website. QUAL2K allows different parameters to be set on an hourly basis to allow for changes in weather over a day. To account for this variability three time zones were developed for the model;

- Morning to Midday (5am-1pm), using historic average data recorded at 9am;
- Midday to Evening (1pm-12am), using 3pm data; and
- Night (12am-5am), using data corresponding to the coldest period of the day, i.e. average daily minimum temperature.

Salinity Model Development

C. 1 E2 Limitations

The original plan was to model salinity in conjunction with flow using E2; however, many limitations rendered E2 unfit for this purpose. Event Mean Concentration/Dry Weather Concentration (EMC/DWC) was identified as an appropriate constituent model to capture high salinity in low flow and low salinity in high flows. The initial approach to apply the EMC/DWC model to the existing stream network was inadequate due to the fact that the model type is intrinsically linked to the Rainfall-Runoff model applied to each functional unit. This means that predicted salt concentration would be dependent on the amount of runoff generated by the water balance model. While this is acceptable for the purpose of generating background EC levels, it would not be appropriate for the purpose of modelling fixed discharges from CSG wells.

Innovative design was used to trick E2 into correctly modelling fixed discharges from the CSG wells. Ultimately, an additional catchment of nominal area (less than one square kilometre) was added within each subcatchment. This was necessary to create a node upon which to apply input flow and salt concentration representing well discharge. This node was part of the link and node network, but served only as an input to the catchment within which it resided. All wells within the subcatchment were modelled by a single node.

The second incongruity was in the logic of the EMC/DWC model itself, which is linked to three parameters of the AWBM Rainfall-Runoff model (BFI, Kbase, and Ksurf) rather than flow. If all flow is directed to Kbase, E2 flatlines at the DWC concentration. Similarly, if all flow is directed to Ksurf, E2 flatlines at the EMC concentration. If the flow is split between equal Kbase and Ksurf using the BFI parameter, E2 flatlines at an average of the EMC and DWC concentrations. Where Kbase and Ksurf differentiate from each other, E2 fluctuates inconsistently with flow and observed salt concentrations.

A third complication is that E2 calibration of salinity requires adjustment of AWBM parameters, which would inherently alter the calibration of flow. Preliminary calibration efforts without regard to the effect on flow suggested that E2 would not effectively align to observed data. Overall, E2 modelling of salinity was neither representative nor defendable.

A comparison of the observed and E2 modelled salt concentration at the Comet River at AMTD 17.2km gauging station (Comet River Catchment) is shown in Figure C-1.

Figure C-1 (blue) and Observed Salinity (red) at Comet River

C. 2 Model Sophistications

A basic empirical algorithm was developed to replicate observed salinity trends. When the flow is zero, the salt concentration is assumed to be zero. The model is based on a minimum and maximum salt concentration with fluctuation based on flow levels. When flow equals or exceeds a selected high flow, the model triggers reset to the minimum salt concentration. Salinity is expected to decrease in high flow and increase in low flow. The amount of daily incremental change in salinity was determined based on the rates of increase and decrease of observed salinity such that the final algorithm best fits the observed salinity curve.

Starting with a simple algorithm, three different modelling sophistications were trialled including (1) introduction of seasonality, (2) a ramp from a first maximum concentration to a second peak concentration, and (3) salinity responsive to flow flux.

Seasonality was noticed to be particularly relevant for Taroom, where many of the surges in salinity occur annually during a three month period from March to June. A simple extension of the basic algorithm allows the salinity to be capped at a higher maximum during these months. Seasonality appeared less relevant at Utopia and other stream gauges. Seasonal salinity model parameters (Table C-1) include three flow levels at low, medium, and high flow. An incremental increase is applied to salinity between low and medium flow while an incremental decrease is applied to salinity between medium and high flow.

The ramp approach appeared to apply more consistently across gauges, and is based on the premise that for decreasing flow, one incremental increase rate is applied up to a preset 'ramp change concentration' followed by a second incremental increase rate applied above the 'ramp change concentration' (Table C-2). A third incremental rate applies when flow increases, thus reducing the salinity by a fixed amount each day. This

Salinity Model Development

method tends to overestimate salinity over extended time periods (conservative) while capturing more of the spikes in salinity.

The flow flux sophistication was an attempt to make salinity estimates more sensitive to changes in flow. The flow flux salinity model parameters (Table C-3) also include three flow levels at low, medium, and high flow. Below the low flow level, salinity was incrementally increased at a set rate. Between low and medium flow, salinity was incrementally increased when the flow dropped from the previous time step, while it was incrementally decreased when the flow increased. Between medium and high flow, salinity was incrementally decreased at a set rate.

Table C-1 Seasonal Salinity Model Parameters

Max Concentration (Jul-Mar)	200	mg / L
Max Concentration (Apr-June)	250	mg / L
Minimum Concentration	80	mg / L
High Flow Salinity Reset to Minimum Concentration	345	ML / d
Medium Flow	170	ML / d
Low Flow	25	ML / d
Salinity Decrease between medium and high flow	1	mg / L per day
Salinity Increase between low and medium flow	5	mg / L per day

Table C-2 Ramp Salinity Model Parameters

Max Concentration	375	mg / L
Minimum Concentration	80	mg / L
High Flow Salinity Reset to Minimum Concentration	100	ML / d
Ramp Change Concentration	200	mg / L
Flow Decreases - Salinity Increase - Below salinity Ramp by:	10	mg / L per day
Flow Decreases - Salinity Increase - Above salinity Ramp by:	2	mg / L per day
Flow Increases - Salinity Decrease by:	1.5	mg / L per day

Table C-3 Flow Flux Salinity Model Parameters

Max Concentration	375	mg / L
Minimum Concentration	80	mg / L
High Flow Salinity Reset to Minimum Concentration	500	ML / d
Medium Flow	200	ML / d
Low Flow	80	ML / d
Between medium and high flow - salinity decrease by:	50	mg / L per day
Below low flow - Salinity increase by:	1.2	mg / L per day
Between low and medium flow - flow decrease - Salinity increase by:	10	mg / L per day
Between low and medium flow - flow increase - Salinity decrease by:	1	mg / L per day

GLNG GAS FIELD DEVELOPMENT - ASSOCIATED WATER $\begin{gathered}\text { DISCHARGE STUDY }\end{gathered}$	
Modelling of Flows, Temperature and Salinity -Condamine-Balonne	Appendix J

REPORT

Hydrologic Modelling of BallonneCondamine Catchment

Project Manager:

Project Director:

David Fuller
Senior Principal
Water and Catchments

Date:	21 January 2009 Reference:
Hydrologic Modelling of Balonne-Condamine	
Status:	Catchment
	Final

Table of Contents

1 Introduction 1
2 Modelling Objectives 4
3 Flow Modelling 5
3.1 Background 5
3.2 Model Assumptions 5
3.2.1 Subcatchment Delineation 5
3.2.2 Network Creation 5
3.2.3 Flow Routing 5
3.2.4 Simulations 7
3.3 Model Calibration 7
3.3.1 Objective Function. 8
3.3.2 Calibration Tools 8
3.3.3 Calibration Period 8
3.4 Results and Interpretation 9
4 Salinity Modelling 13
4.1 Background 13
4.2 Modelling 13
4.2.1 Model Objectives 13
4.2.2 Model Data 13
4.2.3 Model Assumptions 14
5 Associated Water Management Scenarios 16
5.1 Background 16
5.2 Scenarios 16
5.3 Modelling 17
5.3.1 User Interface to Model 17
5.3.2 Model Data 18
5.4 Model Development and Parameters 20
5.5 Results and Interpretation 23
5.5.1 Scenario 1 - Untreated Direct Discharge to Three Locations 27
5.5.2 Scenario 2 - Untreated Direct Discharge to Bungil Creek 29
5.5.3 Scenario 4 - Treated Direct Discharge to Three Locations 31

Table of Contents

5.5.4 Scenario 5 - Treated Direct Discharge to Bungil Creek. 33
5.5.5 Scenario 6 - Treated Piped Discharge to Surat Weir 34
6 Conclusion 35
7 Limitations 36

Tables, Figures \& Appendices

Tables
Table 3-1 Summary of Final AWBM Calibration Parameters 10
Table 3-2 - Summary of Routing Parameters 10
Table 5-1 Flow (ML/d) for Roma Scenarios 19
Table 5-2 Input EC (mg / L) for Roma Scenarios 20
Table 5-3 Roma EC Model Parameters 23
Table 5-4 Summary of Scenarios - Mixed Stream EC Concentrations (mg/L) 23
Table 5-5 Summary of Scenarios - Mixed Stream EC Concentrations (mg/L) 24
Tables (within appendices)
Table A-1 Definition of AWBM parameters and their default values
Table B-1 Seasonal Salinity Model Parameters
Table B-2 Ramp Salinity Model Parameters
Table B-3 Flow Flux Salinity Model Parameters
Figures
Figure 1-1 Balonne-Condamine Catchment and Study Area Location 1
Figure 1-2 Major Streams within Balonne-Condamine Study Area 2
Figure 3-1 Subcatchment Delineation and Stream Gauge Locations 6
Figure 3-2 E2 Subcatchment Network 7
Figure 3-3 Hydrograph of E2 Modelled (Blue) and Observed (Red) Runoff 1994 to 2006 11
Figure 4-1 Trialled EC Modelling Sophistications at Utopia 15
Figure 5-1 Future Predicted Associated Water Production in Roma 18
Figure 5-2 Bungil Creek EC Model - 1975 to 2006 21
Figure 5-3 Wallumbilla Creek EC Model - 1975 to 2006 21
Figure 5-4 Yuleba Creek EC Model - 1975 to 2006 22
Figure 5-5 Surat Weir EC Model - 1969 to 2007 22
Figure 5-6 Summary of Scenarios - Mixed EC Concentration in Roma Catchment 26
Figure 5-7 Scenario 1 - Untreated Discharge - Bungil Creek 27
Figure 5-8 Scenario 1 - Untreated Discharge - Wallumbilla Creek 28
Figure 5-9 Scenario 1 - Untreated Discharge - Yuleba Creek 28
Figure 5-10 Scenario 2 - Untreated Direct Discharge to Bungil Creek 29

	HYDROLOGIC MODELLING OF BALONNE-CONDAMINE CATCHMENT	
	Tables, Figures \& Appendices	
Figure 5-11	Scenario 3 - Untreated Piped Discharge to Surat Weir	30
Figure 5-12	Scenario 4-Treated Discharge at Bungil Creek	31
Figure 5-13	Scenario 4 - Treated Discharge at Wallumbilla Creek	32
Figure 5-14	Scenario 4 - Treated Discharge at Yuleba Creek	32
Figure 5-15	Scenario 5 - Treated Discharge at Bungil Creek	33
Figure 5-16	Scenario 6 - Treated Piped Discharge at Surat Weir	34

Figures (within appendices)
Figure A-1 Australian Water Balance Model (AWBM)
Figure A-2 RRL Flow Auto-Calibration at Bungil Creek
Figure A-3 Rainfall Gauge Data vs Runoff at Bungil Creek
Figure A-4 Cumulative Mass Graph
Figure A-5 Yuleba Creek Specific Event RRL Runoff Results
Figure B-1 E2 (blue) and Observed Salinity (red) at Comet River

Appendices

A Flow Model Development
B Salinity Model Development

Associated water is typically a by-product of Coal Seam Gas (CSG) development and its management is an integral aspect of the Gladstone Liquid Natural Gas (GLNG) project. Santos is considering a range of water management options including evaporation, stock watering, discharge to grade, treatment, injection, irrigation, and beneficial reuse. However, the focus of this report is on discharge to grade and potential changes in hydrology and salinity that may arise instream under a range of scenarios. This information will be used within an ecological risk assessment framework to assess risks to environmental values identified in the study area.

The report focuses on the technical aspects of model development and prediction and does not draw conclusions on the impacts of CSG development or alternative preferred management options.

Study Area

The area of study includes three catchments: Upper Dawson River, Comet River, and minor tributaries of the Upper Balonne River. The Upper Dawson River and Comet River catchments drain to the Fitzroy Basin and ultimately to the Great Barrier Reef Lagoon. The Balonne River is part of the Murray-Darling Basin ultimately discharging via Lake Alexandrina to the Gulf of St Vincent in South Australia.

The catchments are in various states of CSG production, appraisal or development.
This report focuses on the Santos licensed areas within the Balonne-Condamine catchment (Figure 1-1).

Figure 1-1 Balonne-Condamine Catchment and Study Area Location

Major streams within the catchment are Bungil Creek, Wallumbilla Creek, and Yuleba Creek feeding into the Balonne River (Figure 1-2).

Figure 1-2 Major Streams within Balonne-Condamine Study Area

Modelling Approach

Hydrologic modelling is needed to assess the impacts of discharges on the local and regional environment. The model will be used to assess impacts of CSG production on flow regime and salinity concentration.

Various options are available to model the hydrology and water quality of the catchment. The two main candidates considered were IQQM (Integrated Quantity and Quality Model) and E2 both of which are utilised in Queensland. E2 was chosen as the main modelling platform for flow and salinity. Due to E2 salinity modelling limitations, an empirical algorithm was ultimately developed to model salinity.

Report Structure

The report presents the calibration of hydrologic and salinity models in the first two chapters. Various associated water management scenarios are then formulated and modelled. Results are presented in the final chapter.

Modelling Objectives

Section 2

The modelling objectives are:

- Develop calibrated models of flow and salinity;
- Create a flow model that is consistent with models currently used in Queensland (IQQM and E2) to enable later assessment of regional effects;
- Investigate alternative associated water management options;
- Identify the range, frequency, and extent of flow and salinity impacts from discharge of associated water to grade; and
- Provide information to support ecological risk assessment.

3.1 Background

The basic architecture of the E2 modelling framework consists of a subcatchment-node-link system, as described in Appendix A. Alternative water balance models can be selected for use within E2. For this project the Australian Water Balance Model (AWBM) was selected as the rainfall-runoff model since it is widely used and was originally developed in Queensland. A daily time step was utilised for modelling. The AWBM model utilises eight model parameters representing three conceptual water stores with area representation, surface and baseflow recession constants, and a baseflow index. Further explanation of the AWBM model and its parameters are provided in Appendix A.

3.2 Model Assumptions

3.2.1 Subcatchment Delineation

The initial model structure is based on key subcatchments to allow broad-scale assessment of water management options. The entire Balonne-Condamine catchment measures 135,848 sq km, while the Santos study area represents a fraction of the total area (approximately $16,810 \mathrm{sq} \mathrm{km}$). The Balonne-Condamine River upstream of Santos production and exploration areas is heavily regulated. Creating a model of these areas would be impossible without intimate details of each regulated structure and its operational rules.

A model was therefore built that only includes the Santos licensed areas. Results from this model may be used as input to regional DNRW models to assess regional scale impacts if required.

The model is subdivided into 20 subcatchments based on major stream confluences and particular areas of interest, such as stream gauge locations. A node exists at the outlet of each subcatchment. Additional inputs or outputs can be applied at each node. The 20 delineated subcatchments (the nodes are not shown to improve legibility) along with the stream gauges are presented in Figure 3-1.

3.2.2 Network Creation

A GIS shape file was used to represent the subcatchments, and the stream network was drawn in manually within E2. While catchment area is calculated within E2 for the purpose of runoff generation, there is no explicit spatial representation of the stream network. The E2 flow path network is shown in Figure 3-2.

3.2.3 Flow Routing

The Balonne-Condamine catchment is spatially a large catchment ($135,848 \mathrm{sq} \mathrm{km}$ in total). Runoff from the furthermost reaches can take considerable time before it is recorded at the gauging stations on the BalonneCondamine River. E2 offers several routing methods to transfer the flow through the links. These range from simple lag flow where flow is delayed with no change to the shape, to more sophisticated routing methods which can smooth the flow of the hydrograph accounting for catchment and reach storage effects. In the development of the Balonne-Condamine catchment, Laurenson non-linear routing was adopted. Laurenson non-linear routing requires the input of two factors;

$$
S(Q)=K Q^{m}
$$

Where;
$S=$ storage in the reach for a given flow Q
$\mathrm{K}=$ a dimensional empirical factor which acts as a storage delay parameter. Although K is empirical factor it should be thought of as a storage delay and thus in seconds; and
$m=$ a dimensionless empirical exponent, measure of the non-linearity of the model.

Flow Modelling

Figure 3-1 Subcatchment Delineation and Stream Gauge Locations

Figure 3-2 E2 Subcatchment Network

3.2.4 Simulations

E2 has the ability to have multiple model simulations active at any one time. This allows for easy comparison to be made between the modelled and observed data. For each location where observed data was available a separate model was constructed in order to compare E2 modelled results with observed flow measurements. At the approximate location in the E2 model of the observation gauge, the observed flow data was assigned to an outlet node of a subcatchment.

3.3 Model Calibration

Since there is limited surface flow data for many locations, and the project operates across multiple scales, it is expected that modelling will need to progress from broad calibration to more accurate calibration over time. For initial calibration, the same AWBM parameters were applied across many of the subcatchments. The main reason for this was a lack of information that could inform separate parameterisation as well as to reduce the potential degrees of freedom during calibration.

Flow Modelling

Modelling results from the Upper Dawson and Comet River catchments also initially used the same AWBM parameters throughout the entire catchment. Models did not produce results sufficiently representative of the observed gauge data. Therefore, it is expected that variation in the AWBM parameters is also necessary in the Balonne-Condamine catchment.

3.3.1 Objective Function

The selection of an appropriate objective function is an important part in validating the model performance. The choice of function is dependent on the models application and in this case the end purpose of the model is to estimate in-stream salinity levels. These levels are dependent on stream flow and consequently comparison of actual and modelled stream flow is of greatest importance. Boughton (2005) notes that in the common case of water yield analysis the most common validation of model performance is a comparison of calculated and actual monthly totals of runoff. Early studies used the coefficient of determination (r^{2}) as a measure of agreement however it is becoming increasingly common to now use the Nash-Sutcliffe coefficient of efficiency (CE) where CE is:

$$
C E=1-\sum_{t=1}^{T}\left(Q_{0}^{t}-Q_{m}^{t}\right)^{2} / \sum_{t=1}^{T}\left(Q_{0}^{t}-\overline{Q_{0}}\right)^{2}
$$

Where:
$\mathrm{T}=$ total time modelled
$Q_{0}^{t}=$ Observed flow at time t ;
$Q_{m}^{t}=$ Modelled flow at time t ; and
$\overline{Q_{0}}=$ Mean observed flow.
The value of CE lies between 1.0 (a perfect fit) and $-\infty$ where a value of less than 0 would indicate that the mean value of the observed time series would have been a better predictor than the model (Krause, Boyle and Blase, 2005). A model producing a CE value over 0.7 is considered a reasonable representation of the physical world. Calibration in E2 gives values for both r^{2} and CE; these are the only efficiency criteria calculated.

3.3.2 Calibration Tools

E2 contains a calibration tool for flow and constituents based on either subcatchments or links. As explained in Appendix A, the iterative calibration process is cumbersome given the number of links and nodes, each with 8 adjustable AWBM parameters. Automatic calibration was not found to be sufficiently quick nor accurate. Therefore, further calibration was accomplished using manual adjustment and regional application of AWBM parameters across the catchment.

The Rainfall Runoff Library (RRL) was also considered and trialled for model calibration but determined too simplistic for a study area as large as the Balonne-Condamine catchment and insufficient to capture surface flow routing (see Appendix A for further explanation).

3.3.3 Calibration Period

As described in the data compilation section of Appendix A, rainfall input files from 1975 to 2006 were developed representing 32 years of data, which were available for the calibration process. A strategic method was developed for the calibration of the E2 model. Initial attempts at calibration were focused on ensuring accuracy of the lowest flow events as the model was primarily designed to model salinity, which is at its highest
concentration during low flow events. Once a satisfactory level of calibration was achieved the calibration turned to ensuring that the high flow peaks, the total yearly runoff and the shape of the hydrograph were well represented.

The AWBM model contains storages that are initially empty when the model starts. A warm up period is often required during calibration or validation so that the stores can reach a representative value. This can be done in one of two ways. One method is to exclude the warm up period from the objective function calibration and validation periods (Argent et al, 2007b); this is not possible in E2 but can be done in RRL. Another way is to ensure the model calibration/validation period follows a period of low or zero precipitation so that it can be assumed that moisture stores are empty.

While calibrating the model over the entire range of data available is the only way to optimise the results, little indication of the models robustness can be gauged (Argent et al, 2007b) i.e. how well it performs outside of the calibration period. It was initially intended to exclude some of the available data from the calibration period to allow for a period of model validation; however, due to the difficulties in calibrating the model it was decided to include as much of the data as possible in the calibration period.

3.4 Results and Interpretation

For meaningful modelling of salinity, a well calibrated runoff model is required. A model producing a CE value over 0.7 (on a daily timestep) is considered a reasonable representation and was the target when calibrating E2. Due to the difficulty with calibrating the Bungil Creek model with the gauge data it was decided to focus modelling attention to modelling the Yuleba Creek catchment. Once this was achieved to a satisfactory level the AWBM parameters found to best fit this subcatchment would be applied throughout the greater BalonneCondamine catchment. Further, due to suspect stream data prior to 1994, it was decided to calibrate the model using only data collected after this period.

The largest difficulty encountered in the refinement of the E2 model was ensuring that small rainfall events were not causing excessive runoff. This was deemed a high priority due to the ephemeral nature of the streams in the Balonne-Condamine catchment for much of the year. To reduce the noise associated with these smaller rainfall events, it was required to set the capacity of the three stores in the AWBM model at or near the maximum advisable levels. Larger than typical AWBM soil capacity parameters were used to simulate catchment storages such as pools of standing water. This assumption was confirmed following consultation with URS employees familiar with the Balonne-Condamine catchment. These storages retard small rainfall events resulting in little to no runoff being recorded on the downstream gauging stations. However, larger rainfall events inundate the pools and significant runoff is measured at the stream gauge stations.

Increasing the storage capacities to better reflect the ephemeral nature of the streams resulted in difficulty matching peaks in high rainfall events and producing the total aggregated runoff being generated by the catchment. As has been mentioned previously, AWBM has three parameters intended to determine the rate at which the base flow store is depleted: BFI, $\mathrm{K}_{\text {base }}$ and $\mathrm{K}_{\text {surf. }}$. To ensure that flow remained in the system and that large runoff events were being captured, the parameters were set such that little of the store is depleted over time through discharge to the creek (evaporative losses from the store were maintained). Initially these parameters were set to nill. However they were increased to 0.4 to improve the shape of the falling limb of the hydrograph and better fit the observed records.

The third challenge faced by the modelling team was matching the timing of the peaks of runoff events as well as the recession curve following the event. It was found that the routing times were typically short, with routing times ranging between 12 and 24 hours. This arises from the fine delineation of the subcatchments. For all
subcatchments, Laurenson non-linear routing was adopted. After much trialling a single set of parameters were applied with a delay of 1.5 days (129600 seconds) and a measure of the non-linearity of 0.75 .

A summary of the calibrated AWBM parameters used in the final calibration are presented in Table 3-1 and the calibrated routing values are presented in Table 3-1.

Table 3-1 - Summary of Final AWBM Calibration Parameters

AWBM Parameters	Yuleba Creek Subcatchments
A 1	0.134
A 2	0.433
BFI	0
C 1	50
C 2	90
C3	200
Kbase	0
Ksurf	0.4

Table 3-2 - Summary of Routing Parameters

Laurenson Parameters	Yuleba Creek Subcatchments
K (seconds)	129600
\mathbf{m}	0.75

The end result of the calibration was a well developed model of the subcatchments upstream of the Yuleba Creek gauging station, which was producing a Nash-Sutcliff criterion of 0.75 , with a net volume difference between the E2 model and the observed runoff of 0.40%. These calibration results were achieved over 13 years of observed flow records, between 1994 and 2006. Records prior to this data were not used due to concerns over the quality of the data. A hydrograph and scatter plot showing the observed and E2 modelled runoff for the period 1994 to 2006 at the Yuleba Creek gauging station are shown in Figure 3-3 and Figure 3-4.

Overall the results produced in E2 are very similar to those observed at the stream gauge stations. The cease to flow, low and medium flow events are all accurately mirroring the observed behaviour as is the general shape of the hydrograph with falling limbs being accurately represented. Flows between 30 and $50 \mathrm{~m}^{3}$ per second were not as successfully modelled. These events could be attained however it resulted in poorer calibration of the lower flow events by introducing significant noise. It was felt that as the flow model was built with a desire to model salinity, which is critical in low flow events, that matching cease to flow and low flow events were a higher priority.

Flow Modelling

Figure 3-3 Hydrograph of E2 Modelled (Blue) and Observed (Red) Runoff 1994 to 2006

Flow Modelling
Section 3

Figure 3-4 Scatter Plot of E2 Modelled and Observed Runoff 1994 to 2006

4.1 Background

Associated water is produced as a necessary by-product of Coal Seam Gas (CSG) production. Associated water has a moderate salinity ${ }^{1}$. The discharge of this associated water into nearby streams prompted the creation of a model to evaluate potential changes in instream salinity. Salinity modelling was intended to represent the current conditions, as well as the discharge associated with additional wells to begin pumping in the future. Various management scenarios as described in Section 5.2.

The original plan was to model salinity in conjunction with flow using E2; however, many limitations rendered E2 unfit for this purpose (Appendix C). These limitations prompted URS to develop a simple empirical algorithm to reflect observed salinity variations and generate representative modelling results.

4.2 Modelling

4.2.1 Model Objectives

The above-mentioned limitations within E2 prompted URS to build a simple algorithm in Excel to produce representative salinity modelling results. The objectives of the algorithm were:

- To apply a simple algorithm consistently across Fairview, Roma, and Arcadia study locations;
- To produce conservative salinity estimates (equal to or minimally higher than observed), attempting to replicate pulses or surges when salinity may be particularly of concern;
- To duplicate current conditions whilst also accommodating additional discharge and salinity from CSG production wells and treatment plants;
- To span the date extent of available flow data, thus extrapolating unknown salinitys; and
- To produce a user-friendly interface to evaluate various water management scenarios as described in Section 5.3.

4.2.2 Model Data

The basic salinity model was created based on continuous stream flow data and observed spot EC readings converted to TDS concentrations. Where available, observed flow data was sourced from the Department of Natural Resources and Water (NRW) stream gauges for the extent of record. In areas with no stream gauges, E2 modelled flows were used. In the Balonne-Condamine catchment, flow data was used to simulate four discharge locations;

- Bungil Creek (1975-2006 using E2 modelled flow);
- Wallumbilla Creek (1975-2006 using E2 modelled flow);
- Yuleba Creek (1975-2006 using E2 modelled flow); and
${ }^{1}$ Salinity is typically measured as TDS or indirectly using electrical conductivity (EC) measured at a standard temperature (typically $25^{\circ} \mathrm{C}$). A linear relationship exists between EC (measured in $\mu \mathrm{S} / \mathrm{cm}$) and TDS (mg/L) for the range of salinities discussed in this report.

Salinity Modelling

- Balonne-Condamine River at Surat (1969-2007 using scaled flow from Weribone).

E2 flow data was necessary in Bungil, Wallumbilla and Yuleba Creek. Records exist for both Bungil and Yuleba. However these were of limited length and of questionable quality (see Section 3 for details). Only 5 years of flow at Surat gauging station were available. E2 flow was compared to this 5 year period, however due to the spatial variation in the catchment, and the regulated Balonne-Condamine River the E2 model was not representative of the observed data. Therefore to extend the observation record it was required to simulate flow at Surat. To achieve this goal, scaled flow at the nearest gauging station (Weribone on the Balonne River) was used. The Weribone gauge, being lower down the catchment has greater runoff than at Surat, it was thus necessary to scale the flow to better represent flow at Surat. A reduction of flow by 20% was deemed most appropriate.

Continuous EC data was unavailable at any of the gauging stations. Therefore, only NRW spot water quality data was available for calibration purposes.

4.2.3 Model Assumptions

The basis for the empirical salinity algorithm used for the Condamine-Balonne catchments is the model developed for the Dawson River using observed EC records from the Utopia gauging station. This model was also found to be sufficiently simple but complex enough to model salinity behaviour in the Comet River catchment. The basic model is described below.

The model is based on a minimum and maximum salt concentrations with fluctuation based on flow levels. This is similar to the high flow/low flow modelling algorithm used in E2 but allowance has been made for transition between flow states to reflect observed behaviour. When the flow is zero, salinity is assumed to be zero. When flow equals or exceeds a selected high flow, the model is reset to the minimum salt concentration. Salinity is expected to decrease in high flow and increase in low flow. The amount of daily incremental change in salt concentration was determined based on the rates of increase and decrease of observed salinity such that the final algorithm best fits the observed salinity curve.

Starting with a simple algorithm, three different modelling sophistications were trialled including (1) introduction of seasonality, (2) a ramp from a first maximum salt concentration to a second peak salt concentration, and (3) salt responsive to flow flux (Figure 4-1). The modelling sophistications are described in Appendix B. Comparison of the three modelling sophistications resulted in selection of the ramp approach being used for all salinity model simulations. The ramp approach sufficiently captures the seasonal surges between March and June. The difference in salinity prediction using the flow flux approach was negligible and the complication was deemed unnecessary and less defensible.

The model was customised for the Condamine-Balonne catchments by adjusting the model parameters to fit observed the spot salinity data.

When additional discharge and salt is introduced from CSG production wells and treatment plants, full mixing is assumed and mass balance preserved.

Results of salinity modelling are provided in Section 5.

Salinity Modelling

Figure 4-1 Trialled Salinity Modelling Sophistications at Utopia

Associated Water Management Scenarios

5.1 Background

Santos recognises that water is a precious commodity and essential for the well being of the local community both now and into the future. After carefully considering the levels of existing and proposed development within the Roma Project Area, the imperatives of the international gas industry, and the desires of the local community, Santos has proposed a mix of associated water management options.

It is recognised that the proposed options need to be reviewed within an adaptive management framework that takes into account government initiatives in regional water management and development, changing economics of the gas and water markets, opportunities for regional development, and improved knowledge and science underpinning the extraction and use of associated water. Santos is committed to this regular review as part of its planning processes.

Significant volumes of associated water will be generated over the development life of the Roma Project Area. Management options include injection, onsite reuse, stock watering, irrigation, desalination and discharge, and direct discharge.

5.2 Scenarios

To explore the boundaries of any potential impacts of associated water discharge, it is necessary to define modelling scenarios. It is prudent to explore the potential for different points and quantities of discharge within each field as this will provide improved decision making and option analysis. Results can also feed back directly into the overall risk analysis.

It was determined useful to consider three points on each associated water production curve (minimum predicted water production and maximum predicted water production) for each modelling run. The three points identified are $1 / 3$ peak production, $2 / 3$ peak production and peak production. That is, for each point on the curve we will assume a constant flow from the CSG field over the full modelling period and compare the results with a no discharge scenario. This means that six different flows ($1 / 3$ min peak, $2 / 3$ min peak, $3 / 3$ min peak, $1 / 3$ max peak, $2 / 3$ max peak, and $3 / 3$ max peak) will be combined with existing flows to assess the impacts for each scenario identified.

In Roma, six scenarios were considered after consultation with Santos. Scenarios were selected with a view to minimising the potential ecological impacts of discharging associated water to grade. There are pros and cons with each scenario. For example discharging all water to a single point minimises the environmental footprint, but increases the level of impact in the chosen stream. Conversely distributing the discharge across three creeks results in a wider footprint but increases the water supply security for a wider population downstream. Scenarios modelled include:

- Option 1: Untreated discharge into three points in the catchment allocated one third of water production each with the three points located in Yuleba, Bungil and Wallumbilla Creeks;
- Option 2: Untreated total production released at Bungil Creek;
- Option 3: Untreated total production released at Surat Weir via a pipeline;
- Option 4: Treated discharge into the same three points in the catchment, each allocated one third of water production;
- Option 5: Treated total production released at Bungil Creek; and

Associated Water Management Scenarios

- Option 6: Treated total production released at Surat Weir via a pipeline.

5.3 Modelling

5.3.1 User Interface to Model

Flow weighted salt concentration was calculated for the various scenarios from the following equation.

$$
C_{\text {mixed }}=\frac{Q_{1} \times c_{1}+Q_{2} \times c_{2}+Q_{3} \times c_{3}}{Q_{1}+Q_{2}+Q_{3}}
$$

Where $Q_{1} / c_{1}=$ modelled or observed flow / modelled salt concentration in the receiving stream;
$\mathrm{Q}_{2} / \mathrm{C}_{2}=$ direct discharge to grade from CSG well production / salt concentration of direct discharge; and
$\mathrm{Q}_{3} / \mathrm{c}_{3}=$ treated discharge from desalination plant / salt concentration of permeate discharge.
Modelled salt concentration was based on the ramp salinity model, as described in Section 4.2.3, and detailed below.

$$
\begin{aligned}
& \text { If } Q_{t}=0 \\
& c_{t}=0 \\
& \text { If } Q_{t}>Q_{H I G H} \\
& C_{t}=C_{\text {MIN }} \\
& \text { If } Q_{t}>Q_{t-1}(\text { rising limb) } \\
& c_{t}=c_{t-1}-c_{\text {DECREASE }} \\
& \text { If } Q_{t}<Q_{t-1} A N D c_{t}<c_{R A M P} \\
& c_{t}=c_{t-1}+c_{I B R} \\
& \text { If } Q_{t}<Q_{t-1} A N D c_{t}>c_{R A M P} \\
& c_{t}=c_{t-1}+c_{I A R} \\
& \text { Where } \mathrm{Q}_{\mathrm{t}}=\text { Flow at timestep } \mathrm{t} \text {; } \\
& \mathrm{Q}_{\text {HIGH }}=\text { high flow trigger parameter; } \\
& c_{t}=\text { salt concentration at timestep } t \text {; } \\
& \mathrm{c}_{\text {MIN }}=\text { minimum salt concentration; } \\
& \mathrm{C}_{\text {RAMP }}=\text { salt concentration at which the rate of increase changes; } \\
& \mathrm{C}_{\text {DECREASE }}=\text { rate of salt concentration decrease; } \\
& \mathrm{c}_{\mathrm{IBR}}=\text { rate of salt concentration increase below ramp (IBR); and } \\
& \mathrm{C}_{\mathrm{IAR}}=\text { rate of salt concentration increase above ramp (IAR). }
\end{aligned}
$$

Associated Water Management Scenarios

5.3.2 Model Data

Discharge input was extracted from the Roma minimum and maximum associated water production curves at the peak levels as well as $1 / 3$ and $2 / 3$ of peak levels. The peak of the maximum associated water production curve is $20.0 \mathrm{ML} / \mathrm{d}$, resulting in $1 / 3$ peak of $6.7 \mathrm{ML} / \mathrm{d}$ and $2 / 3$ peak of $13.3 \mathrm{ML} / \mathrm{d}$. Similarly, the peak of the minimum associated water production curve is $11.5 \mathrm{ML} / \mathrm{d}$, resulting in $1 / 3$ peak of $3.8 \mathrm{ML} / \mathrm{d}$ and $2 / 3$ peak of 7.7 ML/d.

Figure 5-1 Future Predicted Associated Water Production in Roma
In all scenarios, flow was directly discharged to grade in either a completely treated or untreated state. No case assumed mixing of untreated and treated associated water prior to release into the streams.

Of the associated water discharged in the treated scenarios, the discharge volume was reduced by 25% of the input volume. This assumption corresponds to the expected losses from the desalination treatment process as brine.

Associated water is sampled regularly from each production well and analysed for a number of water quality parameters. Based on comprehensive sampling of 52 production wells within Roma project area between 2006 and 2007, the average electrical conductivity of CSG associated water was $3,438 \mu \mathrm{~S} / \mathrm{cm}$ (TDS $2,303 \mathrm{mg} / \mathrm{L}$).

For treated discharge scenarios an electrical conductivity of $290 \mu \mathrm{~S} / \mathrm{cm}$ (TDS $194 \mathrm{mg} / \mathrm{L}$) was adopted, based on background surface water salinity levels across the catchment. The target treated electrical conductivity corresponds to the mean electrical conductivity in Yuleba and Bungil Creeks derived from 166 spot samples.

Associated Water Management Scenarios

Table 5-1 Flow (ML/d) for Roma Scenarios

Scenario	Predicted Production	Direct Discharge	Direct Discharge per Location	Treated Discharge ${ }^{1}$	Treated Discharge per Location	Total Discharge to Streams

Scenario 1: Untreated discharge into three points in the catchment allocated 1/3 of water production each with the three points located in Bungil, Wallumbilla and Yuleba Creek

1.1	$6.7(1 / 3 \mathrm{max})$	6.7	2.2	-	-	6.7
1.2	13.3 $(2 / 3 \mathrm{max})$	13.3	4.4	-	-	13.3
1.3	20.0 $(3 / 3 \mathrm{max})$	20.0	6.7	-	-	20.0
1.4	$3.8(1 / 3 \mathrm{~min})$	3.8	1.3	-	-	3.8
1.5	$7.7(2 / 3 \mathrm{~min})$	7.7	2.6	-	-	7.7
1.6	11.5 $(3 / 3 \mathrm{~min})$	11.5	3.8	-	-	11.5

Scenario 2: Untreated total production released at Bungil Creek

2.1	6.7	6.7	6.7	-	-	6.7
2.2	13.3	13.3	13.3	-	-	13.3
2.3	20.0	20.0	20.0	-	-	20.0
2.4	3.8	3.8	3.8	-	-	3.8
2.5	7.7	7.7	7.7	-	-	7.7
2.6	11.5	11.5	11.5	-	-	11.5

Scenario 3: Untreated total production released at Surat Weir via a pipeline

3.1	6.7	6.7	6.7	-	-	6.7
3.2	13.3	13.3	13.3	-	-	13.3
3.3	20.0	20.0	20.0	-	-	20.0
3.4	3.8	3.8	3.8	-	-	3.8
3.5	7.7	7.7	7.7	-	-	7.7
3.6	11.5	11.5	11.5	-	-	11.5

Scenario 4: Treated discharge into the same three points in the catchment as Scenario 1, each allocated $1 / 3$ of water production;

4.1	6.7	-	-	5.0	1.7	5.0
4.2	13.3	-	-	10.0	3.3	10.0
4.3	20.0	-	-	15.0	5.0	15.0
4.4	3.8	-	-	2.9	1.0	2.9
4.5	7.7	-	-	5.8	1.9	5.8
4.6	11.5	-	-	8.6	2.9	8.6
Scenario 5: Treated total production released at Bungil Creek						
5.1	6.7	-	-	5.0		
5.2	13.3	-	-	10.0	10.0	5.0
5.3	20.0	-	-	15.0	15.0	10.0
5.4	3.8	-	-	2.9	2.9	15.0
5.5	7.7	-	-	5.8	5.8	2.9
5.6	11.5	-	-	8.6	8.6	5.8

Associated Water Management Scenarios

	Predicted					
Scenario	Direct Production	Direct Discharge Der Location	Treated Discharge ${ }^{1}$	Treated Discharge per Location	Total Discharge to Streams	
Scenario 6: Treated total production released at Surat Weir via a pipeline						
6.1	6.7	-	-	5.0	5.0	5.0
6.2	13.3	-	-	10.0	10.0	10.0
6.3	20.0	-	-	15.0	15.0	15.0
6.4	3.8	-	-	2.9	2.9	2.9
6.5	7.7	-	-	5.8	5.8	5.8
6.6	11.5	-	-	8.6	8.6	8.6

${ }^{1}$ Treated discharge accounts for a 25% reduction in discharge volume due to desalination process

Table 5-2 Input Salt (mg / L) for Roma Scenarios

Scenario	Direct Discharge	Treated Discharge
1	2303	-
2	2303	-
3	2303	-
4	-	194
5	-	194
6	-	194

5.4 Model Development and Parameters

To assess the impacts of associated water discharged to the Balonne-Condamine catchment, four salinity models were to simulate the natural condition of the river at their respective locations. The four models were created to represent four possible locations for point source discharge of associated water to Bungil Creek, Wallumbilla Creek, Yuleba Creek, and at Surat Weir on the Balonne River.

No continuous water quality apparatus measuring stream salinity has operated at any of the four gauging stations. Therefore the calibration of the salinity model was dependant on URS and NRW spot data measurements. Parameters used in the Dawson and Comet catchment salinity models were used as a starting point for calibration of the Roma models. Parameters were then adjusted to achieve the best calibration possible given the limited spot data set. Overall the model appears to reasonably match the spot data. Without a significant increase in spot or continuous electrical conductivity data, further model calibration is not feasible. The stream flow, calibrated salinity ramp model, and the spot observed records are shown in Figure 5-2, Figure 5-3, Figure 5-4 and Figure 5-5 for Bungil Creek, Wallumbilla Creek, Yuleba Creek and Surat Weir respectively.

Associated Water Management Scenarios

Figure 5-2 Bungil Creek Salinity Model - 1975 to 2006

Figure 5-3 Wallumbilla Creek Salinity Model - 1975 to 2006

Associated Water Management Scenarios

Figure 5-4 Yuleba Creek Salinity Model - 1975 to 2006

Figure 5-5 Surat Weir Salinity Model - 1969 to 2007

Associated Water Management Scenarios

The parameters used in the salinity model for Bungil, Wallumbilla and Yuleba Creeks and Surat Weir are presented in Table 5-3.

Table 5-3 Roma Salinity Model Parameters

Ramp Model Parameter	Bungil	Wallumbilla	Yuleba	Surat Weir	Units
High Flow Salinity Reset to Minimum Concentration	500	500	500	5000	ML / d
Maximum Concentration	1250	250	300	600	mg / L
Minimum Concentration	40	60	50	50	mg / L
Ramp Change Concentration	300	130	130	180	mg / L
Flow Decreases - Salinity Increase - Below Salinity Ramp by:	10	10	10	10	$\mathrm{mg} / \mathrm{L} / \mathrm{day}$
Flow Decreases - Salinity Increase - Above Salinity Ramp by:	5	1	1	4	$\mathrm{mg} / \mathrm{L} / \mathrm{day}$
Flow Increase - Salinity Decrease by:	10	10	10	5	$\mathrm{mg} / \mathrm{L} / \mathrm{day}$

5.5 Results and Interpretation

To assess the environmental impacts on streams in the Roma field area as a result of future associated water production, 60 models were developed in accordance with the scenarios and parameters defined in Table 5-1. A statistical overview of the natural salinity models is shown in Table 5-4. A statistical overview of the modelled results of each of the various scenarios is presented in Table 5-5 and graphically in Figure 5-6. The results show:

- Minimum salt concentration of the mixed stream (during the large runoff events);
- Average salt concentration;
- Maximum salt concentration (typically the concentration of the associated water);
- $\quad 25 \%$ of days the mixed stream salt concentration is equal to or less than Lower Quartile;
- 50% of days the mixed stream salt concentration is equal to or less than Median;
- $\quad 75 \%$ of days the mixed stream salt concentration is equal to or less than Upper Quartile; and
- $95^{\text {th }}$ Percentile representing the value that 95% of the stream salinity records are below.

Table 5-4 Summary of Scenarios - Mixed Stream Salinity (mg/L)

Salinity Model	Future Production (ML/d)	Statistics			Quartile			$95^{\text {th }}$ Percentile
		Min	Average	Max	Lower	Median	Upper	
Bungil	-	0	647	1250	305	595	1040	1250
Wallumbilla	-	0	214	250	178	250	250	250
Yuleba	-	0	232	300	168	259	300	300
Surat Weir	-	0	176	600	50	170	274	483

Table 5-5 Summary of Scenarios - Mixed Stream Salt Concentrations (mg/L)

Scenario	Future Production (ML/d)	Statistics			Quartile			$95^{t h}$ Percentile
		Min	Average	Max	Lower	Median	Upper	
1.1 Bungil	2.2	40	1801	2303	1510	2280	2302	2303
1.2 Bungil	4.4	40	1861	2303	1798	2291	2303	2303
1.3 Bungil	6.7	40	1894	2303	1933	2295	2303	2303
1.4 Bungil	1.3	40	1749	2303	1285	2262	2302	2303
1.5 Bungil	2.6	40	1813	2303	1571	2283	2303	2303
1.6 Bungil	3.8	40	1849	2303	1741	2290	2303	2303
1.1 Wallumbilla	2.2	60	2126	2303	2299	2303	2303	2303
1.2 Wallumbilla	4.4	60	2148	2303	2301	2303	2303	2303
1.3 Wallumbilla	6.7	60	2159	2303	2302	2303	2303	2303
1.4 Wallumbilla	1.3	60	2106	2303	2295	2303	2303	2303
1.5 Wallumbilla	2.6	60	2131	2303	2299	2303	2303	2303
1.6 Wallumbilla	3.8	60	2143	2303	2301	2303	2303	2303
1.1 Yuleba	2.2	50	2045	2303	2269	2303	2303	2303
1.2 Yuleba	4.4	50	2078	2303	2286	2303	2303	2303
1.3 Yuleba	6.7	50	2096	2303	2292	2303	2303	2303
1.4 Yuleba	1.3	50	2016	2303	2244	2302	2303	2303
1.5 Yuleba	2.6	50	2052	2303	2273	2303	2303	2303
1.6 Yuleba	3.8	50	2072	2303	2283	2303	2303	2303
2.1 Bungil	6.7	40	1900	2303	1956	2296	2303	2303
2.2 Bungil	13.3	40	1953	2303	2111	2300	2303	2303
2.3 Bungil	20.0	40	1981	2303	2170	2301	2303	2303
2.4 Bungil	3.8	40	1855	2303	1769	2291	2303	2303
2.5 Bungil	7.7	40	1911	2303	1993	2297	2303	2303
2.6 Bungil	11.5	40	1942	2303	2083	2299	2303	2303
3.1 Surat	6.7	50	966	2303	216	520	2264	2303
3.2 Surat	13.3	50	1046	2303	247	649	2284	2303
3.3 Surat	20.0	50	1101	2303	273	765	2290	2303
3.4 Surat	3.8	50	915	2303	200	442	2237	2303
3.5 Surat	7.7	50	980	2303	221	542	2269	2303
3.6 Surat	11.5	50	1027	2303	239	617	2281	2303
4.1 Bungil	2.2	40	214	1235	194	196	206	402
4.2 Bungil	4.4	40	208	1230	194	195	201	350
4.3 Bungil	6.7	40	204	1225	194	195	199	317
4.4 Bungil	1.3	40	221	1237	195	197	213	445
4.5 Bungil	2.6	40	213	1234	194	196	205	389
4.6 Bungil	3.8	40	209	1231	194	195	202	363
4.1 Wallumbilla	2.2	60	188	240	194	194	194	194
4.2 Wallumbilla	4.4	60	188	240	194	194	194	194

Associated Water Management Scenarios

Scenario	Future Production (ML/d)	Statistics			Quartile			$\begin{aligned} & 95^{\text {th }} \\ & \text { Percentile } \end{aligned}$
		Min	Average	Max	Lower	Median	Upper	
4.3 Wallumbilla	6.7	60	189	239	194	194	194	194
4.4 Wallumbilla	1.3	60	187	240	194	194	194	194
4.5 Wallumbilla	2.6	60	188	240	194	194	194	194
4.6 Wallumbilla	3.8	60	188	240	194	194	194	194
4.1 Yuleba	2.2	50	186	290	194	194	194	195
4.2 Yuleba	4.4	50	186	289	194	194	194	195
4.3 Yuleba	6.7	50	187	289	194	194	194	195
4.4 Yuleba	1.3	50	185	290	194	194	194	196
4.5 Yuleba	2.6	50	186	290	194	194	194	195
4.6 Yuleba	3.8	50	186	289	194	194	194	195
5.1 Bungil	6.7	40	204	1225	194	195	198	312
5.2 Bungil	13.3	40	200	1210	194	195	196	270
5.3 Bungil	20.0	40	198	1196	194	194	196	252
5.4 Bungil	3.8	40	209	1231	194	195	201	355
5.5 Bungil	7.7	40	203	1223	194	195	198	302
5.6 Bungil	11.5	40	201	1214	194	195	197	277
6.1 Surat Weir	6.7	50	209	598	170	194	247	418
6.2 Surat Weir	13.3	50	205	596	170	194	241	389
6.3 Surat Weir	20.0	50	202	594	171	194	236	375
6.4 Surat Weir	3.8	50	212	599	170	194	252	436
6.5 Surat Weir	7.7	50	208	598	170	194	246	413
6.6 Surat Weir	11.5	50	206	596	170	194	242	395

In scenarios 1 and 4, the three creeks are parallel with each creek allocated one third of the flow. Since each creek flows directly to the Balonne-Condamine River, no flow is assumed to interact between streams.

All four discharge locations are ephemeral at certain times of the year. Further, the base flow within the stream is often very low, in the order of a few ML per day. During periods of no flow, the only flow in the stream is the associated water discharge, thereby resulting in a salt concentration in the system equal to that of the production water. This has been found to skew the average and quartiles towards higher salt concentrations during untreated scenarios.

[^29]Associated Water Management Scenarios

Figure 5-6 Summary of Scenarios - Mixed Salt Concentration in Roma Catchment

Associated Water Management Scenarios

5.5.1 Scenario 1 - Untreated Direct Discharge to Three Locations

Scenario 1 represents discharging untreated associated water at three points within the Roma catchment. The three locations selected were Bungil, Wallumbilla and Yuleba Creeks. Figure 5-7, Figure 5-8 and Figure 5-9 show the three salinity models in natural stream conditions, in addition to the minimum ($3.8 \mathrm{ML} / \mathrm{d}$) and the maximum ($20.0 \mathrm{ML} / \mathrm{d}$) predicted future production. This represents the current and likely range of future production within the Balonne-Condamine River catchment.

All three streams are completely ephemeral or experience very low flow, and at many times, the only flow present in the stream is the associated water. Therefore, at all locations, the salinity in the stream is often equal to the associated water concentration ($2303 \mathrm{mg} / \mathrm{L}$). Further, at all locations, little variation existed between the maximum and minimum future production scenarios. Once the streams receive a non-trivial volume of associated water, the salinity in the mixed stream will not be significantly altered by further increases of associated water.

Due to the higher flow and natural background salinity in Bungil Creek, the effect of introducing untreated associated water to the stream is significant, but less than in Wallumbilla and Yuleba Creeks. The addition of associated water to Wallumbilla and Yuleba Creeks results in a much more drastic increase in salt concentration from natural conditions.

Figure 5-7 Scenario 1 - Untreated Discharge - Bungil Creek

Associated Water Management Scenarios

Figure 5-8 Scenario 1 - Untreated Discharge - Wallumbilla Creek

Figure 5-9 Scenario 1 - Untreated Discharge - Yuleba Creek

Associated Water Management Scenarios

5.5.2 Scenario 2 - Untreated Direct Discharge to Bungil Creek

During analysis of Scenario 1 it was found that due to its comparatively high flow and higher than normal background levels of salt in the stream, Bungil Creek would be the preferred stream to receive untreated associated water. Scenario 2 represents discharging untreated production water along Bungil Creek. Figure $5-10$, shows the Bungil Creek salinity model (natural stream conditions), in addition to the minimum ($3.8 \mathrm{ML} / \mathrm{d}$) and the maximum ($20.0 \mathrm{ML} / \mathrm{d}$) predicted future production. This represents the current and likely range of future production within Balonne-Condamine River catchment.

Overall the results show the same findings as were found in Scenario 1. Little variation exists between the maximum and minimum discharge levels. During low and cease to flow conditions of the stream, the salinity in the mixed stream tends to the levels of the associated water.

Figure 5-10 Scenario 2 - Untreated Direct Discharge to Bungil Creek

Associated Water Management Scenarios

5.5.3 Scenario 3 - Untreated Piped Discharge to Surat Weir

Scenario 4 represents piping untreated associated water to Surat Weir on the Balonne-Condamine River for discharge. Figure 5-11 shows the Surat Weir salinity model (natural stream conditions), in addition to the minimum ($3.8 \mathrm{ML} / \mathrm{d}$) and the maximum ($20.0 \mathrm{ML} / \mathrm{d}$) predicted future production. This represents the current and likely range of future production within the Roma catchment.

The modelling performed at Surat Weir exhibited notable variability between the maximum and minimum future production scenarios. During periods of flow, the minimum future production was found to have far less impact on the natural stream condition than the peak production scenario. The median salt concentration under minimum associated water discharge was found to be $442 \mathrm{mg} / \mathrm{L}$, and $765 \mathrm{mg} / \mathrm{L}$ under maximum discharge. At Surat Weir on the Balonne River, the river consistently becomes ephemeral, resulting in the associated water comprising the bulk of the flow. During these periods, the salinity of the stream will be dominated by the salt concentration of the associated water.

Figure 5-11 Scenario 3 - Untreated Piped Discharge to Surat Weir

Associated Water Management Scenarios

5.5.4 Scenario 4 - Treated Direct Discharge to Three Locations

Scenario 4 represents discharging treated associated water at three points within the Roma catchment. The three locations selected were Bungil, Wallumbilla and Yuleba Creek. Figure 5-12, Figure 5-13 and Figure 5-14 shows the three salinity models in natural stream conditions, in addition to the minimum ($3.8 \mathrm{ML} / \mathrm{d}$) and the maximum ($20.0 \mathrm{ML} / \mathrm{d}$) predicted future production. This represents the current and likely range of future production within the Balonne-Condamine River catchment.

The volume of the discharge was reduced by 25%. This represents the volume of brine generated in the desalination process.

All three streams are ephemeral. At many times the only flow present in the stream is the associated water. Therefore, at all locations, the salinity in the stream is equal to the water quality of the treated associated water ($194 \mathrm{mg} / \mathrm{L}$).

All three creeks exhibit similar patterns. When the streams have ceased to flow, the salt concentration is constant and equivalent to the salinity of the treated associated water. Further, the greater the volume of treated production water, the greater the tendency of the mixed streamflow salt concentration to move towards the treated water quality level. This results in the mixed streams salt concentration not peaking during dry periods prior to ceasing to flow. Further the mixed stream salt concentration would increase during large runoff events; typically these events had very dilute concentrations of salt in the stream.

Figure 5-12 Scenario 4 - Treated Discharge at Bungil Creek

Associated Water Management Scenarios

Figure 5-13 Scenario 4 - Treated Discharge at Wallumbilla Creek

Figure 5-14 Scenario 4 - Treated Discharge at Yuleba Creek

Associated Water Management Scenarios

5.5.5 Scenario 5 - Treated Direct Discharge to Bungil Creek

Scenario 4 represents treating the associated water prior to being released along Bungil Creek. Figure 5-15 shows the Bungil Creek salinity model (natural stream conditions), in addition to the minimum ($3.8 \mathrm{ML} / \mathrm{d}$) and the maximum ($20.0 \mathrm{ML} / \mathrm{d}$) predicted future production. This represents the current and likely range of future production within the Roma catchment.

The volume of the discharge was reduced by 25%. This represents the volume of brine generated in the desalination process.

All three streams are ephemeral. At many times the only flow present in the stream is the associated water. Therefore, at all locations, the salinity in the stream is equal to the treated associated water concentration (194 $\mathrm{mg} / \mathrm{L})$.

When the stream has ceased to flow the salinity stabilises at the target salinity of the treated associated water. Further, the greater the volume of treated production water, the greater the tendency of the mixed stream to skew towards the treated water quality level. This results in the mixed streams salt concentration not peaking during dry periods prior to ceasing to flow, and increasing the salinity during large runoff events that typically had very dilute concentrations of salt in the stream.

Figure 5-15 Scenario 5 - Treated Discharge at Bungil Creek

Associated Water Management Scenarios

5.5.6 Scenario 6 - Treated Piped Discharge to Surat Weir

Scenario 6 represents piping treated associated water to Surat Weir on the Balonne River for release. Figure $5-16$ shows the Surat Weir salinity model in natural stream conditions, in addition to the minimum ($3.8 \mathrm{ML} / \mathrm{d}$) and the maximum ($20.0 \mathrm{ML} / \mathrm{d}$) predicted future production. This represents the current and likely range of future production within Comet River catchment.

The volume of the discharge was reduced by 25%. This represents the volume of brine generated in the desalination process.

Unlike Scenario 5 (treated discharge at Bungil Creek), little variation was found between the natural salt concentration and the level in the mixed stream. The Balonne River upstream of Surat Weir is occasionally ephemeral; at many times the only flow present in the stream is the associated water. This results in the salinity in the stream equating to the treated associated water concentration ($194 \mathrm{mg} / \mathrm{L}$). As was found in Scenarios 4 and 5 , as the volume of treated production water applied to the stream increases, the greater the tendency of the mixed stream to skew towards the treated water quality level. This results in the mixed streams salt concentration not peaking as high during dry periods prior to ceasing to flow. However, unlike Scenarios 4 and 5 , there was found to be little increase in salinity during large runoff events that typically have very dilute concentrations of salt in the stream.

Figure 5-16 Scenario 6 - Treated Piped Discharge at Surat Weir

A rainfall-runoff model has been developed for subcatchments of the Balonne-Condamine catchment relevant to the Roma Field CSG development. The model allows prediction of the most important flow regimes needed to assess changes in salinity and flow arising from potential discharges of associated water. However, the accuracy of the model is limited by the available data.

The flow model is calibrated within the limits of the data available. Additional streamflow data is required for confirmation of the calibration used.

The salinity model utilised for the Balonne-Condamine subcatchments is the same as that adopted for the Dawson and Comet river catchments. The model is relatively simple and empirical, but sufficiently complex to explain the majority of the observed variation in salinity in these regions. Model parameters were adjusted to reflect observed spot EC records from the study area.

The flow and salinity models are sufficient to allow consideration of a range of associated water management scenarios. Only basic scenarios have been investigated at this time, but scenarios involving storage and release or other more complex management options can be investigated in future using these models.

Sixty model scenarios were run using four models representing alternative discharge locations. The results indicate that untreated discharge at any location will significantly alter the salt concentration in the receiving waters. Discharge to the ephemeral creek systems (Yuleba, Bungil and Wallumbilla) will effectively mean there is no reduction in salinity of associated water during the dry season since there is no water for dilution under low flow conditions.

Discharge to the Surat Weir was also investigated. It is known that the Balonne River also ceases to flow, but the weir is a man-made structure that has increased the duration and extent of streambed wetting at Surat and therefore offers the potential for discharge without affecting the low flow hydrology as much as in the above mentioned creek systems.

Results generated in this report will be considered as part of the overall risk assessment of discharging associated water to grade.

URS Australia Pty Ltd (URS) has prepared this report in accordance with the usual care and thoroughness of the consulting profession for the use of Santos and only those third parties who have been authorised in writing by URS to rely on the report. It is based on generally accepted practices and standards at the time it was prepared. No other warranty, expressed or implied, is made as to the professional advice included in this report. It is prepared in accordance with the scope of work and for the purpose outlined in the Proposal dated 10 July 2007.

The methodology adopted and sources of information used by URS are outlined in this report. URS has made no independent verification of this information beyond the agreed scope of works and URS assumes no responsibility for any inaccuracies or omissions. No indications were found during our investigations that information contained in this report as provided to URS was false.

This report was prepared in September 2008 and is based on the conditions encountered and information reviewed at the time of preparation. URS disclaims responsibility for any changes that may have occurred after this time.

This report should be read in full. No responsibility is accepted for use of any part of this report in any other context or for any other purpose or by third parties. This report does not purport to give legal advice. Legal advice can only be given by qualified legal practitioners.

A. 1 E2 Background

The basic architecture of the E2 modelling framework consists of a subcatchment-node-link system based on two previous software packages, the Environmental Management Support System (EMSS) and the Integrated Quality and Quantity Model (IQQM). E2 allows for the generation of flow and materials in subcatchments and then onto a node where they are routed and possibly processed along a link.

Within E2 sub-catchments are broken up into 'functional units' that represent areas of similar behaviour or response. These can be various combinations of land use or cover such as forestry or grazing, management techniques or even position in the landscape such as ridge, floodplain, etc. Each FU can then have various models describing processes of runoff generation, constituent generation and filtering.

A.1.1 Australian Water Balance Model (AWBM)

The Australian Water Balance Model (AWBM) is a catchment water balance model capable of relating rainfall and evaporation to runoff on an hourly or daily time step. It has a total of eight parameters with the model containing three conceptual stores (C1-C3) with area representation (A1-A3 summing to 100% of the total area) plus surface and baseflow recession constants and a baseflow index. The relative sensitivity of each parameter can vary depending on the value of the others; however the model is generally most sensitive to the recession constants and baseflow index (Argent et al, 2007a). Figure A-1 shows a conceptual diagram of the model and Table A-1 details the AWBM parameters and their default settings.

Figure A-1 Australian Water Balance Model (AWBM)

Flow Model Development

Appendix A

Table A-1 Definition of AWBM parameters and their default values
Parameter
Base flow index (BFI)
Daily surface flow
recession constant (KS)
Daily base flow recession
constant (BS)
A1
A2
C1
C1
C1
Definition
The ratio of baseflow to total flow in the
stream flow
Determines the rate at which the
surface flow runoff store is depleted
Determines the rate at which the base
flow store is depleted
Partial area of surface store 1
Partial area of surface store 2
Capacity of surface store 1
Capacity of surface store 1
Capacity of surface store 1

Units	Max	Min	Default value
none	1.0	0	0.35
Day $^{-1}$	1.0	0	0.35
Day $^{-1}$	1.0	0	0.95
None	1.0	0	0.134
None	1.0	0	0.433
mm	50	0	7
mm	200	0	50
mm	500	0	150

(Source: Based on Argent et al, 2007a)
The model works by calculating the water balance for each partial store independently of the others at the desired time step. The water balance is calculated as:

$$
\text { Store }_{n}=\text { Store }_{n}+\text { Rain }- \text { Evaporation (where } n=1-3 \text {) }
$$

When the amount of moisture in the store exceeds its capacity, runoff occurs. Part of the runoff can then be used to recharge the baseflow. This is calculated as:

Baseflow recharge $=$ BFI \times Rainfall Excess
The remainder of the excess then becomes surface runoff. The baseflow store is then depleted at a rate of:
Baseflow depletion= (1.0-K $\left.\mathrm{K}_{\text {base }}\right) \times$ Baseflow store
(Where $\mathrm{K}_{\text {base }}$ is the daily baseflow recession constant)
In larger catchments flows often arrive from different areas at different times and it may be necessary to attenuate some flows. This is achieved in the model by a surface store whereby the discharge is controlled by the daily surface flow recession constant ($\mathrm{K}_{\text {surf }}$):

$$
\text { Surface flow routing }=\left(1.0-\mathrm{K}_{\text {surf }}\right) \times \text { Surface store }
$$

Changing the values of the two recession constants allows the shape of the flood hydrograph to be altered. Higher values of both constants give slower recessions and hence longer falling limbs. Therefore they can be used to simulate different catchment conditions. The value of BFI also dictates how much of the rainfall excess is directed to either runoff or baseflow. This is important in allowing the model to capture different types of geology and catchment morphology.

A.1.2 Network Creation

E2 accepts a variety of spatial data to determine the catchment network and land use. Digital elevation models (DEM) can be used to automatically generate the subcatchment network required for the modelling process. However, Rob Argent (an E2 developer) advised against use of DEMs for this process since data preprocessing to connect gaps, identify stream flow direction, and fill pits can be extremely time intensive and could be especially problematic when dealing with the highly ephemeral nature of the stream network in the study area.

Flow Model Development

For this reason, the use of GIS shape files was used to represent the subcatchments and the stream network was drawn in manually within E2. This means that while catchment area is calculated within E2 for the purpose of runoff generation, there is no explicit spatial representation of the stream network.

A. 2 Data Collation and Preparation

Construction of the E2 model required the following data:

- Subcatchments were delineated based on major stream confluences and areas of interest using ArcGIS. Subcatchments were first converted into a raster, then an ascii grid file for entry into E2, which recognizes its spatial reference. The stream network was manually drawn on top of the subcatchments using nonspatially referenced links and nodes.
- Functional units must be identified upon initial construction of the E2 model and cannot be altered thereafter. Functional units are typically based on land use and associated hydrologic behaviour. Based on land use data obtained from Queensland DNRW, the land is predominantly grazing. With no data to distinguish behavioural differences across the Comet catchment, land use was determined to not be influential or required in model development. Therefore, the model uses only a single functional unit covering all areas.
- One of the challenges encountered in building the E2 model was loading the input rainfall files into the model. Initially the Comet and Dawson River catchment models were developed using SILO gridded rainfall data. Daily gridded rainfall files (0.25 degree cell size which is approximately $28 \mathrm{~km} \times 28 \mathrm{~km}$) were purchased from SILO through BOM. Daily files were available from April 1997 through mid-February 2008. URS utilized a 10 year calibration period from April 1997 through March 2007 with subsequent months providing a validation period. The publicly released version of E2 is unable to process the gridded files directly. Therefore URS created an automated process to convert all grids to Lambert Conformal Conic projection, then calculate zonal statistics (an area weighted average) over all cells within a given subcatchment to produce an input rainfall file for each subcatchment containing a time series of daily rainfall. The input rainfall file was in space delineated text (.sdt) format in the form 'year month day value'.

During the calibration of the Comet and Dawson River catchment models it was found that significant variations existed between the gridded rainfall input and observed discharge at the gauges, which prompted a more thorough investigation into the accuracy of the input rainfall data. A comparison was made between gridded rainfall data and point data from rainfall stations located within the respective catchments. Despite both data sets being sourced from the Bureau of Meteorology, the differences in rainfall were drastic. It was decided to construct a new E2 model replacing the gridded rainfall input with the point data rainfall.

Approximately 100 rain gauging stations within and around the Comet and Dawson River catchments were used to generate rainfall input files for each subcatchment. Where multiple gauges were available within a single subcatchment, the rainfall observed at these gauges was averaged to produce a single rainfall input for the catchment. Where no gauges existed within the subcatchment, rainfall data from the nearest gauges were used. Where there were missing days for a given gauge, data was infilled from adjacent gauges.

The results from E2 were exported into Excel to compare (1) E2 model with point rainfall input, (2) E2 model with SILO rainfall input, and (3) E2 model with observed discharges at the lower Comet and Dawson River catchments river gauges respectively. Basic findings were that with minimal preliminary calibration, hydrographs were generally better aligned with point rainfall input rather than SILO rainfall input, with the E2

Flow Model Development

Appendix A

model better matching the peaks and rise and fall. The overall conclusion is that the point rainfall data better reflects the discharge data at Comet and Dawson River catchments than the SILO gridded data.

It was therefore decided to develop the Balonne-Condamine catchment model using the point rainfall data as inputs. In all 53 rainfall gauges around Balonne-Condamine were used to generate a rainfall input file for each subcatchment. However, as was found modelling the neighbouring catchments, there are still limitations in the quality of the hydrologic model due to the averaging of the rainfall data over multiple gauges, the necessity of using gauges outside of the subcatchment and due to many of the rainfall records being incomplete.

- A single evaporation input file was applied across the entire catchment based on the recording station at Roma Airport with gaps filled by data from the next nearest stations.
- In the entire Balonne-Condamine catchment there exists records for 103 continuous discharge gauging stations, however many are no longer operational. Four gauging stations are present with records between 1975 and 2006 within the areas Santos has been granted exploration or production licences. Upstream of the study areas, the Balonne-Condamine River system is heavily regulated. It is therefore not possible to accurately model natural stream flow along the Balonne River using the observed records due to the regulation of the river system caused by the dams. This limited the available data to gauges at to two locations. The gauge names, IDs and years of data used in the development of the E2 model are as follows:
- Yuleba Creek at Forestry Station (422219A) - 1/1/1975 to 31/12/2006
- Bungil Creek at Tabers (422210A) - 1/1/1975 to 31/12/2006

Some of this data was initially presented in an hourly time step and occasionally multiple daily spot times. The processing of this data into a daily time step required specific VBA looping macros in Excel. Discharge data was used to calibrate the water balance model. Neither of the gauges records were complete over the 32 years of rainfall input being applied. Gaps in the data ranged from several days to many months. E2 does not allow for gaps in the input data nor gap indicators. Gaps spanning a single day were infilled by interpolation to create a continuous record which could be used in E2. During longer periods of gaps where interpolation is infeasible, it was decided to infill the records with zeros and to disregard these periods during calibration.

- Continuous daily or hourly electrical conductivity data was not available from any NRW stream gauging station within the study area of the Balonne-Condamine catchment. Therefore salinity modelling is dependant on the various spot monitoring water quality samples from NRW and URS sampling. Electrical conducitivites were converted into salt concentration (mg / L) using a conversion factor of:

$$
\mathrm{EC}(\mu \mathrm{~S}) \times 0.67=\text { salinity }(\mathrm{mg} / \mathrm{L})
$$

(NRW fact sheet: Measuring salinity, 2007)
URS has also been engaged in a program of water quality monitoring within the study area for this and other related studies. This data will be used to further refine the models next year. Background salinity levels were based on various borehole data in the study area.

A. 3 Model Calibration

A.3.1 E2 Calibration Tools

E2 contains a separate calibration tool that can be used to calibrate separate aspects of the model. Four types of calibration tool are available:

- Subcatchment flow - to calibrate the water balance models
- Link flow - to calibrate flow routing
- Subcatchment constituent - to calibrate constituent generation and filter models
- Link constituent - to calibrate the in-stream constituent models

Within the calibration process, the catchment may be cropped to allow calibration of sub areas such as groups of subcatchments. This is intended to allow different parts of the catchment to be calibrated separately based on the location of gauges, dams etc.

Unfortunately, the calibration tool within E2 is manually very intensive, requiring upwards of hundreds of parameters to be assigned before the automatic processors take over. For example the Balonne-Condamine catchment with 40 subcatchments (20 main subcatchments plus the 20 small nodes necessary for discharge injection) with one functional unit and the 8 AWBM parameters would require 320 separate manual inputs ($40 \times 1 \times 8=320$). Further, after an initial run it was found that the automatic calibration was not sufficiently quick or accurate enough. A manual approach to calibration was taken for the final refinement of the E2 model.

A.3.2 Rainfall Runoff Library (RRL)

After an initial attempt to calibrate the water balance in E2 yielded poor results, research indicated that some additional software might provide a more detailed set of tools for calibration. The Rainfall Runoff Library (RRL), also available from the CRC for Catchment Hydrology as part of the catchment modelling toolkit (www.toolkit.net.au/rrl), was utilised. The software contains 5 different Rainfall-Runoff models (including the AWBM) along with 8 calibration optimisers and 10 objective functions. Unlike E2, the use of the calibration optimisers largely automates the process so that many calibration iterations can be run without the need to constantly input parameter values.

The model differs from E2 in that it is a lumped model (it has only a single surface) and therefore is not able to model spatial variation in catchment characteristics such as changes in rainfall or runoff characteristics, or able to account for lag. It is therefore most useful on smaller catchments without upstream inflows. Reference is often made in literature of the advantages of water balance model calibration in the RRL due to its advanced functionality (e.g. Xu and Argent, 2005).

Because RRL is a lumped model, it only requires a single rainfall file as well as an evaporation record and an observed flow record for calibration. Catchment area is also required. The rainfall file initially used was simply created by averaging the existing rainfall files. Because RRL only allows headwater catchments to be modelled (an observed flow cannot be assigned as an input to a subcatchment), its usefulness is limited to providing an initial starting point on which to begin further refinement.

The choice of calibration optimiser came down to the best performing one - the shuffled complex evolution (SCE-UA). The objective function was again the Nash-Sutcliffe coefficient of efficiency (CE). The initial results were far more promising than default parameters in E2. The combination of the calibration optimiser to run

Flow Model Development

Appendix A

several hundred iterations plus the ability to manually adjust the parameters with real-time results quickly enabled CE to be achieved on a daily time step.

Both continuous stream gauge locations (Bungil and Yuleba Creek) are stream headwaters and can therefore be modelled in RRL. However, Yuleba Creek with twice the catchment area of Bungil Creek (Bungil Creek at Tabers ((710 km $\left.\left.{ }^{2}\right)\right)$ and Yuleba Creek at Forestry Station $\left(\left(1,475 \mathrm{~km}^{2}\right)\right)$) is less suitable due to the extra surface water routing. Due to its higher suitability, initial attempts were focused on the Bungil Creek catchment.

Attempts to calibrate the Bungil Creek catchment using the RRL auto calibration feature yielded poor results. Typically the modelled runoff was found to be under predicting during large runoff events, missing many of the smaller events and introduced many false positives. Replacing the RRL calibrated parameters with typical AWBM values that were used in the successful calibration of both Dawson and Comet catchment did not improve the correlation between the modelled and the observed runoff. A comparison between the observed flow at Bungil Creek and the modelled flow is show in Figure A-1.

Figure A-2 RRL Flow Auto-Calibration at Bungil Creek

Flow Model Development

Appendix A

Due to the poor calibration at Bungil Creek, attention was turned to the rainfall data. Knowing the issues caused by using SILO rainfall data, a comparison of the rainfall gauges nearest Bungil Creek catchment and the runoff recorded at the catchment outlet was undertaken. Of the nearest four rainfall gauges, there was found little correlation between the rainfall events and the volume of runoff generated, casting doubt on the accuracy of the Bungil Creek runoff gauge. The comparison between rainfall and runoff is shown in Figure A-2, note that rainfall and runoff are shown on separate axis to isolate it from the noise in the rainfall gauges. Due to the dispersed nature of the rain gauging stations, only one of the rainfall gauges used in the development of the Bungil Creek rainfall input file was located within the catchment. Further, this gauge was non-operational until 2001. However, the other three gauges were located close to, but outside of the catchment. This could account for the poor calibration, yet all four of the gauges report similar timing and magnitude of rainfall events. In addition when the model was run using only rainfall and runoff data since 2001 there was no significant increase in calibration results. There was a slight increase in CE, however this was to be expected when modelling specific events, and certainly were not indicative of using only the rainfall gauge within the catchment proper.

Figure A-3 Rainfall Gauge Data vs Runoff at Bungil Creek

Due to the uncertainty and suspect nature of the Bungil Creek discharge data, it was decided to focus attention towards Yuleba Creek in the hopes of applying the AWBM parameters for Yuleba Creek throughout the Balonne-Condamine catchment. Whilst investigating possible explanations for the poor calibration at Bungil Creek a cumulative mass graph comparing Bungil and Yuleba Creek discharge was created, shown in Figure A3. From inspection of Figure A-3, a noticeable change in slope of the cumulative mass graph occurs during 1994. This often indicates a change in the way with which the discharge measurements were taken. A change is often implemented if an error is recognised in the rating curves used to convert depth of flow in a stream with discharge. To identify which gauging stations rating curve was modified it was necessary to produce cumulative

Flow Model Development

mass graphs comparing Yuleba and Bungil Creek against discharge from the Utopia Downs gauge in the Dawson catchment. By inspecting the different graphs it was found that Yuleba was the gauge that had a modified rating curve.

Within RRL, AWBM parameters that were found to be typical within the Dawson catchment were applied to the Yuleba Creek model. Running these parameters over the complete 32 years of data produced a CE of 0.363 . When the same parameters are run over the period $1 / 1 / 1975$ to $31 / 12 / 1993$ a CE of -0.07 was produced. Finally the model was run over the period $1 / 1 / 1994$ to $31 / 12 / 2006$ (i.e. after the change in slope) the model resulted in a CE of 0.677. Therefore it was decided to use stream flow data from Yuleba from 1994 onwards due to its better fit with typical AWBM parameters used in the Dawson and Comet catchments. Further, as AWBM parameter were found be closely aligned with those in Dawson and Comet, and within those catchments the parameters were found to be relatively uniform, provided some confidence in applying one set of parameters throughout the Balonne-Condamine catchment.

Figure A-4 Cumulative Mass Graph

Modifying the AWBM parameters within RRL produced a slightly higher CE value, however through visual inspection of specific events, it was found that the events were consistently predicted earlier than they were observed. This observation signified that the RRL was inadequate of achieving better calibration due to its lack of routing options. A sample of the RRL Yuleba Creek results showing the models lack of routing is shown in Figure A-4. Further modelling of the Yuleba Creek catchments was undertaken in E2 so that more advanced routing of the flow could be achieved.

Figure A-5 Yuleba Creek Specific Event RRL Runoff Results

A. 3 Quality Assurance of E2 Flow Modelling Package

Model development for the three catchments in this study began with the Dawson River catchment, which was used as a pilot study area before developing the E2 models for the Comet River and Balonne-Condamine catchments. Early in the model development, significant discrepancies between observed and modelled flow in the Dawson catchment created uncertainty regarding the capabilities of the designed E2 models to replicate current conditions in the Dawson River catchment. Subconsultants from HydroTasmania were contracted to replicate the Dawson hydrologic model using Kisters Modelling Hydstra software which they've used extensively to model approximately 70 catchments around Tasmania.

The comparative exercise proved interesting and useful. First, it was observed that a key parameter in Hydstra model calibration is the upper limit on baseflow, while E2 does not provide a variable for adjusting or limiting baseflow, thus seemingly allowing for infinite groundwater storage. Secondly, Hydstra is able to apply

Flow Model Development

Appendix A

seasonality on soil stores, whereas E2 parameters are limited to a single number, applied throughout the entire time series.

In a comparison between E2 and Hydstra models created with identical parameters, the models produced very similar results for a single subcatchment (same peaks, same capture of events, slightly different recession curves). However, when complexity was added in modelling the entire Dawson catchment (22 subcatchments), discrepancies became more apparent, suggesting that E2 fell short of accurately representing channel routing.

They came to the same conclusion, namely that the model can be calibrated well for individual events but the parameters remain event-specific; they also achieved similar degrees of model fit and obtained similar parameter values for the AWBM.

Both models severely underestimated flow volume for many events, which prompted a more thorough investigation of the input rainfall data. Even if the peaks could be matched with rising and falling limbs, it would be impossible to "create" additional volume. With dogged differences between rainfall and observed discharge at the Taroom gauge, it is difficult to fathom model replication of observed conditions.

It should be noted that both Dawson models were produced using SILO rainfall data which was later proved to be of questionable quality, showing surprising differences from the point rainfall data also sourced from BOM. E2 models were reconstructed using point rainfall gauge data, which resulted in a much better calibration. A Hydstra model utilising point rainfall gauge data was never built.

Salinity Model Development

Appendix B

B. 1 E2 Limitations

The original plan was to model salinity in conjunction with flow using E2; however, many limitations rendered E2 unfit for this purpose. Event Mean Concentration/Dry Weather Concentration (EMC/DWC) was identified as an appropriate constituent model to capture high salinity in low flow and low salinity in high flows. The initial approach to apply the EMC/DWC model to the existing stream network was inadequate due to the fact that the model type is intrinsically linked to the Rainfall-Runoff model applied to each functional unit. This means that predicted salt concentration would be dependent on the amount of runoff generated by the water balance model. While this is acceptable for the purpose of generating background salinity levels, it would not be appropriate for the purpose of modelling fixed discharges from CSG wells.

Innovative design was used to trick E2 into correctly modelling fixed discharges from the CSG wells. Ultimately, an additional catchment of nominal area (less than one square kilometre) was added within each subcatchment. This was necessary to create a node upon which to apply input flow and salt concentration representing well discharge. This node was part of the link and node network, but served only as an input to the catchment within which it resided. All wells within the subcatchment were modelled by a single node.

The second incongruity was in the logic of the EMC/DWC model itself, which is linked to three parameters of the AWBM Rainfall-Runoff model (BFI, Kbase, and Ksurf) rather than flow. If all flow is directed to Kbase, E2 flatlines at the DWC concentration. Similarly, if all flow is directed to Ksurf, E2 flatlines at the EMC concentration. If the flow is split between equal Kbase and Ksurf using the BFI parameter, E2 flatlines at an average of the EMC and DWC concentrations. Where Kbase and Ksurf differentiate from each other, E2 fluctuates inconsistently with flow and observed salt concentrations.

A third complication is that E2 calibration of salinity requires adjustment of AWBM parameters, which would inherently alter the calibration of flow. Preliminary calibration efforts without regard to the effect on flow suggested that E2 would not effectively align to observed data. Overall, E2 modelling of salinity was neither representative nor defendable.

A comparison of the observed and E2 modelled salt concentration at the Comet River at AMTD 17.2km gauging station (Comet River Catchment) is shown in Figure B-1.

Figure B-1 E2 (blue) and Observed Salinity (red) at Comet River

B. 2 Model Sophistications

A basic empirical algorithm was developed to replicate observed salt concentration trends. When the flow is zero, the salt concentration is assumed to be zero. The model is based on a minimum and maximum salt concentration with fluctuation based on flow levels. When flow equals or exceeds a selected high flow, the model triggers reset to the minimum salt concentration. Salinity is expected to decrease in high flow and increase in low flow. The amount of daily incremental change in salinity was determined based on the rates of increase and decrease of observed salinity such that the final algorithm best fits the observed salinity curve.

Starting with a simple algorithm, three different modelling sophistications were trialled including (1) introduction of seasonality, (2) a ramp from a first maximum concentration to a second peak concentration, and (3) salinity responsive to flow flux.

Seasonality was noticed to be particularly relevant for Taroom, where many of the surges in salt concentration occur annually during a three month period from March to June. A simple extension of the basic algorithm allows the salt concentration to be capped at a higher maximum during these months. Seasonality appeared less relevant at Utopia and other stream gauges. Seasonal salinity model parameters (Table B-1) include three flow levels at low, medium, and high flow. An incremental increase is applied to salinity between low and medium flow while an incremental decrease is applied to salinity between medium and high flow.

The ramp approach appeared to apply more consistently across gauges, and is based on the premise that for decreasing flow, one incremental increase rate is applied up to a preset 'ramp change concentration' followed by a second incremental increase rate applied above the 'ramp change concentration' (Table B-2). A third

Salinity Model Development

incremental rate applies when flow increases, thus reducing the salt concentration by a fixed amount each day. This method tends to overestimate salinity over extended time periods (conservative) while capturing more of the spikes in salt concentration.

The flow flux sophistication was an attempt to make salinity estimates more sensitive to changes in flow. The flow flux salinity model parameters (Table B-3) also include three flow levels at low, medium, and high flow. Below the low flow level, salt concentration was incrementally increased at a set rate. Between low and medium flow, salt concentration was incrementally increased when the flow dropped from the previous time step, while it was incrementally decreased when the flow increased. Between medium and high flow, salt concentration was incrementally decreased at a set rate.

Table B-1 Seasonal Salinity Model Parameters

Max Concentration (Jul-Mar)	200	mg / L
Max Concentration (Apr-June)	250	mg / L
Minimum Concentration	80	mg / L
High Flow Salinity Reset to Minimum Concentration	345	ML / d
Medium Flow	170	ML / d
Low Flow	25	ML / d
Salinity Decrease between medium and high flow	1	mg / L per day
Salinity Increase between low and medium flow	5	mg / L per day

Table B-2 Ramp Salinity Model Parameters

Max Concentration	375	mg / L
Minimum Concentration	80	mg / L
High Flow Salinity Reset to Minimum Concentration	100	ML / d
Ramp Change Concentration	200	mg / L
Flow Decreases - Salinity Increase - Below Salinity Ramp by:	10	mg / L per day
Flow Decreases - Salinity Increase - Above Salinity Ramp by:	2	mg / L per day
Flow Increases - Salinity Decrease by:	1.5	mg / L per day

Table B-3 Flow Flux Salinity Model Parameters

Max Concentration	375	mg / L
Minimum Concentration	80	mg / L
High Flow Salinity Reset to Minimum Concentration	500	ML / d
Medium Flow	200	ML / d
Low Flow	80	ML / d
Between medium and high flow - Salinity decrease by:	50	mg / L per day
Below low flow - Salinity increase by:	1.2	mg / L per day
Between low and medium flow - flow decrease - Salinity increase by:	10	mg / L per day
Between low and medium flow - flow increase - Salinity decrease by:	1	mg / L per day

| GLng gas field development - associated water |
| ---: | ---: | ---: |
| discharge study |

REPORT
 Hydrologic Modelling of Comet River Catchment

Project Manager:

Project Director:

David Fuller
Senior Principal Water and Catchments

Table of Contents

1 Introduction 1
2 Modelling Objectives 3
3 Flow Modelling 4
3.1 Background 4
3.2 Model Assumptions 4
3.2.1 Subcatchment Delineation 4
3.2.2 Network Creation 4
3.2.3 Flow Routing 4
3.2.4 Simulations 6
3.3 Model Calibration 7
3.3.1 Objective Function 7
3.3.2 Calibration Tools 7
3.3.3 Calibration Period 8
3.4 Results and Interpretation 8
4 Salinity Modelling 13
4.1 Background 13
4.2 Modelling 13
4.2.1 Model Objectives 13
4.2.2 Model Data 13
4.2.3 Model Assumptions 14
5 Associated Water Management Scenarios 16
5.1 Background 16
5.2 Scenarios 16
5.2.1 Model Parameters 17
5.2.2 Model Data 18
5.3 Model Development and Parameters 20
5.4 Results and Interpretation 24
5.4.1 Scenario 1 - Untreated Direct Discharge 28
5.4.2 Scenario 2 - Treated Discharge 30
5.4.3 Scenario 3 - Piped Untreated Discharge at Rolleston 32
5.4.4 Scenario 4 - Piped Treated Discharge at Rolleston 33
6 Conclusion 34

Table of Contents
7 Limitations ... 35

Tables, Figures \& Appendices

Tables (within text)
Table 3-1 Summary of Final AWBM Calibration Parameters 9
Table 3-2 - Summary of Routing Parameters 9
Table 5-1 Flow (ML/d) for Arcadia Scenarios 19
Table 5-2 Salt Input (mg/L) for Arcadia Scenarios 19
Table 5-3 Comet Salinity Model Parameters 23
Table 5-4 Modelled Natural Stream Salinity (mg/L) 24
Table 5-5 Summary of Scenarios - Mixed Stream Salt concentrations (mg/L) 25
Tables (within appendices)
Table A-1 Definition of AWBM parameters and their default values
Table A-2 RRL Calibrated Results at Headwater Locations
Table B-1 Seasonal Salinity Model Parameters
Table B-2 Ramp Salinity Model Parameters
Table B-3 Flow Flux Salinity Model Parameters
Figures (within text)
Figure 1-1 Major Streams in the Comet River Catchment 2
Figure 3-1 Subcatchment Delineation and Stream Gauge Locations 5
Figure 3-2 E2 Subcatchment Network 6
Figure 3-3 - Hydrograph of E2 Modelled (Blue) and Observed (Red) Runoff (1974-2004) 10
Figure 3-4 - Hydrograph of E2 Modelled (Blue) and Observed (Red) Runoff (1976-1979) 11
Figure 3-5 - Scatter Plot of E2 Modelled and Observed Runoff (1974-2004) 12
Figure 4-1 Trialled Salinity Modelling Sophistications at Utopia 15
Figure 5-1 Future Predicted Associated Water Production in Arcadia 18
Figure 5-2 Catchment Outlet Salinity Model - 1997 to 2002 21
Figure 5-3 Catchment Outlet Salinity Model - 1975 to 2004 21
Figure 5-4 Rolleston Salinity Model - 1997 to 2001 22
Figure 5-5 Rolleston Salinity Model - 1974 to 2007 22
Figure 5-6 Arcadia Salinity Model - 1974 to 2007 23
Figure 5-7 Summary of Scenarios - Mixed Salt concentration in Dawson River 27
Figure 5-8 Scenario 1 - Untreated Discharge - Arcadia 28

Tables, Figures \& Appendices

Figure 5-9 Scenario 1 - Untreated Discharge - Rolleston 29
Figure 5-10 Scenario 1 - Untreated Discharge - Catchment Outlet. 29
Figure 5-11 Scenario 2 - Treated Discharge - Arcadia 30
Figure 5-12 Scenario 2 - Treated Discharge - Rolleston 31
Figure 5-13 Scenario 2 - Treated Discharge - Catchment Outlet 31
Figure 5-14 Scenario 3 - Untreated Discharge at Rolleston 32
Figure 5-15 Scenario 4 - Treated Discharge at Rolleston 33
Figures (within appendices)
Figure A-1 Australian Water Balance Model (AWBM)
Figure B-1 E2 (blue) and Observed Salinity (red) at Comet River

Appendices

A	Flow Model Development
B	Salinity Model Development

Associated water is typically a by-product of Coal Seam Gas (CSG) development and its management is an integral aspect of the Gladstone Liquid Natural Gas (GLNG) project. Santos is considering a range of water management options including evaporation, stock watering, discharge to grade, treatment, injection, irrigation, and beneficial reuse. However, the focus of this report is on discharge to grade and potential changes in flows and salinity that may arise instream under a range of associated water discharge scenarios. This information will be used within an ecological risk assessment framework to assess risks to environmental values identified in the study area.

Study Area

The area of study includes three catchments: Upper Dawson River, Comet River, and minor tributaries of the Upper Balonne River. The Upper Dawson River and Comet River catchments drain to the Fitzroy Basin and ultimately to the Great Barrier Reef Lagoon. The Balonne River is part of the Murray-Darling Basin ultimately discharging via Lake Alexandrina to the Gulf of St Vincent in South Australia.

The catchments are in various states of CSG production, appraisal or development.
This report focuses on the Comet River catchment from its headwaters to its outlet (Error! Reference source not found.).

Modelling Approach

Hydrologic modelling is needed to assess the impacts of discharges on the local and regional environment. The model will be used to assess impacts of CSG production on flow regime and salinity concentration.

Various options are available to model the hydrology and water quality of the catchment. The two main candidates considered were IQQM (Integrated Quantity and Quality Model) and E2 both of which are utilised in Queensland. E2 was chosen as the main modelling platform for flow and salinity. Due to E2 salinity modelling limitations, an empirical algorithm was ultimately developed to model salinity.

Report Structure

The report presents the calibration of hydrologic and salinity models in the first two chapters. Various associated water management scenarios are then formulated and modelled. Results are presented in the final chapter.

Figure 1-1 Major Streams in the Comet River Catchment

Modelling Objectives

The modelling objectives are:

- Develop calibrated models of flow and salinity;
- Create a flow model that is consistent with models currently used in Queensland (IQQM and E2) to enable later assessment of regional effects;
- Investigate alternative associated water discharge options;
- Identify the range, frequency, and extent of flow and salinity impacts from discharge of associated water to grade; and
- Provide information to support ecological risk assessment.

Flow Modelling

3.1 Background

The basic architecture of the E2 modelling framework consists of a subcatchment-node-link system, as described in Appendix A. Alternative water balance models can be selected for use within E2. For this project the Australian Water Balance Model (AWBM) was selected as the rainfall-runoff model since it is widely used and was originally developed in Queensland. A daily time step was utilised for modelling. The AWBM model utilises eight model parameters representing three conceptual water stores with area representation, surface and baseflow recession constants, and a baseflow index. Further explanation of the AWBM model and its parameters are provided in Appendix A.

3.2 Model Assumptions

3.2.1 Subcatchment Delineation

The initial model structure is based on key subcatchments to allow broad-scale assessment of water management options. The Comet River catchment ($16,457 \mathrm{sq} \mathrm{km}$) was subdivided into 31 subcatchments based on major stream confluences and particular areas of interest, such as stream gauge locations. A node exists at the outlet of each subcatchment. Additional inputs or outputs can be applied at each node. The 31 delineated subcatchments (the nodes are not shown to improve legibility) along with the stream gauges are presented in Figure 3-1.

3.2.2 Network Creation

A GIS shapefile was used to represent the subcatchments, and the stream network was drawn in manually within E2. While catchment area is calculated within E2 for the purpose of runoff generation, there is no explicit spatial representation of the stream network. The E2 flow path network is shown in Figure 3-2.

3.2.3 Flow Routing

The Comet catchment is a large catchment (16,457 sq km). Runoff from the furthermost reaches can take considerable time before it is recorded at the outlet of Comet River. E2 offers several routing methods to transfer the flow through the links. These range from simple lag flow where flow is delayed with no change to the shape, to more sophisticated routing methods which can smooth the flow of the hydrograph accounting for catchment and reach storage effects. In the development of the Comet catchment, the method of routing selected was Muskingum without losses.

The method requires the input of two factors, K and X in Muskingum Equation;

$$
S=K[X \times I+(1-X) \times O]
$$

Where:
I = inflow rate;
$\mathrm{O}=$ outflow rate;
$\mathrm{K}=$ the Muskingum delay parameter, units are seconds and represents the delay of flow; and
$X=$ the Muskingum attenuation parameter, which determines the relative weighting of inflow and outflow from the reach

Flow Modelling

Figure 3-1 Subcatchment Delineation and Stream Gauge Locations

Flow Modelling

Figure 3-2 E2 Subcatchment Network

3.2.4 Simulations

E2 has the ability to have multiple model simulations active at any one time. This allows for easy comparison to be made between the modelled and observed data. For each location where observed data was available a separate model was constructed in order to compare E2 modelled results with observed flow measurements. At the approximate location in the E2 model of the observation gauge, the observed flow data was assigned to an outlet node of a subcatchment.

Flow Modelling

Section 3

3.3 Model Calibration

Since there is limited surface flow data for many locations, and the project operates across multiple scales, it is expected that modelling will need to progress from broad calibration to more accurate calibration over time. For initial calibration, the same AWBM parameters were applied across many of the subcatchments. The main reason for this was a lack of information that could inform separate parameterisation as well as to reduce the potential degrees of freedom during calibration.

A separate model was created using the same AWBM parameters throughout the entire catchment. This model did not produce results sufficiently representative of the gauge data. Therefore, variation in the AWBM parameters is considered necessary in a catchment the size of the Comet River catchment.

3.3.1 Objective Function

The selection of an appropriate objective function is an important part in validating the model performance. The choice of function is dependent on the models application and in this case the end purpose of the model is to estimate in-stream salinity levels. These levels are dependent on stream flow and consequently comparison of actual and modelled stream flow is of greatest importance. Boughton (2005) notes that in the common case of water yield analysis the most common validation of model performance is a comparison of calculated and actual monthly totals of runoff. Early studies used the coefficient of determination (r^{2}) as a measure of agreement however it is becoming increasingly common to now use the Nash-Sutcliffe coefficient of efficiency (CE) where CE is:

$$
C E=1-\sum_{t=1}^{T}\left(Q_{0}^{t}-Q_{m}^{t}\right)^{2} / \sum_{t=1}^{T}\left(Q_{0}^{t}-\overline{Q_{0}}\right)^{2}
$$

Where:
$\mathrm{T}=$ total time modelled
$Q_{0}^{t}=$ Observed flow at time t;
$Q_{m}^{t}=$ Modelled flow at time t; and
$\overline{Q_{0}}=$ Mean observed flow.
The value of CE lies between 1.0 (a perfect fit) and $-\infty$ where a value of less than 0 would indicate that the mean value of the observed time series would have been a better predictor than the model (Krause, Boyle and Blase, 2005). A model producing a CE value over 0.7 is considered a reasonable representation of the physical world. Calibration in E2 gives values for both r^{2} and CE; these are the only efficiency criteria calculated.

3.3.2 Calibration Tools

E2 contains a calibration tool for flow and constituents based on either subcatchments or links. As explained in Appendix A, the iterative calibration process is cumbersome given the number of links and nodes, each with 8 adjustable AWBM parameters. Automatic calibration was not found to be sufficiently quick or accurate. Therefore, further calibration was accomplished using manual adjustment and regional application of AWBM parameters across the catchment.

The Rainfall Runoff Library (RRL) was also considered and trialled for model calibration but determined too simplistic for a study area as large as the Comet River catchment (see Appendix A for further explanation).

3.3.3 Calibration Period

As described in the data compilation section of Appendix A, rainfall input files from 1974 to 2006 were developed representing 33 years of data, which were available for the calibration process. A strategic method was developed for the calibration of the E2 model. Initial attempts at calibration were focused on ensuring accuracy of the lowest flow events as the model was primarily designed to model salinity, which is at its highest concentration during low flow events. Once a satisfactory level of calibration was achieved the calibration turned to ensuring that high flow peaks, the total yearly runoff and the shape of the hydrograph were well represented.

The AWBM contains storages that are initially empty when the model starts. A warm up period is often required during calibration or validation so that the stores can reach a representative value. This can be done in one of two ways. One method is to exclude the warm up period from the objective function calibration and validation periods (Argent et al, 2007b); this is not possible in E2 but can be done in RRL. Another way is to ensure the model calibration/validation period follows a period of low or zero precipitation so that it can be assumed that moisture stores are empty.

While calibrating the model over the entire range of data available is the only way to optimise the results, little indication of the models robustness can be gauged (Argent et al, 2007b) i.e. how well it performs outside of the calibration period. It was initially intended to exclude some of the available data from the calibration period to allow for a period of model validation; however, due to the difficulties in calibrating the model it was decided to include as much of the data as possible in the calibration period.

3.4 Results and Interpretation

For meaningful modelling of salinity, a well calibrated runoff model is required. A model producing a CE value over 0.7 is considered a reasonable representation and was the target when calibrating E2. A structured modelling approach was undertaken where the headwater subcatchments with stream gauges were modelled first. Once these areas were satisfactorily calibrated the subcatchments upstream of the next gauging station were calibrated. This was repeated down the catchment, until all subcatchments upstream of the final gauge on Comet River were calibrated.

The largest difficulty encountered in the refinement of the E2 model was ensuring that small rainfall events were not causing excessive runoff. This was deemed a high priority due to the ephemeral nature of the streams in the Comet River catchment for much of the year. To reduce the noise associated with these smaller rainfall events, it was required to set the capacity of the three stores in the AWBM model at or near the maximum advisable levels. Larger than typical AWBM soil capacity parameters were used to simulate catchment storages such as pools of standing water. This assumption was confirmed following consultation with URS employees familiar with the Comet catchment. These storages retard small rainfall events resulting in little to no runoff being recorded on the downstream gauging stations. However, larger rainfall events inundate the pools and significant runoff is measured at the stream gauge stations.

Increasing the storage capacities to better reflect the ephemeral nature of the streams resulted in difficulty matching peaks in high rainfall events and producing the total aggregated runoff being generated by the catchment. As has been mentioned previously, AWBM has three parameters intended to determine the rate at which the base flow store is depleted: BFI, $\mathrm{K}_{\text {base }}$ and $\mathrm{K}_{\text {surf }}$. To ensure that flow remained in the system and that large runoff events were being captured, the parameters were often set such that neither store is depleted over time (except through evaporation), i.e. $\mathrm{K}_{\text {base }}$ and $\mathrm{K}_{\text {surf }}$ were set to null.

The third challenge faced by the modelling team was matching the timing of the peaks of runoff events as well as the recession curve following the event. Initially it was attempted to calibrate the routing on a subcatchment-

Flow Modelling

Section 3

by-subcatchment basis, allocating a value based on the probable length of the stream within the reach. It was found that the routing times were typically short, with routing times ranging between 12 and 24 hours. This arises from the fine delineation of the subcatchments. A single value was applied to the final model of 19.5 hours (70,000 seconds), a time that represented the mean routing time over the entire catchment.

A summary of the calibrated AWBM parameters used in the final calibration are presented in Table 3-1 and the calibrated routing values are presented in Table 3-2.

Table 3-1 Summary of Final AWBM Calibration Parameters

AWBM Parameters	$\begin{array}{lc}\text { Subcatchments } \\ \text { (Refer to } & \\ & \text { Figure 3-1 for subcatchments relative location) }\end{array}$						
	9 \& 27	13	12	28	$\begin{gathered} 11,14 \\ 15 \end{gathered}$	$\begin{gathered} 4,6,10,20,21 \\ 22,23,24,25,29 \end{gathered}$	$\begin{gathered} 1,2,3,5,7,8,16 \\ 17,18,19,26 \end{gathered}$
A1	0.134	0.134	0.134	0.134	0.134	0.134	0.134
A2	0.433	0.433	0.433	0.433	0.433	0.433	0.433
BFI	0	0	0	0.745	0	0	0.247
C1	50	50	45	50	50	50	40
C2	155	200	150	130	120	190	50
C3	300	500	300	250	180	390	90
Kbase	0	0	0	0.55	0	0	0
Ksurf	0	1	0	1	0	0	1

Table 3-2 - Summary of Routing Parameters

Muskingum Parameter	Estimate
K (Seconds)	70000
X (Unitless)	0

The end result of the calibration was a thoroughly developed model producing a Nash-Sutcliff coefficient of efficiency of 0.73 , with a net volume difference of 0.2% between the E 2 model and the observed rainfall over 31 years of observed flow available from the Comet River at AMTD 17.2km gauge. Hydrographs and a scatter plot displaying the observed and E2 modelled runoff at the Comet River at AMTD 17.2km gauging station are shown in Figure 3-3, Figure 3-4 and Figure 3-5 for the periods 1974 to 2004 and 1976 to 1979 respectively.

The E2 flow model was confirmed by an external independent peer reviewer (Appendix A).

Flow Modelling

Figure 3-3 - Hydrograph of E2 Modelled (Blue) and Observed (Red) Runoff (1974-2004)

Flow Modelling

Figure 3-4 - Hydrograph of E2 Modelled (Blue) and Observed (Red) Runoff (1976-1979)

Figure 3-5 - Scatter Plot of E2 Modelled and Observed Runoff (1974-2004)

Salinity Modelling

Section 4

4.1 Background

Associated water is produced as a necessary by-product of Coal Seam Gas (CSG) production. Associated water has a moderate salinity ${ }^{1}$. The discharge of this associated water into nearby streams prompted the creation of a model to evaluate potential impacts of this elevated salt concentration. Salinity modelling was intended to represent the current conditions, as well as the discharge associated with additional wells to begin pumping in the future, and various management scenarios as described in Section 5.2.

The original plan was to model salinity in conjunction with flow using E2; however, many limitations rendered E2 unfit for this purpose (Appendix C). These limitations prompted URS to develop a simple empirical algorithm to produce representative salinity modelling results.

4.2 Modelling

4.2.1 Model Objectives

The above-mentioned limitations within E2 prompted URS to build a simple algorithm in Excel to produce representative salinity modelling results. The objectives of the algorithm were:

- To apply a simple algorithm consistently across Fairview, Roma, and Arcadia study locations;
- To produce conservative salinity estimates (equal to or minimally higher than observed), attempting to replicate pulses or surges when salinity may be particularly of concern;
- To duplicate current conditions whilst also accommodating additional discharge and salinity from CSG production wells and treatment plants;
- To span the date extent of available flow data, thus extrapolating unknown salt concentrations; and
- To produce a user-friendly interface to evaluate various water management scenarios as described in Section .

4.2.2 Model Data

The basic salinity model was created based on stream flow and observed EC. Where available, observed flow data was sourced from the Department of Natural Resources and Water (NRW) stream gauges for the extent of record. In areas with no stream gauges, E2 modelled flows were used. In the Comet catchment, flow data was used to simulate three discharge locations;

- Comet River at AMTD 17.2km (1974-2004), representing the catchment outlet;
- Comet River at AMTD 124.2km (1974-2007), representing Rolleston; and
- Brown River at Arcadia (1974-1993) and Brown River at Lake Brown (1993-2006) were amalgamated with a scaling factor to represent discharge at Arcadia.
${ }^{1}$ Salinity is typically measured as TDS or indirectly using electrical conductivity (EC) measured at a standard temperature (typically $25^{\circ} \mathrm{C}$). A linear relationship exists between EC (measured in $\mu \mathrm{S} / \mathrm{cm}$) and TDS (mg / L) for the range of salinities discussed in this report.

Salinity Modelling

Continuous EC data was sourced from the two gauges on the Comet River for the extent of record (1997-2000 at Rolleston and 1997-2002 at the catchment outlet) with additional NRW water quality spot data over a longer time period. Only spot water quality data was available at Arcadia. All collected salinity data was compared to modelled salinity to refine the empirical models, which span the time extent of the flow record.

4.2.3 Model Assumptions

An empirical algorithm was developed to replicate observed salt concentration records. The model is based on a minimum and maximum salt concentration with fluctuation based on flow levels. This is similar to the high flow/low flow concentration model embedded in E2 with additional flexibility to account for the transition between high and low flow salinities.

When the flow is zero, the salt concentration is assumed to be zero. When flow equals or exceeds a selected high flow, the model resets to the minimum salt concentration. Salinity is expected to decrease in high flow and increase in low flow. The amount of daily incremental change in salinity was determined based on the rates of increase and decrease of observed salinity such that the final algorithm best fits the observed salinity curve.

Starting with a simple algorithm, three different modelling sophistications were trialled including (1) introduction of seasonality, (2) a ramp from a first maximum concentration to a second peak concentration, and (3) salinity responsive to flow flux (Figure 4-1). The modelling sophistications are described in Appendix B. Comparison of the three modelling sophistications resulted in selection of the ramp approach being used for all salinity model simulations. The ramp approach sufficiently captures the seasonal surges between March and June at Taroom, and the difference in salinity prediction from the flow flux approach was negligible and the complication was deemed unnecessary and less defensible.

When additional discharge and salinity was introduced from CSG production wells and treatment plants, straight mixing was assumed within a mass balance.

Results of salinity modelling are included in the next section of Associated Water Management Scenarios.

Salinity Modelling
Section 4

Figure 4-1 Trialled Salinity Modelling Sophistications at Utopia

5.1 Background

Santos recognises that water is a precious commodity and essential for the well being of the local community both now and into the future. After carefully considering the levels of existing and proposed development within the Arcadia Project Area, the imperatives of the international gas industry, and the desires of the local community, Santos has proposed a mix of associated water management options.

It is recognised that the proposed options need to be reviewed within an adaptive management framework that takes into account government initiatives in regional water management and development, changing economics of the gas and water markets, opportunities for regional development, and improved knowledge and science underpinning the extraction and use of associated water. Santos is committed to this regular review as part of its planning processes.

Significant volumes of associated water will be generated over the development life of the Arcadia Project Area. Management options include injection, onsite reuse, stock watering, irrigation, desalination and discharge, and direct discharge.

5.2 Scenarios

To explore the boundaries of any potential impacts of associated water discharge, it is necessary to define modelling scenarios. It is prudent to explore the potential for different points and quantities of discharge within each field as this will provide improved decision making and option analysis. Results can also feed back directly into the overall risk analysis.

It was determined useful to consider three points on each associated water production curve (minimum predicted water production and maximum predicted water production) for each modelling run. The three points identified are $1 / 3$ peak production, $2 / 3$ peak production and peak production. That is, for each point on the curve a constant flow was assumed from the CSG field over the full modelling period and compared with the results of a no discharge scenario. This means that six different flows ($1 / 3$ min peak, $2 / 3$ min peak, $3 / 3 \mathrm{~min}$ peak, $1 / 3$ max peak, $2 / 3$ max peak, and $3 / 3$ max peak) were combined with existing flows to assess the impacts for each scenario identified.

In Arcadia, the following four scenarios were considered after consultation with Santos:

- Option 1: Untreated associated water discharge into three points in the catchment allocated one-third of water production each with the three points located in Arcadia, around Rolleston, and at the catchment outlet;
- Option 2: Treated CSG discharge into the same three points in the catchment, each allocated one-third of water production;
- Option 3: Untreated total CSG discharge released at Rolleston via a pipeline; and
- Option 4: Treated total CSG discharge released at Rolleston via a pipeline.
- Modelling

Associated Water Management Scenarios

5.2.1 Model Parameters

Flow weighted salt concentration was calculated for the various scenarios from the following equation.

$$
C_{\text {mixed }}=\frac{Q_{1} \times c_{1}+Q_{2} \times c_{2}+Q_{3} \times c_{3}}{Q_{1}+Q_{2}+Q_{3}}
$$

Where $Q_{1} / c_{1}=$ observed flow / modelled salt concentration in the receiving stream;
$\mathrm{Q}_{2} / \mathrm{C}_{2}=$ direct discharge to grade from CSG well production / salt concentration of direct discharge; and
$\mathrm{Q}_{3} / \mathrm{C}_{3}=$ treated discharge from desalination plant / salt concentration of desalination discharge.
Modelled salt concentration was based on the ramp Salinity Model, as described in Section 4.2.3, and detailed below.

If $Q_{t}=0$
$c_{t}=0$
If $Q_{t}>Q_{H I G H}$
$C_{t}=C_{M I N}$
If $Q_{t}>Q_{t-1}$ (rising limb)
$c_{t}=c_{t-1}-c_{\text {DECREASE }}$
If $Q_{t}<Q_{t-1} A N D c_{t}<c_{R A M P}$
$c_{t}=c_{t-1}+c_{I B R}$
If $Q_{t}<Q_{t-1} A N D c_{t}>c_{R A M P}$
$c_{t}=c_{t-1}+c_{I A R}$
Where $\mathrm{Q}_{\mathrm{t}}=$ Flow at timestep t ;
$\mathrm{Q}_{\text {HIGH }}=$ high flow trigger parameter;
$c_{t}=$ salt concentration at timestep $t ;$
$\mathrm{C}_{\text {MIN }}=$ minimum salt concentration;
$\mathrm{C}_{\text {RAMP }}=$ salt concentration at which the rate of increase changes;
$\mathrm{C}_{\text {DECREASE }}=$ rate of salt concentration decrease;
$\mathrm{C}_{\mathrm{IBR}}=$ rate of salt concentration increase below ramp (IBR); and
$\mathrm{c}_{\mathrm{IAR}}=$ rate of salt concentration increase above ramp (IAR).

Associated Water Management Scenarios

5.2.2 Model Data

Discharge input was extracted from the Arcadia minimum and maximum associated water production curves at the peak levels as well as $1 / 3$ and $2 / 3$ of peak levels. The peak of the maximum associated water production curve is $27.4 \mathrm{ML} / \mathrm{d}$, resulting in $1 / 3$ peak of $9.1 \mathrm{ML} / \mathrm{d}$ and $2 / 3$ peak of $18.3 \mathrm{ML} / \mathrm{d}$. Similarly, the peak of the minimum associated water production curve is $1.4 \mathrm{ML} / \mathrm{d}$, resulting in $1 / 3$ peak of $0.5 \mathrm{ML} / \mathrm{d}$ and $2 / 3$ peak of 0.9 ML/d (Table 5-1).

Figure 5-1 Future Predicted Associated Water Production in Arcadia
In all scenarios, flow was direct discharge in either a completely treated or untreated state. No case assumed a mixing of untreated and treated associated water prior to release into the streams.

Of the associated water discharged in the treated scenarios, the discharge volume was reduced by 25% of the input volume. This assumption corresponds to the expected losses from the desalination treatment process as brine.

No salinity data was available for associated water within the Arcadia Field. However, based on comprehensive sampling from 56 producing wells in the Fairview project area over the period 2005 to 2007, the average Electrical Conductivity (EC) of associated water was $1,998 \mu \mathrm{~S} / \mathrm{cm}$ (TDS $1,338 \mathrm{mg} / \mathrm{L}$). From sampling of 52 production wells within Roma project area between 2006 and 2007, the average EC was $3,438 \mu \mathrm{~S} / \mathrm{cm}$ (TDS 2,303 mg/L). Conservatively, it was decided to adopt the salinity of the Roma Field in modelling untreated associated water discharges in Arcadia.

For treated discharge scenarios a target permeate EC of $280 \mu \mathrm{~S} / \mathrm{cm}$ (TDS $188 \mathrm{mg} / \mathrm{L}$) was assumed based on replicating the mean background surface water salinity within the Comet River based on 194 spot samples and limited continuous EC data.

Associated Water Management Scenarios

Section 5
Table 5-1 Flow (ML/d) for Arcadia Scenarios

Scenario	Predicted Production	Direct Discharge	Direct Discharge per Location	Treated Discharge	Treated Discharge per Location	Discharged to Comet River

Scenario 1: Untreated discharge into three points in the catchment allocated $1 / 3$ of water production each with the three points located in Arcadia, around Rolleston, and at the catchment outlet

1.1	$9.1(1 / 3 \mathrm{max})$	9.1	3.0	-	-	
1.2	18.3 $(2 / 3 \mathrm{max})$	18.3	6.1	-	-	
1.3	27.4 $(3 / 3 \mathrm{max})$	27.4	9.1	-	-	
1.4	$0.5(1 / 3 \mathrm{~min})$	0.5	0.2	-	-	27.4
1.5	$0.9(2 / 3 \mathrm{~min})$	0.9	0.3	-	-	0.5
1.6	$1.4(3 / 3 \mathrm{~min})$	1.4	0.5	-	-	0.9

Scenario 2: Treated discharge into the same three points in the catchment, each allocated $1 / 3$ of water production

2.1	9.1	-	-	6.9	2.3	6.9
2.2	18.3	-	-	13.7	4.6	13.7
2.3	27.4	-	-	20.6	6.9	20.6
2.4	0.5	-	-	0.4	0.1	0.4
2.5	0.9	-	-	0.7	0.2	0.7
2.6	1.4	-	-	1.1	0.4	1.1

Scenario 3: Untreated total production released at Rolleston via a pipeline

3.1	9.1	9.1	9.1	-	-	9.1
3.2	18.3	18.3	18.3	-	-	18.3
3.3	27.4	27.4	27.4	-	-	27.4
3.4	0.5	0.5	0.5	-	-	0.5
3.5	0.9	0.9	0.9	-	-	0.9
3.6	1.4	1.4	1.4	-	-	1.4

Scenario 4: Treated total production released at Rolleston via a pipeline

4.1	9.1	-	-	6.9	6.9	6.9
4.2	18.3	-	-	13.7	13.7	13.7
4.3	27.4	-	-	20.6	20.6	20.6
4.4	0.5	-	-	0.4	0.4	0.4
4.5	0.9	-	-	0.7	0.7	0.7
4.6	1.4	-	-	1.1	1.1	1.1

Table 5-2 Salt Input (mg/L) for Arcadia Scenarios

Scenario	Direct Discharge	Treated Discharge
1	2303	-
2	-	188
3	2303	-
4	-	188

Associated Water Management Scenarios

5.3 Model Development and Parameters

To assess the impacts of associated water discharged to the Comet River system, three salinity models were developed to simulate the natural condition of the river at their respective locations. The three models were created to represent three possible locations for point source input of associated water. The locations selected were Arcadia, Rolleston, and the catchment outlet on the Comet River.

At the catchment outlet gauging station, 5 years of continuous (with gaps) EC data has been collected between 1997 and 2002. The salinity model was calibrated to best fit the observed records. The stream flow, calibrated salinity model, and continuous and spot records at the catchment outlet are shown in Figure 5-2 and Figure 5-3. The salinity model is conservative overall, tending to overestimate the salinity in the system. This was necessary to allow the model to reach the peaks in the observed records. The salinity model was applied over the available data range of flow data from 1974 to 2004 to extend the period over which the scenarios can be assessed.

Similarly, 3 years of continuous (with gaps) EC data has been collected between 1997 and 2000 at the Rolleston gauging station on the Comet River. The salinity model was developed between 1997 and 2000 using the observed continuous EC record, then verified by checking against spot records going back to 1974. It was noticed that the model was not reaching the higher salinity measurements in the spot data over this period. The model was recalibrated to better reach the peaks without sacrificing calibration during the continuous record. The stream flow, calibrated salinity model, and the continuous and spot observed records at Rolleston are shown in Figure 5-4 and Figure 5-5.

Lastly, the Arcadia salinity model was developed. No continuous water quality apparatus has operated at the Arcadia gauging station for any useful length of time, and the limited data available is of highly questionable quality. Therefore the calibration of the salinity model was dependant on 40 NRW spot data measurements. Parameters used in the Rolleston salinity model were used as a basis for the Arcadia model. High flow salinity reset to minimum concentration and the maximum concentration were adjusted to achieve a calibration to the spot data measurements. Overall the model appears to match the spot data on the majority of occasions. Without a significant increase in spot data or a continuous EC record, the model is calibrated within the limits of the available data. The stream flow, calibrated salinity model, and the spot observed records for Arcadia are shown in Figure 5-6.

Associated Water Management Scenarios

Figure 5-2 Catchment Outlet Salinity Model - 1997 to 2002

Figure 5-3 Catchment Outlet Salinity Model - 1975 to 2004

Associated Water Management Scenarios

Figure 5-4 Rolleston Salinity Model - 1997 to 2001

Figure 5-5 Rolleston Salinity Model - 1974 to 2007

Associated Water Management Scenarios

Figure 5-6 Arcadia Salinity Model - 1974 to 2007

The parameters used in the salinity model for Arcadia, Rolleston and the catchment outlet are presented in Table 5-3 below.

Table 5-3 Comet Salinity Model Parameters

Ramp Model Parameter	Outlet Scenarios $\mathbf{1 ~ \& ~ 2 ~}$	Rolleston Scenarios $\mathbf{1 , 2 , 3} \& \mathbf{4}$	Arcadia Scenarios $\mathbf{1 ~ \& ~ 2 ~}$	Units
High Flow Salinity Reset to Minimum Concentration	6000	2000	500	ML / d
Max Concentration	650	370	270	mg / L
Minimum Concentration	60	65	65	mg / L
Ramp Change Concentration	300	170	170	mg / L
Flow Decreases - Salinity Increase - Below Salinity Ramp by:	15	7	7	$\mathrm{mg} / \mathrm{L} / \mathrm{day}$
Flow Decreases - Salinity Increase - Above Salinity Ramp by:	10	3	3	$\mathrm{mg} / \mathrm{L} / \mathrm{day}$
Flow Increase - Salinity Decrease by:	5	3	3	$\mathrm{mg} / \mathrm{L} / \mathrm{day}$

Associated Water Management Scenarios

5.4 Results and Interpretation

To assess the environmental impacts on the Comet River as a result of future associated water production, the three regional models were later customized to evaluate 48 scenarios, in accordance with the scenarios and parameters defined in Table 5-3. A statistical overview of the modelled natural stream conditions are presented in Table 5-4. A statistical overview of the modelled results of each scenario is presented in Table 5-5 and graphically in Figure 5-7. The results show:

- Minimum salt concentration of the mixed stream (during large runoff events);
- Average salt concentration;
- Maximum salt concentration (typically the concentration of the associated water).
- $\quad 25 \%$ of days the mixed stream salt concentration is equal to or less than Lower Quartile;
- 50% of days the mixed stream salt concentration is equal to or less than Median;
- 75% of days the mixed stream salt concentration is equal to or less than Upper Quartile; and
- $\quad 95^{\text {th }}$ Percentile representing the value that 95% of the stream salinity records (as mg / L) are below.

Table 5-4 Modelled Natural Stream Salinity (mg/L)

Scenario	Statistics				Quartile			$95^{t h}$ Percentile
	Min	Average	Average (no flow excluded)	Max	Lower	Median	Upper	
Arcadia Salinity Model	0	41	146	270	0	0	65	242
Rolleston Salinity Model	0	94	194	370	0	0	174	367
Outlet Salinity Model	0	126	323	673	0	105	188	405

All three discharge locations are dry at certain times of the year. This is apparent in the quartiles showing Arcadia and Rolleston having ceased to flow greater than 50% of days of record. The outlet flows for a greater proportion of the year due to the greater catchment area, however there are still 'no flow' periods for at least 25% of model period. Further, the base flow within the streams is often very low, in the order of a few ML/day. This has been found to skew the average and quartiles towards low salinity. The average of the salinity model only including days with recorded flow has been included in Table 5-4 for comparison.

Table 5-5 Summary of Scenarios - Mixed Stream Salt concentrations (mg/L)

Scenario	Future Production (ML/d)	Statistics			Quartile			$95^{t h}$ Percentile
		Min	Average	Max	Lower	Median	Upper	
Scenario 1: Untreated discharge into three points in the catchment allocated 1/3 of water production each with the three points located in Arcadia, around Rolleston, and at the catchment outlet								
1.1 Arcadia	3.0	65	1827	2303	1807	2303	2303	2303
1.2 Arcadia	6.1	65	1865	2303	2022	2303	2303	2303
1.3 Arcadia	9.1	66	1891	2303	2107	2303	2303	2303
1.4 Arcadia	0.2	65	1729	2303	486	2303	2303	2303
1.5 Arcadia	0.3	65	1744	2303	720	2303	2303	2303
1.6 Arcadia	0.5	65	1755	2303	899	2303	2303	2303
1.1 Rolleston	6.1	4	1560	2303	521	2303	2303	2303
1.2 Rolleston	12.2	7	1633	2303	725	2303	2303	2303
1.3 Rolleston	18.3	11	1679	2303	887	2303	2303	2303
1.4 Rolleston	0.3	0	1361	2303	235	2303	2303	2303
1.5 Rolleston	0.6	0	1392	2303	261	2303	2303	2303
1.6 Rolleston	0.9	1	1415	2303	284	2303	2303	2303
1.1 Outlet	9.1	1	1566	2303	635	2303	2303	2303
1.2 Outlet	18.3	2	1631	2303	797	2303	2303	2303
1.3 Outlet	27.4	3	1674	2303	923	2303	2303	2303
1.4 Outlet	0.5	0	1411	2303	360	2303	2303	2303
1.5 Outlet	0.9	0	1433	2303	387	2303	2303	2303
1.6 Outlet	1.4	0	1449	2303	408	2303	2303	2303
Scenario 2: Treated discharge into the same three points in the catchment, each allocated 1/3 of water production								
2.1 Arcadia	3.0	0	176	267	188	188	188	207
2.2 Arcadia	6.1	1	176	266	188	188	188	201
2.3 Arcadia	9.1	1	176	266	188	188	188	198
2.4 Arcadia	0.2	0	176	270	188	188	188	236
2.5 Arcadia	0.3	0	176	270	188	188	188	230
2.6 Arcadia	0.5	0	176	269	188	188	188	224
2.1 Rolleston	6.1	0	184	367	186	188	188	300
2.2 Rolleston	12.2	0	183	364	187	188	188	281
2.3 Rolleston	18.3	0	182	363	187	188	188	270
2.4 Rolleston	0.3	0	189	370	183	188	188	351
2.5 Rolleston	0.6	0	188	370	183	188	188	344
2.6 Rolleston	0.9	0	188	370	184	188	188	339
2.1 Outlet	9.1	0	230	648	188	188	234	543
2.2 Outlet	18.3	0	223	647	188	188	212	508
2.3 Outlet	27.4	0	223	645	188	188	226	503
2.4 Outlet	0.5	0	243	650	188	188	245	633
2.5 Outlet	0.9	0	241	650	188	188	240	622

Associated Water Management Scenarios

Scenario 2.6 Outlet	Future Production (ML/d) 1.4	Statistics			Quartile			$95^{\text {th }}$ Percentile 612
		Min	Average	Max	Lower	Median	Upper	
		0	239	650	188	188	238	
Scenario 3: Untreated total production released at Rolleston via a pipeline								
3.1 Rolleston	9.1	3	1601	2303	630	2303	2303	2303
3.2 Rolleston	18.3	5	1679	2303	887	2303	2303	2303
3.3 Rolleston	27.4	8	1727	2303	1079	2303	2303	2303
3.4 Rolleston	0.5	0	1378	2303	248	2303	2303	2303
3.5 Rolleston	0.9	0	1414	2303	284	2303	2303	2303
3.6 Rolleston	1.4	0	1439	2303	313	2303	2303	2303
Scenario 4: Treated total production released at Rolleston via a pipeline								
4.1 Rolleston	9.1	0	184	366	187	188	188	289
4.2 Rolleston	18.3	0	182	363	187	188	188	270
4.3 Rolleston	27.4	0	181	361	187	188	188	257
4.4 Rolleston	0.5	0	189	370	183	188	188	348
4.5 Rolleston	0.9	0	188	370	184	188	188	339
4.6 Rolleston	1.4	0	187	369	184	188	188	332

Scenarios were based on each stream directly receiving one third of the flow; however, the streams are in series and the most upstream discharge will inherently be included in downstream analysis. As a result the flow was aggregated down the catchments such that; Arcadia received $1 / 3$ of the water production, Rolleston received $2 / 3$, and 100% of the associated water discharge is present in the stream at the outlet. Losses from evaporation or seepage were assumed to be negligible.

As noted above, all three discharge locations are ephemeral under certain times of the year. Further, the base flow within the stream is often very low, in the order of a few ML/day. During periods of no flow, the only flow in the stream is the associated water discharge, thereby resulting in an salt concentration in the system equal to that of the production water. This has been found to skew the average and quartiles towards higher salt concentrations.

Scenario

Figure 5-7 Summary of Scenarios - Mixed Salt concentration in Dawson River

Associated Water Management Scenarios

Section 5

5.4.1 Scenario 1 - Untreated Direct Discharge

Scenario 1 represents discharging untreated associated water at three points within the Comet catchment. The three locations selected were Arcadia on the Brown River, Rolleston on the Comet River and at the catchment outlet. Figure 5-8, Figure 5-9 and Figure 5-10 show the three salinity models in natural stream conditions, in addition to the minimum ($0.5 \mathrm{ML} / \mathrm{d}$) and the maximum ($27.4 \mathrm{ML} / \mathrm{d}$) predicted future production. This represents the current and likely range of future production within the Comet River catchment.

All three streams are ephemeral during much of the year, resulting in the only flow present in the stream being the associated water. Therefore, at all locations, the salinity in the stream is often flat lined at the salt concentration of the associated water ($2303 \mathrm{mg} / \mathrm{L}$). Arcadia exhibited the largest overall difference in salinity between the natural model and the production scenarios. This is due to Arcadia having both the lowest natural background salinity level, and the lowest flow of the three locations. However, increasing the level of discharge in Arcadia had little effect on the overall salinity in the system, as any discharge would have the same effect when the river has ceased to flow.

The modelling at Rolleston and at the catchment outlet both exhibited greater variability between the maximum and minimum future production scenarios. The difference is greatest during the period 1974 to 1984. During this time period, the minimum future production was found to have far less impact on the natural stream condition than the peak production scenario.

Figure 5-8 Scenario 1 - Untreated Discharge - Arcadia

Associated Water Management Scenarios

Figure 5-9 Scenario 1 - Untreated Discharge - Rolleston

Figure 5-10 Scenario 1 - Untreated Discharge - Catchment Outlet

Associated Water Management Scenarios

5.4.2 Scenario 2 - Treated Discharge

Scenario 2 represents directing and discharging treated production water at three points within the Comet catchment. The three locations selected were Arcadia on the Brown River, Rolleston on the Comet River and at the catchment outlet. Figure 5-11, Figure 5-12 and Figure 5-13 show the three salinity models in natural stream conditions, in addition to the minimum ($0.5 \mathrm{ML} / \mathrm{d}$) and the maximum ($27.4 \mathrm{ML} / \mathrm{d}$) predicted future production. This represents the current and likely range of future production within Comet River catchment.

All three streams are ephemeral during much of the year, resulting in the only flow present in the stream being the associated water. Therefore, at all locations, the salinity in the stream is often equivalent to the salinity of the permeate stream (TDS $188 \mathrm{mg} / \mathrm{L}$).

All three locations exhibit similar correlations between the natural and associated water scenarios. When the stream has ceased to flow, the salinity is equivalent to the mean natural background salinity level, which is the target salinity of the treated associated water. The greater the volume of treated production water, the greater the tendency of the mixed stream to skew towards the treated water quality level. This results in the mixed stream's salt concentration not peaking during dry periods prior to ceasing to flow, and increasing the salinity during large runoff events that typically had very dilute concentrations of salt in the stream.

Figure 5-11 Scenario 2 - Treated Discharge - Arcadia

Associated Water Management Scenarios

Figure 5-12 Scenario 2 - Treated Discharge - Rolleston

Figure 5-13 Scenario 2 - Treated Discharge - Catchment Outlet

5.4.3 Scenario 3 - Piped Untreated Discharge at Rolleston

Scenario 4 represents piping untreated associated water to Rolleston for discharge. Figure 5-14 shows the Rolleston salinity model in natural stream conditions, in addition to the minimum ($0.5 \mathrm{ML} / \mathrm{d}$) and the maximum $(27.4 \mathrm{ML} / \mathrm{d})$ predicted future production. This represents the current and likely range of predicted future production within the Comet River Catchment.

The modelling at Rolleston exhibited variability between the maximum and minimum future production scenarios. The difference is greatest during the period 1974 to 1984. During this time period, the minimum future production was found to have far less impact on the natural stream condition than the peak production scenario. However, there exists little difference between Scenario 1 and Scenario 3 when comparing maximum production at Rolleston despite effectively adding 50\% more discharge.

Figure 5-14 Scenario 3 - Untreated Discharge at Rolleston

Associated Water Management Scenarios

5.4.4 Scenario 4 - Piped Treated Discharge at Rolleston

Scenario 4 represents piping treated associated water to Rolleston before release. Figure 5-15 shows the Rolleston salinity model in natural stream conditions, in addition to the minimum ($0.5 \mathrm{ML} /$ day) and the maximum ($27.4 \mathrm{ML} / \mathrm{d}$) predicted future production. This represents the current and likely range of future production within Comet River catchment.

The Comet River at Rolleston is ephemeral during the greater portion of the year, resulting in the only flow present in the stream being the associated water. Therefore, at all locations, the salinity in the stream is equal to the treated associated water concentration ($188 \mathrm{mg} / \mathrm{L}$).

When the stream has ceased to flow, the salinity is equivalent to the mean natural background salinity level, which is the target salinity of the treated associated water. Further, the greater the volume of treated production water, the greater the tendency of the mixed stream to skew towards the treated water quality level. This results in the mixed streams salt concentration not peaking during dry periods prior to ceasing to flow, and increasing the salinity during large runoff events that typically had very dilute concentrations of salt in the stream.

Figure 5-15 Scenario 4 - Treated Discharge at Rolleston

Conclusion

A rainfall-runoff model has been developed for the Comet River catchment (and Arcadia Field) within the limits of the available data. The model is representative of the observed stream gauging records and allows prediction of the most important flow regimes (zero, low and medium flows) required to assess changes in salinity and flow arising from potential discharges of associated water. Larger flows are less accurately represented with the E2 model with flow peaks generally lower than observed. Matching of peak flows was a lower priority in model fit runs since salinity will typically be diluted under these flows. Under-estimates of peak flows will generally produce conservative dilution for consideration in developing management options.

Modelling shows that discharge of associated water will dominate salinities in the low to moderate flow regime of the Comet River. Thus untreated discharges to grade will only be partially diluted under many flow conditions and not diluted under zero natural flows. Similarly, treated discharges (permeate) will also dominate the salinity regime, with no dilution under zero flows in dry season and some dilution at other times.

Results generated in this report will be considered as part of the overall risk assessment of discharging associated water to grade.

URS Australia Pty Ltd (URS) has prepared this report in accordance with the usual care and thoroughness of the consulting profession for the use of Santos and only those third parties who have been authorised in writing by URS to rely on the report. It is based on generally accepted practices and standards at the time it was prepared. No other warranty, expressed or implied, is made as to the professional advice included in this report. It is prepared in accordance with the scope of work and for the purpose outlined in the Proposal dated 12 October 2007.

The methodology adopted and sources of information used by URS are outlined in this report. URS has made no independent verification of this information beyond the agreed scope of works and URS assumes no responsibility for any inaccuracies or omissions. No indications were found during our investigations that information contained in this report as provided to URS was false.

This report was prepared between October 2007 and January 2009 and is based on the conditions encountered and information reviewed at the time of preparation. URS disclaims responsibility f or any changes that may have occurred after this time.

This report should be read in full. No responsibility is accepted for use of any part of this report in any other context or for any other purpose or by third parties. This report does not purport to give legal advice. Legal advice can only be given by qualified legal practitioners.

Flow Model Development

A. 1 E2 Background

The basic architecture of the E2 modelling framework consists of a subcatchment-node-link system based on two previous software packages, the Environmental Management Support System (EMSS) and the Integrated Quality and Quantity Model (IQQM). E2 allows for the generation of flow and materials in subcatchments and then onto a node where they are routed and possibly processed along a link.

Within E2 sub-catchments are broken up into 'functional units' that represent areas of similar behaviour or response. These can be various combinations of land use or cover such as forestry or grazing, management techniques or even position in the landscape such as ridge, floodplain, etc. Each FU can then have various models describing processes of runoff generation, constituent generation and filtering.

A.1.1 Australian Water Balance Model (AWBM)

The Australian Water Balance Model (AWBM) is a catchment water balance model capable of relating rainfall and evaporation to runoff on an hourly or daily time step. It has a total of eight parameters with the model containing three conceptual stores (C1-C3) with area representation (A1-A3 summing to 100% of the total area) plus surface and baseflow recession constants and a baseflow index. The relative sensitivity of each parameter can vary depending on the value of the others; however the model is generally most sensitive to the recession constants and baseflow index (Argent et al, 2007a). Figure A-1 shows a conceptual diagram of the model and Table A-1 details the AWBM parameters and their default settings.

Figure A-1 Australian Water Balance Model (AWBM)

Flow Model Development

Appendix A
Table A-1 Definition of AWBM parameters and their default values

Parameter	Definition	Units	Max	Min	Default value
Base flow index (BFI)	The ratio of baseflow to total flow in the stream flow	none	1.0	0	0.35
Daily surface flow recession constant (KS)	Determines the rate at which the surface flow runoff store is depleted	Day $^{-1}$	1.0	0	0.35
Daily base flow recession constant (BS)	Determines the rate at which the base flow store is depleted	Day $^{-1}$	1.0	0	0.95
A1	Partial area of surface store 1	None	1.0	0	0.134
A2	Partial area of surface store 2	None	1.0	0	0.433
C1	Capacity of surface store 1	mm	50	0	7
C1	Capacity of surface store 1	mm	200	0	50
C1	Capacity of surface store 1	mm	500	0	150

(Source: Based on Argent et al, 2007a)
The model works by calculating the water balance for each partial store independently of the others at the desired time step. The water balance is calculated as:

$$
\text { Store }_{n}=\text { Store }_{n}+\text { Rain }- \text { Evaporation (where } \mathrm{n}=1-3 \text {) }
$$

When the amount of moisture in the store exceeds its capacity, runoff occurs. Part of the runoff can then be used to recharge the baseflow. This is calculated as:

Baseflow recharge $=$ BFI \times Rainfall Excess
The remainder of the excess then becomes surface runoff. The baseflow store is then depleted at a rate of:
Baseflow depletion= $\left(1.0-\mathrm{K}_{\text {base }}\right) \times$ Baseflow store
(Where $\mathrm{K}_{\text {base }}$ is the daily baseflow recession constant)
In larger catchments flows often arrive from different areas at different times and it may be necessary to attenuate some flows. This is achieved in the model by a surface store whereby the discharge is controlled by the daily surface flow recession constant ($\mathrm{K}_{\text {surf }}$):

Surface flow routing $=\left(1.0-\mathrm{K}_{\text {surf }}\right) \times$ Surface store
Changing the values of the two recession constants allows the shape of the flood hydrograph to be altered. Higher values of both constants give slower recessions and hence longer falling limbs. Therefore they can be used to simulate different catchment conditions. The value of BFI also dictates how much of the rainfall excess is directed to either runoff or baseflow. This is important in allowing the model to capture different types of geology and catchment morphology.

A.1.2 Network Creation

E2 accepts a variety of spatial data to determine the catchment network and land use. Digital elevation models (DEM) can be used to automatically generate the subcatchment network required for the modelling process. However, Rob Argent (an E2 developer) advised against use of DEMs for this process since data preprocessing to connect gaps, identify stream flow direction, and fill pits can be extremely time intensive and could be especially problematic when dealing with the highly ephemeral nature of the stream network in the study area.

Flow Model Development

Appendix A
For this reason, the use of GIS shape files was used to represent the subcatchments and the stream network was drawn in manually within E2. This means that while catchment area is calculated within E2 for the purpose of runoff generation, there is no explicit spatial representation of the stream network.

A. 2 Data Collation and Preparation

Construction of the E2 model required the following data:

- Subcatchments were delineated based on major stream confluences and areas of interest using ArcGIS. Subcatchments were first converted into a raster, then an ascii grid file for entry into E2, which recognizes its spatial reference. The stream network was manually drawn on top of the subcatchments using nonspatially referenced links and nodes.
- Functional units must be identified upon initial construction of the E2 model and cannot be altered thereafter. Functional units are typically based on land use and associated hydrologic behaviour. Based on land use data obtained from Queensland DNRW, the land is predominantly grazing. With no data to distinguish behavioural differences across the Comet catchment, land use was determined to not be influential or required in model development. Therefore, the model uses only a single functional unit covering all areas.
- One of the challenges encountered in building the E2 model was loading the input rainfall files into the model. Initially the model was developed using SILO gridded rainfall data. Daily gridded rainfall files (0.25 degree cell size which is approximately $28 \mathrm{~km} \times 28 \mathrm{~km}$) were purchased from SILO through BOM. Daily files were available from April 1997 through mid-February 2008. URS utilized a 10 year calibration period from April 1997 through March 2007 with subsequent months providing a validation period. The publicly released version of E2 is unable to process the gridded files directly. Therefore URS created an automated process to convert all grids to Lambert Conformal Conic projection, then calculate zonal statistics (an area weighted average) over all cells within a given subcatchment to produce an input rainfall file for each subcatchment containing a time series of daily rainfall. The input rainfall file was in space delineated text (.sdt) format in the form 'year month day value'.

During the calibration of the Comet River catchment model it was found that significant variations existed between the gridded rainfall input and observed discharge at the gauges, which prompted a more thorough investigation into the accuracy of the input rainfall data. A comparison was made between gridded rainfall data and point data from rainfall stations located within Comet catchment. Despite both data sets being sourced from the Bureau of Meteorology, the rainfall differences were drastic. It was decided to construct a new E2 model replacing the gridded rainfall input with the point data rainfall.

A total of 53 gauges around Comet catchment were used to generate a rainfall input file for each subcatchment. Rainfall gauge data was available for its entire operational life. Many of the gauges had records extending back to 1900 or even earlier. However, it was decided to model the time period from January 1974 to December 2006. The decision to model over this time period was two fold, to maximise the number of data points available (most gauges did not become operational till mid-last century) and to ensure that modern measuring procedures were undertaken. Where multiple gauges were available within a single catchment, the rainfall observed at these gauges was averaged to produce a single rainfall input for the catchment. Where no gauges existed within the catchment, rainfall data from the nearest gauges were used. Where there were missing days for a given gauge, data was infilled from adjacent gauges.

The results from E2 were exported into Excel to compare (1) E2 model with point rainfall input, (2) E2 model with SILO rainfall input, and (3) E2 model with observed discharge at the lower Comet River gauge. Basic

Flow Model Development

Appendix A

findings were that with minimal preliminary calibration, hydrographs are generally better aligned with point rainfall input rather than SILO rainfall input, with the E2 model better matching the peaks and rise and fall. The overall conclusion is that the point rainfall data better reflects the discharge data at Comet than the SILO gridded data. It was therefore decided to continue the modelling and calibration using the point rainfall data as inputs. However, there are still limitations in the quality of the hydrologic model due to the averaging of the rainfall data over multiple gauges, the necessity of using gauges outside of the subcatchment and due to many of the rainfall records being incomplete.

- A single evaporation input file was applied across the entire catchment. As BOM does not operate a device capable of measuring evaporation within the Comet catchment the input file was built using an amalgamation of the nearest recording stations including Emerald, Taroom and Brigalow Research Station.
- Continuous daily or hourly discharge data was available for ten stream gauging stations in the Comet catchment. Due to the close proximity of two of the gauges only one was utilised whilst the other was used for verification purposes. The gauge names, IDs and years of data used in the development of the model are as follows;
- Brown River at Arcadia (130502A) - 1/1/1974 to 19/3/1993
- Brown River at Lake Brown (130502B) - 20/12/1984 to 31/12/2006
- Carnavon Creek at Wyseby Station (130503A) - 1/1/1974 to 30/6/1988
- Carnavon Creek at Rewan (130509A) - 30/5/1985 to 31/12/2006
- Comet River at AMTD 17.2km (130504A) - 1/1/1974 to 7/1/2004
- Comet River at AMTD 124.2km (130506A) - 1/1/1974 to 31/12/2006
- Humboldt Creek at Sunlight (130505A) - 1/1/1974 to 1/10/1988
- Planet Creek at Planet Downs (130507A) - 1/1/1974 to 21/3/1993
- Meteor Creek at Springwood (130508A) - 1/1/1974 to 2/11/1988

Some of this data was initially presented in an hourly time step and occasionally multiple daily spot times. The processing of this data into a daily time step required specific VBA looping macros in Excel. Discharge data was used to calibrate the water balance model. Only the gauge located on Comet River at AMTD 124.2 km was complete over the 33 years of rainfall input being applied.

- Continuous daily or hourly electrical conductivity (EC) data was also available from the three NRW stream gauging stations. These included the two gauging stations located on Comet River and the gauge located on the Brown River at Lake Brown. In addition to being of questionable quality, the length of data records were also of concern with gauges ranging from 6 months of continuous data with the longest running gauge producing 5 years of sporadic readings. Upon closer inspection of the gauge data, it was apparent that only one gauge was producing data that was both recorded over a sufficient length of time and of a suitable quality for calibration purposes. Fortunately the gauge producing useable data was located on Comet River at AMTD 17.2 km , the outlet gauge leaving the catchment. Other various spot monitoring water quality samples from NRW and URS sampling were used in combination with the continuous data to calibrate the salinity model. Electrical conductivity was first converted into a salt concentration (mg / L) using a conversion factor of:

$$
\mathrm{EC}(\mu \mathrm{~S}) \times 0.67=\text { salinity }(\mathrm{mg} / \mathrm{L})
$$

(NRW fact sheet: Measuring salinity, 2007)

Flow Model Development

Appendix A
URS has also been engaged in a program of water quality monitoring within the study area for this and other related studies. This data will be used to further refine the models next year. Background salinity levels were based on various borehole data in the study area.

A. 3 Model Calibration

A.3.1 E2 Calibration Tools

E2 contains a separate calibration tool that can be used to calibrate separate aspects of the model. Four types of calibration tool are available:

- Subcatchment flow - to calibrate the water balance models
- Link flow - to calibrate flow routing
- Subcatchment constituent - to calibrate constituent generation and filter models
- Link constituent - to calibrate the in-stream constituent models

Within the calibration process, the catchment may be cropped to allow calibration of sub areas such as groups of subcatchments. This is intended to allow different parts of the catchment to be calibrated separately based on the location of gauges, dams etc.

Unfortunately, the calibration tool within E2 is manually very intensive, requiring upwards of hundreds of parameters to be assigned before the automatic processors take over. For example the Comet catchment with 62 subcatchments (31 main subcatchments plus the 31 small nodes necessary for discharge injection) with one functional unit and the 8 AWBM parameters would require 496 separate manual inputs ($62 \times 1 \times 8=496$). Further, after an initial run it was found that the automatic calibration was not sufficiently quick or accurate enough. A manual approach to calibration was taken for the final refinement of the E2 model.

A.3.2 Rainfall Runoff Library (RRL)

After an initial attempt to calibrate the water balance in E2 yielded poor results, research indicated that some additional software might provide a more detailed set of tools for calibration. The Rainfall Runoff Library (RRL), also available from the CRC for Catchment Hydrology as part of the catchment modelling toolkit (www.toolkit.net.au/rrl), was utilised. The software contains 5 different Rainfall-Runoff models (including the AWBM) along with 8 calibration optimisers and 10 objective functions. Unlike E2, the use of the calibration optimisers largely automates the process so that many calibration iterations can be run without the need to constantly input parameter values.

The model differs from E2 in that it is a lumped model (it has only a single surface) and therefore is not able to model spatial variation in catchment characteristics such as changes in rainfall or runoff characteristics, or able to account for lag. It is therefore most useful on smaller catchments without upstream inflows. Reference is often made in literature of the advantages of water balance model calibration in the RRL due to its advanced functionality (e.g. Xu and Argent, 2005).

Because RRL is a lumped model, it only requires a single rainfall file as well as an evaporation record and an observed flow record for calibration. Catchment area is also required. The rainfall file initially used was simply created by averaging the existing rainfall files. Because RRL only allows headwater catchments to be modelled (an observed flow cannot be assigned as an input to a subcatchment), its usefulness is limited to providing an initial starting point on which to begin further refinement.

Flow Model Development

Appendix A
The choice of calibration optimiser came down to the best performing one - the shuffled complex evolution (SCE-UA). The objective function was again the Nash-Sutcliffe coefficient of efficiency (CE). The initial results were far more promising than default parameters in E2. The combination of the calibration optimiser to run several hundred iterations plus the ability to manually adjust the parameters with real-time results quickly enabled CE to be achieved on a daily time step. A summary of the CE results are summarised in Table A-1.

Table A-2 RRL Calibrated Results at Headwater Locations

Gauge Location	Nash-Sutcliff Criterion
Carnavon Creek at Rewan (130509A)	0.508
Humboldt Creek at Sunlight (130505A)	0.857
Planet Creek at Planet Downs (130507A)	0.482
Meteor Creek at Springwood (130508A)	0.462

A. 4 Quality Assurance of E2 Flow Modelling Package

Model development for the three catchments in this study began with the Dawson River catchment, which was used as a pilot study area before developing the E2 model for the Comet River catchment. Early in the model development, significant discrepancies between observed and modelled flow in the Dawson catchment created uncertainty regarding the capabilities of the designed E2 models to replicate current conditions in the Dawson River catchment. Subconsultants from HydroTasmania were contracted to replicate the Dawson hydrologic model using Kisters Modelling Hydstra software which they've used extensively to model approximately 70 catchments around Tasmania.

The comparative exercise proved interesting and useful. First, it was observed that a key parameter in Hydstra model calibration is the upper limit on baseflow, while E2 does not provide a variable for adjusting or limiting baseflow, thus seemingly allowing for infinite groundwater storage. Secondly, Hydstra is able to apply seasonality on soil stores, whereas E2 parameters are limited to a single number, applied throughout the entire time series.

In a comparison between E2 and Hydstra models created with identical parameters, the models produced very similar results for a single subcatchment (same peaks, same capture of events, slightly different recession curves). However, when complexity was added in modelling the entire Dawson catchment (22 subcatchments), discrepancies became more apparent, suggesting that E2 fell short of accurately representing channel routing.

They came to the same conclusion, namely that the model can be calibrated well for individual events but the parameters remain event-specific; they also achieved similar degrees of model fit and obtained similar parameter values for the AWBM.

Both models severely underestimated flow volume for many events, which prompted a more thorough investigation of the input rainfall data. Even if the peaks could be matched with rising and falling limbs, it would be impossible to "create" additional volume. With dogged differences between rainfall and observed discharge at the Taroom gauge, it is difficult to fathom model replication of observed conditions.

It should be noted that both Dawson models were produced using SILO rainfall data which was later proved to be of questionable quality, showing surprising differences from the point rainfall data also sourced from BOM. E2 models were reconstructed using point rainfall gauge data, which resulted in a much better calibration. A Hydstra model utilising point rainfall gauge data was never built.

Salinity Model Development

Appendix B

B. 1 E2 Limitations

The original plan was to model salinity in conjunction with flow using E2; however, many limitations rendered E2 unfit for this purpose. Event Mean Concentration/Dry Weather Concentration (EMC/DWC) was identified as an appropriate constituent model to capture high salinity in low flow and low salinity in high flows. The initial approach to apply the EMC/DWC model to the existing stream network was inadequate due to the fact that the model type is intrinsically linked to the Rainfall-Runoff model applied to each functional unit. This means that predicted salt concentration would be dependent on the amount of runoff generated by the water balance model. While this is acceptable for the purpose of generating background salinity levels, it would not be appropriate for the purpose of modelling fixed discharges from CSG wells.

Innovative design was used to trick E2 into correctly modelling fixed discharges from the CSG wells. Ultimately, an additional catchment of nominal area (less than one square kilometre) was added within each subcatchment. This was necessary to create a node upon which to apply input flow and salt concentration representing well discharge. This node was part of the link and node network, but served only as an input to the catchment within which it resided. All wells within the subcatchment were modelled by a single node.

The second incongruity was in the logic of the EMC/DWC model itself, which is linked to three parameters of the AWBM Rainfall-Runoff model (BFI, Kbase, and Ksurf) rather than flow. If all flow is directed to Kbase, E2 flatlines at the DWC concentration. Similarly, if all flow is directed to Ksurf, E2 flatlines at the EMC concentration. If the flow is split between equal Kbase and Ksurf using the BFI parameter, E2 flatlines at an average of the EMC and DWC concentrations. Where Kbase and Ksurf differentiate from each other, E2 fluctuates inconsistently with flow and observed salt concentrations.

A third complication is that E2 calibration of salinity requires adjustment of AWBM parameters, which would inherently alter the calibration of flow. Preliminary calibration efforts without regard to the effect on flow suggested that E2 would not effectively align to observed data. Overall, E2 modelling of salinity was neither representative nor defendable.

A comparison of the observed and E2 modelled salt concentration at the Comet River at AMTD 17.2km gauging station (Comet River Catchment) is shown in Figure B-1.

Figure B-1 E2 (blue) and Observed Salinity (red) at Comet River

B. 2 Model Sophistications

A basic empirical algorithm was developed to replicate observed salt concentration trends. When the flow is zero, the salt concentration is assumed to be zero. The model is based on a minimum and maximum salt concentration with fluctuation based on flow levels. When flow equals or exceeds a selected high flow, the model triggers reset to the minimum salt concentration. Salinity is expected to decrease in high flow and increase in low flow. The amount of daily incremental change in salinity was determined based on the rates of increase and decrease of observed salinity such that the final algorithm best fits the observed salinity curve.

Starting with a simple algorithm, three different modelling sophistications were trialled including (1) introduction of seasonality, (2) a ramp from a first maximum concentration to a second peak concentration, and (3) salinity responsive to flow flux.

Seasonality was noticed to be particularly relevant for Taroom, where many of the surges in salt concentration occur annually during a three month period from March to June. A simple extension of the basic algorithm allows the salt concentration to be capped at a higher maximum during these months. Seasonality appeared less relevant at Utopia and other stream gauges. Seasonal salinity model parameters (Table B-1) include three flow levels at low, medium, and high flow. An incremental increase is applied to salinity between low and medium flow while an incremental decrease is applied to salinity between medium and high flow.

The ramp approach appeared to apply more consistently across gauges, and is based on the premise that for decreasing flow, one incremental increase rate is applied up to a preset 'ramp change concentration' followed by a second incremental increase rate applied above the 'ramp change concentration' (Table B-2). A third

Salinity Model Development

Appendix B

incremental rate applies when flow increases, thus reducing the salt concentration by a fixed amount each day. This method tends to overestimate salinity over extended time periods (conservative) while capturing more of the spikes in salt concentration.

The flow flux sophistication was an attempt to make salinity estimates more sensitive to changes in flow. The flow flux salinity model parameters (Table B-3) also include three flow levels at low, medium, and high flow. Below the low flow level, salt concentration was incrementally increased at a set rate. Between low and medium flow, salt concentration was incrementally increased when the flow dropped from the previous time step, while it was incrementally decreased when the flow increased. Between medium and high flow, salt concentration was incrementally decreased at a set rate.

Table B-1 Seasonal Salinity Model Parameters

Max Concentration (Jul-Mar)	200	mg / L
Max Concentration (Apr-June)	250	mg / L
Minimum Concentration	80	mg / L
High Flow Salinity Reset to Minimum Concentration	345	ML / d
Medium Flow	170	ML / d
Low Flow	25	ML / d
Salinity Decrease between medium and high flow	1	$\mathrm{mg} / \mathrm{L} / \mathrm{day}$
Salinity Increase between low and medium flow	5	$\mathrm{mg} / \mathrm{L} / \mathrm{day}$

Table B-2 Ramp Salinity Model Parameters

Max Concentration	375	mg / L
Minimum Concentration	80	mg / L
High Flow Salinity Reset to Minimum Concentration	100	ML / d
Ramp Change Concentration	200	mg / L
Flow Decreases - Salinity Increase - Below Salinity Ramp by:	10	$\mathrm{mg} / \mathrm{L} / \mathrm{day}$
Flow Decreases - Salinity Increase - Above Salinity Ramp by:	2	$\mathrm{mg} / \mathrm{L} / \mathrm{day}$
Flow Increases - Salinity Decrease by:	1.5	$\mathrm{mg} / \mathrm{L} / \mathrm{day}$

Table B-3 Flow Flux Salinity Model Parameters

Max Concentration	375	mg / L
Minimum Concentration	80	mg / L
High Flow Salinity Reset to Minimum Concentration	500	ML / d
Medium Flow	200	ML / d
Low Flow	80	ML / d
Between medium and high flow - Salinity decrease by:	50	$\mathrm{mg} / \mathrm{L} / \mathrm{day}$
Below low flow - Salinity increase by:	1.2	$\mathrm{mg} / \mathrm{L} / \mathrm{day}$
Between low and medium flow - flow decrease - Salinity increase by:	10	$\mathrm{mg} / \mathrm{L} / \mathrm{day}$
Between low and medium flow - flow increase - Salinity decrease by:	1	$\mathrm{mg} / \mathrm{L} / \mathrm{day}$

[^0]: ${ }^{1}$ Diatoms are a food source for macroinvertebrate grazers as well as fish.

[^1]: ${ }^{2}$ Toxicity of copper, zinc and lead decreases with increasing hardness of water, therefore trigger values are modified in accordance with ANZECC \& ARMCANZ (2000) to $0.026 \mathrm{mg} / \mathrm{L}, 0.07 \mathrm{mg} / \mathrm{L}$ and $0.08 \mathrm{mg} / \mathrm{L}$ respectively.

[^2]: ${ }^{3}$ From Fairview Interim Water Management Procedure, Document Number: 1697-20-001. 10 May 2007

[^3]: ${ }^{4}$ The deepest part of the stream channel

[^4]: ${ }^{5}$-General Lag and Laurenson non-linear routing was also used where applicable.

[^5]: ${ }^{6}$ Note that EC and salinity are different concepts but they are linearly related so flow weighting applies to both.

[^6]: ${ }^{7}$ Electrical conductivity of associated waters from Roma and Fairview were based on data available at the time of modelling. The Water Quality section of this report displays the latest figures available.

[^7]: ${ }^{2}$ Raw data from Hydro Tasmania Consulting, 2008, provided in main report.

[^8]: ${ }^{3}$ This test was used as water quality data is often significantly skewed and non-normal for some parameters. An alternative test would have been to test sample averages with t-tests after transformation of the data.

[^9]: Notes:
 MTV
 MTV minimum trigger value
 BOLD Greater than MTV
 Creek dry

[^10]: ${ }^{3}$ All locations as eastings/northings GDA94 unless otherwise specified

[^11]: ${ }^{4}$ Due to the difficulty in meeting the required holding times of two days for BOD analysis, limited samples were analysed.

[^12]: ${ }^{5}$ ALS is accredited by the National Association of Testing Authorities (NATA) for all analyses undertaken.

[^13]: ${ }^{6}$ EC refers to specific electrical conductivity standardised to $25^{\circ} \mathrm{C}$. The water quality instruments used automatically correct for temperature.

[^14]: ${ }^{7}$ Extremely low turbidity measurements in Bungil Creek may be anomalous
 ${ }^{8}$ Queensland Government Natural Resources and Water, Water Monitoring Data Collection Standards, Version 2.1, March 2007

[^15]: ${ }^{9}$ Queensland Government Natural Resources and Water, Water Monitoring Data Collection Standards, Version 2.1, March 2007

[^16]: ${ }^{10}$ The first quartile (Q1) is the value below which 25% of observations lie, the second quartile (Q2) is equivalent to the median, and the third quartile (Q3) is the value below which 75% of observations lie.

[^17]: Notes:
 MTV
 MTV minimum trigger value
 BOLD Greater than MTV
 Creek dry

[^18]:

 $\underset{E}{ }$

[^19]:
 Telephone: $+61-3-9646-4190$
 Free, Port Melbourne VIC 3207 Australia
 Rentals Direct Fax: +61-3-9681-9251
 FreeCall (interstate): 1-800-675-756
 Email: rentals.melb(Qenviroequip.com Office Fax: +61-3-9646-4195
 Internet: www.rentals.enviroequip.com

[^20]: Notes:
 MTV
 MTV minimum trigger value
 BOLD Greater than MTV
 Creek dry

[^21]:

 $\underset{E}{ }$

[^22]:
 Telephone: $+61-3-9646-4190$
 Free, Port Melbourne VIC 3207 Australia
 Rentals Direct Fax: +61-3-9681-9251
 FreeCall (interstate): 1-800-675-756
 Email: rentals.melb(Qenviroequip.com Office Fax: +61-3-9646-4195
 Internet: www.rentals.enviroequip.com

[^23]: ${ }^{2}$ Raw data from Hydro Tasmania Consulting, 2008, provided in main report.

[^24]: ${ }^{3}$ This test was used as water quality data is often significantly skewed and non-normal for some parameters. An alternative test would have been to test sample averages with t-tests after transformation of the data.

[^25]: Notes:
 MTV
 MTV minimum trigger value
 BOLD Greater than MTV
 Creek dry

[^26]: ${ }^{1}$ National Weeds Strategy is currently being reviewed and is to be renamed the Australian Weed Strategy (http://www.weeds.org.au/nws.htm, viewed 9 September 2008)
 ${ }^{2}$ Note the Department of Environment, Water, Heritage and the Arts Weeds of National Significance (WONS) webpage (http://www.weeds.gov.au/weeds/lists/wons.html), states 20 WONS identified, but lists 21 species.

[^27]: NOTES
 ${ }^{1}$ From DPI distribution maps 2003-2007. Refers to Density/Distribution
 ${ }^{2}$ Weed of National Significance

[^28]: Prepared for Santos, 21 January 2009
 J:IJOBS\43270896|Report|Final Report|Appendix I - Modelling Upper Dawson\Appendix I-Modelling Dawson.doc

[^29]: Prepared for Santos, 21 January 2009
 J:\JOBS\43270896\Report\Final Report\Appendix J - Modelling Condamine-Balonne\Appendix J -
 Modelling Balonne.doc

